
User Guide

Markdown++

Published date: 04/19/2023

Table of Contents
Markdown++ Source Documents..3

Introduction..3

Getting Started with Markdown.. 4

Learning Markdown.. 5

Paragraphs... 6

Titles... 9

Headings...12

Lists...17

Tables... 30

Blockquotes.. 40

Code Fences.. 46

Code Blocks... 49

Horizontal Rules... 52

Block HTML.. 55

Bold, Italic, Strikethrough, Code...58

Links..61

Images.. 65

Link References..67

Inline HTML.. 69

Learning Markdown++.. 71

Markdown++ Basics... 72

Custom Styles.. 75

Custom Aliases...80

Markers in Markdown++...82

Conditions... 86

File Includes... 93

Variables... 96

ii | Table of Contents

Markdown++ Source
Documents

Introduction
Getting Started with Markdown
Learning Markdown
Learning Markdown++

Introduction
Markdown is a text-based authoring format created by John
Gruber. It's a simple, light-weight and robust language that puts
emphasis on efficiency and readability.

Quick Links

Getting Started with Markdown

Learning Markdown

Learning Markdown++

Markdown Cheat Sheet

These sections will go into detail on authoring in Markdown and
Markdown++, how-tos for syntax features, as well as how to
prepare documents for publishing in ePublisher.

Introduction | 3

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/

Getting Started with
Markdown
Markdown is a text-based authoring format. Any text editor can
be used to create Markdown documents. Here are some popular
ones to try out:

•
Notepad++. Simple, lightweight notepad app with syntax
highlighting based on file extension.

•
Visual Studio Code. Code-centric text editor. Has
community-made extensions, including many for
Markdown.

•
Obsidian. A Markdown-specific note taking app. Has
themes, a writing mode, and a preview mode.

•
Typora. A Markdown editor with many authoring
experience features.

After choosing a text editor, Markdown and Markdown++
documents can be created using the .md extension.

4 | Markdown++

https://notepad-plus-plus.org/
https://code.visualstudio.com/
https://obsidian.md/
https://typora.io/

Learning Markdown
This section will detail the features of Markdown, how to write
them, and how to use them in ePublisher. For quick reference
material, see the Markdown Cheat Sheet.

Any text can be Markdown. Common prose parses into
Markdown with no issue. Simple text documents can be
formatted into Markdown documents quickly and easily because
of this.

Quick Links

Paragraphs

Titles

Headings

Lists

Tables

Blockquotes

Code Fences

Code Blocks

Horizontal Rule

Block HTML

Bold, Italic, Strikethrough, Code

Links

Images

Link References

Inline HTML

Learning Markdown | 5

Paragraphs
The basic organization of block-level text, the paragraph is the
building block of a Markdown document.

Syntax
A Paragraph is created by writing any text content on a line.
It is the default block-level element, meaning all content
is considered a Paragraph if the content does not have any
recognizeable block-level syntax.

Basics

Any amount of text will do to create a Paragraph. Start the line
with non-space characters to avoid indentation-related parsing
issues.

Lorem ipsum dolor sit amet, consectetur adipiscing
 elit, sed do eiusmod tempor incididunt ut labore et
 dolore magna aliqua.

Separate with Empty Lines

Keep an empty line between Paragraphs that should be
separated. This is a general good rule of thumb for all Markdown
content.

Lorem ipsum dolor sit amet, consectetur adipiscing
 elit, sed do eiusmod tempor incididunt ut labore et
 dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud exercitation
 ullamco laboris nisi ut aliquip ex ea commodo
 consequat.

Multi-Line Paragraphs

6 | Markdown++

Multiple lines not separated by an empty line will be treated as
parts of the same Paragraph. The lines will be consolidated and
separated by space in the output.

Lorem ipsum dolor sit amet, consectetur adipiscing
 elit, sed do eiusmod tempor incididunt ut labore et
 dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud exercitation
 ullamco laboris nisi ut aliquip ex ea commodo
 consequat.

Preserve Line Breaks

Ending a line with a space character at the end will preserve the
line break within the Paragraph. Useful for poetry, or other types
of content where line structure is important.

Nature's first green is gold,

Her hardest hue to hold.

Her early leaf's a flower;

But only so an hour.

Markdown++

A custom Paragraph Style can be given to a Paragraph using a
Markdown++ style tag on the line directly above the Paragraph.

<!--style:CustomParagraph-->

Lorem ipsum dolor sit amet, consectetur adipiscing
 elit, sed do eiusmod tempor incididunt ut labore et
 dolore magna aliqua.

To learn more about Markdown++ tagging, see Learning
Markdown++.

ePublisher Style Information

Paragraphs | 7

Default Style Properties

Style Type: Paragraph

Style Name: Paragraph

Property Value

font family Arial

font size 12pt

line height 1.2em

padding top 0pt

padding bottom 6pt

If a custom style name is assigned to a Paragraph, that style
name will still inherit all of the listed default style information.

8 | Markdown++

Titles
Also referred to as a setext heading, Titles are useful to
communicate the central idea of a document. Titles are most
useful as the leading content of a set of text material.

Syntax
Titles are created by writing a single line of content followed
by a line containing at least 1 of either = or - characters.
The second line shouldn't contain text other than these two
characters.

Basics

The most basic example, a line of content with a following line
with a = character.

My Document Title

=

Titles can be written in the same way using - characters.

My Document Title

-

Any Amount of Characters

The amount of = or - characters that are used is not important.
Having a matching amount of characters on both lines can be a
nice touch for readability, though.

My Document Title

=================

Titles | 9

Markdown++

A custom Paragraph Style can be given to a Title using a
Markdown++ style tag on the line directly above the Title.

<!--style:CustomTitle-->

My Document Title

=================

To learn more about Markdown++ tagging, see Learning
Markdown++.

ePublisher Style Information

Style Behavior

The style name a Title will get is dependent on the characters
used in the second line. Title 1 is given to Titles that use =
characters, and Title 2 is given to Titles that use - characters.

Default Style Properties

Style Type: Paragraph

Style Name: Title 1 , Title 2

Property Value

font family Arial

font size 24pt

font weight bold

line height 1.2em

padding top 0pt

10 | Markdown++

Property Value

padding bottom 12pt

Default Style Options

Option Value

Table of Contents level 1

If a custom style name is assigned to a Title, that style name
will still inherit all of the listed default style information.

Titles | 11

Headings
Originally named the ATX heading, a Heading communicates a
central idea for a topic. Headings should contain the main idea
for a section, and have useful keywords to make the section
easy to find in a search.

Syntax
Headings are created by starting a line of content with the #
character. The # characters and the text content of the Heading
need to be separated by a space character. The amount of #
characters used indicates the level of heading which will be
created.

Basics

Create a Heading 1 with a single # , a space, and some text.

Heading 1

More # characters can be added to the Heading to increase the
heading level, up to 6.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5

12 | Markdown++

Heading 6

Markdown++

A custom Paragraph Style can be given to a Heading using a
Markdown++ style tag on the line directly above the Heading.

<!--style:CustomHeading-->

Heading 1

To learn more about Markdown++ tagging, see Learning
Markdown++.

Heading Behavior

Heading Alias

Each created Heading gets an alias that can be used to link to it
from another place in the publication.

To determine the alias value, ePublisher takes the text of
the Heading, lower-cases it, removes all non-alphanumeric
characters, and replaces space with - characters.

The below Heading will get the alias value lets-go-to-the-
moon .

Let's Go to the Moon!

Any time the text of a Heading is changed, the alias will also
change. It's recommended to use a Custom Alias to avoid
having to change link paths when Headings change.

ePublisher Style Information

Style Behavior

The style name ePublisher will create for a Heading will is
dependent on the number of # characters used at the front of

Headings | 13

the line. One # character creates the style name Heading 1 ,
two # characters creates Heading 2 , etc.

Default Style Properties

Style Type: Paragraph

Style Name: Heading 1 , Heading 2 , Heading 3 , Heading 4 ,
Heading 5 , Heading 6

Heading 1

Property Value

font family Arial

font size 21pt

font weight bold

line height 1.2em

padding top 0pt

padding bottom 12pt

Heading 2

Property Value

font family Arial

font size 18pt

font weight bold

line height 1.2em

padding top 0pt

padding bottom 12pt

Heading 3

14 | Markdown++

Property Value

font family Arial

font size 15pt

font weight bold

line height 1.2em

padding top 0pt

padding bottom 12pt

Heading 4, Heading 5, Heading 6

Property Value

font family Arial

font size 12pt

font weight bold

line height 1.2em

padding top 0pt

padding bottom 12pt

Default Style Options

Heading 1

Option Value

Table of Contents level 2

Heading 2

Headings | 15

Option Value

Table of Contents level 3

Heading 3

Option Value

Table of Contents level 4

Heading 4

Option Value

Table of Contents level 5

Heading 5

Option Value

Table of Contents level 6

Heading 6

Option Value

Table of Contents level none

If a custom style name is assigned to a Heading, that style
name will still inherit all of the listed default style information for
the matching Heading syntax.

16 | Markdown++

Lists
Lists are a structural feature in Markdown. They're useful for
many things, such as itemizing a collection of information,
providing steps to a procedure, or numbering sections of
information.

Syntax
There are two types of lists that can be created: Ordered Lists
and Unordered Lists.

Ordered Lists are created by starting a line with a number or
letter, followed by a single . , then space (two is recommended),
then some text content.

Unordered Lists are created by starting a line with any - , * , or
+ character, followed by a space, then some text content.

Beyond these differences, both types of Lists have the same
behavior when it comes to syntax and authoring.

Basics

Ordered List

Create a simple Ordered List using a number and a . character.
Each list item is written on it's own line.

1. list item one

2. list item two

3. list item three

Ordered Lists can also be created using letters and . .

a. list item one

b. list item two

Lists | 17

c. list item three

Roman numerals are fine, too. Remember to keep the vertical
spacing consistent.

i. list item one

ii. list item two

iii. list item three

Re-using the same letter or number is OK.

1. list item one

1. list item two

1. list item three

a. list item one

a. list item two

a. list item three

Unordered List

Create a simple Unordered List using - . Each list item is written
on it's own line.

- list item one

- list item two

- list item three

Unordered Lists can also be created using * .

* list item one

* list item two

18 | Markdown++

* list item three

The + character can be used as well.

+ list item one

+ list item two

+ list item three

One Empty Line Between List Items

Put a single empty line between list items to give room. More
than one empty line will break the list into two.

- list item one

- list item two

- list item three

Don't Use Unlike Characters

Using non-matching characters on the same list level will break
the list in two.

- list item one

* list item one

+ list item one

1. list item one

a. list item one

Multi-Line Content in List Items

Lists | 19

List Item content can span multiple lines. Use a blank line to
separate elements. Make sure all lines of content retain the
same vertical spacing.

1. ### Cities in the US

 Here is a sample of some cities in the United
 States.

 | Name | State |

 |--------|----------|

 | Austin | Texas |

 | Tulsa | Oklahoma |

2. list item two

- ### Cities in the US

 Here is a sample of some cities in the United
 States.

 | Name | State |

 |--------|----------|

 | Austin | Texas |

 | Tulsa | Oklahoma |

- list item two

Nested List Items

To nest List items, make sure the vertical spacing of the nested
List item matches up with the content of the parent List item.

20 | Markdown++

1. list item one

 1. nested list item one

2. list item two

3. list item three

- list item one

 - nested list item one

- list item two

- list item three

Nesting Different Types of Lists

Nesting Lists of different types is acceptable. Use the same
spacing rules as usual.

1. list item one

 - nested list item one

 - nested list item two

2. list item two

3. list item three

- list item one

Lists | 21

 1. nested list item one

 2. nested list item two

- list item two

- list item three

Markdown++

A custom Paragraph Style can be given to a List using a
Markdown++ style tag on the line directly above the List.

<!--style:CustomOList-->

1. A customized ordered list, style name
 "CustomOList"

2. CustomOList item two

3. CustomOList item three

<!--style:CustomUList-->

- A customized unordered list, style name
 "CustomUList"

- CustomUList item two

- CustomUList item three

Customizing Nested Lists

Nested Lists can be customized as well.

1. A default list, style name "OList"

 <!--style:CustomOList-->

22 | Markdown++

 a. A customized list, style name "CustomOList"

 b. CustomOList item two

2. OList item two

- A default list, style name "UList"

 <!--style:CustomUList-->

 - A customized list, style name "CustomUList"

 - CustomUList item two

- UList item two

Default Until Customized

Nested Lists are treated as standalone; they will not inherit the
outermost stylename if customized.

<!--style:CustomOList-->

1. A customized list, style name "CustomOList"

 a. A default list, style name "OList"

 b. OList item two

2. CustomOList item two

<!--style:CustomUList-->

- A customized list, style name "CustomUList"

 - A default list, style name "UList"

Lists | 23

 - UList item two

- CustomUList item two

Add a style tag to each list individually for consistency with
custom styles.

<!--style:CustomOList-->

1. A customized list, style name "CustomOList"

 <!--style:CustomOList-->

 a. A customized list, style name "CustomOList"

 b. CustomOList item two

2. CustomOList item two

<!--style:CustomUList-->

- A customized list, style name "CustomUList"

 <!--style:CustomUList-->

 - A customized list, style name "CustomUList"

 - CustomUList item two

- CustomUList item two

Nested Content in Lists

The tagging convention can be used for other Markdown
elements inside List items. The resulting style name will be
appended with the style name of the containing List.

24 | Markdown++

1. <!--style:CustomParagraph-->

 A customized paragraph, style name "OList
 CustomParagraph"

2. list item two

- <!--style:CustomParagraph-->

 A customized paragraph, style name "UList
 CustomParagraph"

- list item two

To learn more about Markdown++ tagging, see Learning
Markdown++.

ePublisher Style Information

Style Behavior

To allow full styling of Lists, ePublisher creates a number of
style names when a list is detected inside a Markdown source
document.

List Style

The List Style is the first style that ePublisher adds to the Style
Designer when a list is detected in a source document. The
default name is OList for ordered lists, and UList for unordered
lists, but could also be a custom name if the style tag syntax is
used on the list.

This style applies to the container area surrounding the lists's
items. It's style rules can also apply to list items or nested
content, if the same rule isn't already applied on a nested style.

Customizing the List Style

Lists | 25

By adding a Markdown++ custom style tag, the List Style name
can be changed. The example below changes the List Style
name to CustomUList :

<!--style:CustomUList-->

- This is a custom list

- unordered

- named "CustomUList"

List Item Style

The list items inside a list also get a style name. To determine
the List Item Style's name, ePublisher takes the List Style
and adds Item to the end, separated by a space. The default
name is OList Item for ordered list items, and UList Item for
unordered list items, but could also be a custom name if the
style tag syntax is used on the list.

Customizing the List Item Style

By adding a Markdown++ custom style tag, the List Item Style
name can be changed. The example below adds the List Item
Style CustomUList Item , because the List Style name has
been set to CustomUList :

<!--style:CustomUList-->

- This is a custom list

- unordered

- named "CustomUList"

List items can't be styled individually. This will break the list into
two separate lists. All list items in a given list are styled by the
same List Item Style.

Nested Styles

Nested content inside of list items also get a new style name. To
determine the Nested Style's name, take the List Style and add

26 | Markdown++

the style name of the nested content to the end, separated by a
space.

The example below populates the Style Designer with 3
Paragraph Styles: UList (the List Style), UList Item (the
List Item Style), and UList Paragraph when scanned into
ePublisher.

- This is a simple list

- unordered

- default style names

Customizing Nested Styles

By adding a Markdown++ custom style tag, the Nested Style
name can be changed. The example below changes the Nested
Style name to UList CustomParagraph :

- <!--style:CustomParagraph-->

 This is a custom paragraph.

Custom Style Names can be used on both the list and nested
content simultaneously. This example creates the style names
CustomUList , CustomUList Item , and CustomUList
CustomParagraph :

<!--style:CustomUList-->

- <!--style:CustomParagraph-->

 This is a custom paragraph inside a blockquote.

Default Style Properties

Style Type: Paragraph

Style Name: OList , OList Item , UList , UList Item

OList

Lists | 27

Property Value

padding top 0pt

padding right 0pt

padding bottom 0pt

padding left 0pt

margin top 0pt

margin right 0pt

margin bottom 0pt

margin left 0pt

tag ol

UList

Property Value

padding top 0pt

padding right 0pt

padding bottom 0pt

padding left 0pt

margin top 0pt

margin right 0pt

margin bottom 0pt

margin left 0pt

tag ul

OList Item, UList Item

28 | Markdown++

Property Value

padding top 0pt

padding right 0pt

padding bottom 0pt

padding left 0pt

margin top 0pt

margin right 0pt

margin bottom 0pt

margin left 36pt

tag li

If a custom style name is assigned to a List, that style name will
still inherit all of the listed default style information.

Lists | 29

Tables
Tables lay out multiple lines of detailed data in an organized
way. In Markdown, Tables are used to display cells of inline
content. This often means that table structue is kept simple.

If a Table with complex structure is needed, it can be created as
an HTML fragment in a Block HTML element.

Syntax
Markdown Tables consist of 3 things:

•
A header row , which contains header cell content
separated by | characters.

•
An alignment row , that indicates the alignment of the
body cells' text. Each cell in this row contains at least
3 - characters, and an optional : character to indicate
alignment. Each cell is separated by a | character.

◦
Default alignment only uses - characters; 3 or
more.

◦
Left align the column by starting the cell with :
and filling in the rest with : characters; 3 or more.

◦
Right align the column by starting the cell with 3 or
more - characters, ending with a : character.

◦
Center align the column by starting and ending the
cell with : characters. Put - characters between
them; 3 or more.

•
1 or more body rows , that contain body cell content
separated by | characters.

Each row's content should be confined to a single line. The table
will not parse properly if rows have multi-line content.

30 | Markdown++

Optionally, all lines in the table can start and end with |
characters. Be sure to apply them to all lines if they are to be
used.

Basics

Two basic Tables; one with wrapping | characters, one without.

| name | age | city |

|---|---|---|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

 name | age | city

---|---|---

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Line up the | characters in each row for a nice touch for
readibilty.

| name | age | city |

|------|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

 name | age | city

------|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Tables | 31

Left-align the text of cells in a column by starting the alignment
cell with : . The first column is left-aligned in this example:

| name | age | city |

|:-----|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

 name | age | city

:-----|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Right-align the text of cells in a column by ending the alignment
cell with : . The first column is right-aligned in this example:

| name | age | city |

|-----:|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

 name | age | city

-----:|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Center-align the text of cells in a column by starting and ending
the alignment cell with : . The first column is center-aligned in
this example:

32 | Markdown++

| name | age | city |

|:----:|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

 name | age | city

:----:|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Each column gets it's own alignment. Mix them together as
needed.

| name | age | city |

|:-----|:---:|--------:|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

 name | age | city

:-----|:---:|--------:

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Markdown In Tables

Inline Markdown elements, like bold, italic, and even inline
HTML, can be used with cell text content.

| name | age | city |

Tables | 33

|----------|-----|---------|

| **Bob** | 42 | Dallas |

| **Mary** | 37 | El Paso |

 name | age | city

----------|-----|---------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Markdown++

A custom Table Style can be given to a Table using a Markdown
++ style tag on the line directly above the Table.

<!--style:CustomTable-->

| name | age | city |

|------|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

<!--style:CustomTable-->

 name | age | city

------|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Content in Cells

Inline text content can be customized using the inline tag
convention.

34 | Markdown++

| name | age | city |

|-------------------------------|-----|---------|

| <!--style:CustomText-->*Bob* | 42 | Dallas |

| <!--style:CustomText-->*Mary* | 37 | El Paso |

 name | age | city

-------------------------------|-----|------

 <!--style:CustomText-->*Bob* | 42 | Dallas

 <!--style:CustomText-->*Mary* | 37 | El Paso

To learn more about Markdown++ tagging, see Learning
Markdown++.

ePublisher Style Information

Style Behavior

In order to style a Table and it's cells in detail, a few different
styles are needed in ePublisher. A Table gets 3 styles when
ePublisher detects one in a document.

The example below populates the Style Designer with 1 Table
Style called Table , and 2 Paragraph Styles: Table Cell Head ,
and Table Cell Body when scanned into ePublisher.

> # Heading 1 element inside a blockquote

>

> This is a Paragraph element inside of a blockquote.

>

Table Style

Tables | 35

The Table Style is the first style that ePublisher adds to the Style
Designer when a table is detected in a source document. The
default name is Table , but could also be a custom name if the
style tag syntax is used on the table.

This style applies table-specific style rules to the entire table.
It is the only style in Markdown++ that creates an entry in the
Table Styles area in the Style Designer.

Customizing the Table Style

By adding a Markdown++ custom style tag, the Table Style
name can be changed. The examples below change the Table
Style name to CustomTable :

<!--style:CustomTable-->

| name | age | city |

|------|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

<!--style:CustomTable-->

 name | age | city

------|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Header & Body Cell Styles

Every cell on a header row gets a Header Cell Style. Each cell
on body rows get a Body Cell Style as well. To determine the
Header Cell Style's name, ePublisher takes the Table Style and
adds Cell Head to the end for Header Cell Styles, and Cell
 Body to the end for Body Cell Styles. The default names are
Table Cell Head and Table Cell Body , but these will also be
customized if the Table Style has a custom name.

36 | Markdown++

Customizing Header & Body Cell Styles

By adding a Markdown++ custom style tag, the Header & Body
Cell Style names can be changed. The example below changes
the style names to CustomTable Cell Head and CustomTable
Cell Body because the Table Style has been given the custom
style name CustomTable :

<!--style:CustomTable-->

| name | age | city |

|------|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

<!--style:CustomTable-->

 name | age | city

------|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Default Style Properties

Style Type: Table , Paragraph

Style Name: Table , Table Cell Head , Table Cell Body

Table

Property Value

border top color #222222

border top style solid

border top width 1px

Tables | 37

Property Value

border right color #222222

border right style solid

border right width 1px

border bottom color #222222

border bottom style solid

border bottom width 1px

border left color #222222

border left style solid

border left width 1px

Table Cell Head

Property Value

font family Arial

font size 11pt

font weight bold

padding top 6pt

padding right 6pt

padding bottom 6pt

padding left 6pt

Table Cell Body

Property Value

font family Arial

38 | Markdown++

Property Value

font size 11pt

padding top 6pt

padding right 6pt

padding bottom 6pt

padding left 6pt

If a custom style name is assigned to a Table, the style names
will still inherit all of the listed default style information.

Tables | 39

Blockquotes
Blockquotes are unique block-level elements that can contain
other block-level elements. They have a diverse set of usages
due to this, such as capturing a sequence of conversation, or
being a container for an important presentation of concepts.

Syntax
Blockquotes are created by starting a line with the > character.
A space between text content and the > character is optional,
but recommended. Any Markdown or Markdown++ convention
is acceptable as text content inside of Blockquotes.

Basics

A basic Blockquote containing a single Paragraph

> A paragraph inside a blockquote.

Markdown In Blockquotes

Other Markdown elements, like headings and lists, can be used
inside Blockquotes. Use the same spacing and indentation rules
as usual when inside Blockquotes.

> ### How to Publish Content with ePublisher

>

> Here's some steps to publish your content with
 ePublisher.

>

> 1. Open ePublisher

> 2. Add source documents

> 3. Select Format

40 | Markdown++

> 4. Click **Generate All**

Nested Blockquotes

Other Blockquotes can also be nested inside of Blockquotes, and
so on.

> First level blockquote

>

> > Second level nested blockquote.

> >

> > > Third level nested blockquote.

> > >

Markdown++

A custom Paragraph Style can be given to a Blockquote
using a Markdown++ style tag on the line directly above the
Blockquote.

<!--style:CustomBlockquote-->

> A customized blockquote, style name
 "CustomBlockquote"

Customizing Nested Blockquotes

Nested Blockquotes can be customized as well.

> A default blockquote, style name "Blockquote"

>

> <!--style:CustomBlockquote-->

> > A customized blockquote, style name
 "CustomBlockquote"

Blockquotes | 41

> >

Default Until Customized

Nested Blockquotes are treated as standalone; they will not
inherit the outermost stylename if customized.

<!--style:CustomBlockquote-->

> A customized blockquote, style name
 "CustomBlockquote"

>

> > A default blockquote, style name "Blockquote"

> >

Add a style tag to each blockquote individually for consistency
with custom styles.

<!--style:CustomBlockquote-->

> A customized blockquote, style name
 "CustomBlockquote"

>

> <!--style:CustomBlockquote-->

> > A customized blockquote, style name
 "CustomBlockquote"

> >

Markdown in Blockquotes

The tagging convention can be used for other Markdown
elements inside Blockquotes. These style names will inherit the
Blockquote's style name as a prefix. See Nested Styles for more
info.

> <!--style:CustomParagraph-->

42 | Markdown++

> A customized paragraph, style name "Blockquote
 CustomParagraph"

>

> <!--style:CustomList-->

> - an unordered list

> - customized

> - style name "Blockquote CustomList"

>

To learn more about Markdown++ tagging, see Learning
Markdown++.

ePublisher Style Information

Style Behavior

Blockquotes are considered containers; they contain other
block-level elements, like Paragraphs, Lists, and Tables. Because
of this, ePublisher creates a number of different styles when it
detects blockquotes in source documents.

Blockquote Style

The Blockquote Style is the first style that ePublisher adds to
the Style Designer when a blockquote is detected in a source
document. The default name is Blockquote , but could also be a
custom name if the style tag syntax is used on the blockquote.

This style applies to the container area surrounding the
blockquote's content. It's style rules can also apply to nested
content, if the same rule isn't already applied on the nested
style.

Customizing the Blockquote Style

By adding a Markdown++ custom style tag, the Blockquote
Style name can be changed. The example below changes the
Blockquote Style name to CustomBlockquote :

Blockquotes | 43

<!--style:CustomBlockquote-->

> This is a custom named blockquote.

>

Nested Styles

Nested content inside of Blockquotes also get a new style name.
To determine the Nested Style's name, take the Blockquote
Style and add the style name of the nested content to the end,
separated by a space.

The example below populates the Style Designer with 3
Paragraph Styles: Blockquote (the Blockquote Style),
Blockquote Heading 1 , and Blockquote Paragraph when
scanned into ePublisher.

> # Heading 1 element inside a blockquote

>

> This is a Paragraph element inside of a blockquote.

>

Customizing Nested Styles

By adding a Markdown++ custom style tag, the Nested Style
name can be changed. The example below changes the Nested
Style name to Blockquote CustomParagraph :

> <!--style:CustomParagraph-->

> This is a custom paragraph.

>

Custom Style Names can be used on both the blockquote and
nested content simultaneously. This example creates the style
names CustomBQ , and CustomBQ CustomParagraph :

<!--style:CustomBQ-->

44 | Markdown++

> <!--style:CustomParagraph-->

> This is a custom paragraph inside a blockquote.

>

Default Style Properties

Style Type: Paragraph

Style Name: Blockquote

Property Value

background color #efefef

border left style solid

border left color #DFE2E5

border left width 3pt

padding top 12pt

padding right 12pt

padding bottom 12pt

padding left 12pt

If a custom style name is assigned to a Blockquote, that style
name will still inherit all of the listed default style information.

Blockquotes | 45

Code Fences
A Code Fence preserves all text content it encapsulates and
presents it exactly how it was written. Code Fences are useful
for presenting information that needs to be written explicitly,
like examples of code. They can provide users with content that
can be copied and used for their own purposes, too.

Syntax
Code Fences are created in three steps:

1.
Start with a line containing ``` or ~~~ .

2.
A following line or lines of text content.

3.
End with a line containing ``` or ~~~ , matching the
starting line.

Basics

A simple example using ``` tags. Any amount of text can be
written between the two tags, as long as the tags match and are
written correctly.

```

function addTwoNumbers(num1, num2) {

  return num1 + num2;

}

```

Code Fences can be created using ~~~ , too.

~~~

46 | Markdown++



function addTwoNumbers(num1, num2) {

  return num1 + num2;

}

~~~

No Parsing in Code Fences

Markdown written inside of Code Fences will render as plain
text.

```

# Heading 1 in Plain Text

```

HTML will also render as plain text when written inside Code
Fences.

```

<p>HTML in plain text</p>

```

Markdown++

A custom Paragraph Style can be given to a Code Fence using
a Markdown++ style tag on the line directly above the Code
Fence.

<!--style:CustomCodeFence-->

```

function addTwoNumbers(num1, num2) {

  return num1 + num2;

}

Code Fences | 47



```

To learn more about Markdown++ tagging, see Learning
Markdown++.

ePublisher Style Information

Default Style Properties

Style Type: Paragraph

Default Style Name: Code Fence

Property Value

background color #efefef

font family Consolas

font size 11pt

margin top 6pt

margin bottom 6pt

padding top 12pt

padding right 12pt

padding bottom 12pt

padding left 12pt

overflow auto

white space pre

If a custom style name is assigned to a Code Fence, that style
name will still inherit all of the listed default style information.

48 | Markdown++

Code Blocks
A Code Block preserves all text content it encapsulates and
presents it exactly how it was written. Code Blocks are useful for
presenting information that needs to be written explicitly, like
examples of code. They can provide users with content that can
be copied and used for their own purposes, too.

Syntax
Code Blocks are created by adding 4 spaces before text content.
A Code Block can consist of one or more lines created in this
manner.

Basics

Starting a line with 4 spaces will create a basic Code Block.

 var firstName, lastName;

Multi-Line Code Blocks

Multiple lines can be used; start all lines with at least 4 spaces.

 var firstName, lastName;

 firstName = "John";

 lastName = "Doe";

Space is Preserved.

Any spaces after the first 4 will be used as indentation for the
content of the Code Block.

 function addTwoNumbers(num1, num2) {

Code Blocks | 49

 return num1 + num2;

 }

No Parsing in Code Blocks

Markdown written inside of Code Blocks will render as plain text.

 # Heading 1 in Plain Text

HTML will also render as plain text when written inside Code
Blocks.

 <p>HTML in plain text</p>

Markdown++

A custom Paragraph Style can be given to a Code Block using
a Markdown++ style tag on the line directly above the Code
Block.

<!--style:CustomCodeBlock-->

 function addTwoNumbers(num1, num2) {

 return num1 + num2;

 }

To learn more about Markdown++ tagging, see Learning
Markdown++.

ePublisher Style Information

Default Style Properties

Style Type: Paragraph

Style Name: Code Block

50 | Markdown++

Property Value

background color #efefef

font family Consolas

font size 11pt

margin top 6pt

margin bottom 6pt

padding top 12pt

padding right 12pt

padding bottom 12pt

padding left 12pt

overflow auto

white space pre

If a custom style name is assigned to a Code Block, that style
name will still inherit all of the listed default style information.

Code Blocks | 51

Horizontal Rules
A Horizontal Rule provides a visual separation between sections
of content. They're useful to separate unrelated ideas on a
single page.

Syntax
A Horizontal Rule is created by using at least 3 - , _ , or *
characters. These should be the only characters on the line, but
any combination of them is acceptable.

Basics

A simple Horizontal Rule using - characters.

An example using * characters.

And one with _ characters.

3 or More Characters

More than 3 characters can be used, if desired.

Spaces OK

Spaces are acceptable between the characters.

52 | Markdown++

- - - - - - -

Mixed Characters

Combinations of the 3 characters is fine to use as well.

-*_*-*_*-*_*-

-_-_-_-_-_-_-

* - * - * - *

Markdown++

A custom Paragraph Style can be given to a Horizontal Rule
using a Markdown++ style tag on the line directly above the
Horizontal Rule.

<!--style:CustomHR-->

To learn more about Markdown++ tagging, see Learning
Markdown++.

ePublisher Style Information

Default Style Properties

Style Type: Paragraph

Style Name: Horizontal Rule

Property Value

border top color #222222

Horizontal Rules | 53

Property Value

border top style inset

border top width 1px

border right color #222222

border right style inset

border right width 1px

border bottom color #222222

border bottom style inset

border bottom width 1px

border left color #222222

border left style inset

border left width 1px

display block

margin top 6pt

margin bottom 6pt

tag hr

If a custom style name is assigned to a Horizontal Rule,
that style name will still inherit all of the listed default style
information.

54 | Markdown++

Block HTML
The common markup language for web technology, HTML, can
be used in Markdown documents on the block level. Refer to
W3Schools' HTML Tutorial to learn more about how to write and
use HTML.

Syntax
Block HTML is created by writing a valid HTML fragment on a
line or set of lines. HTML syntax must be the first thing on the
line to be considered Block HTML.

Basics

Simple Block HTML using a p element.

<p>A simple paragraph element.</p>

Multi-Line HTML

HTML can span multiple lines. Keep it compact. An empty line
will break the fragment in two, so it is best used to separate the
fragment from other content.

<table>

 <tr>

 <th>Name</th>

 <th>Age</th>

 <th>Country</th>

 </tr>

 <tr>

 <td>John Doe</td>

Block HTML | 55

https://www.w3schools.com/html/

 <td>35</td>

 <td>USA</td>

 </tr>

 <tr>

 <td>Jane Doe</td>

 <td>32</td>

 <td>USA</td>

 </tr>

</table>

No Markdown in Block HTML

Markdown syntax can't be used inside of Block HTML. The entire
HTML fragment is passed straight to the output as-is.

<p>No **Markdown** here.</p>

Markdown++

A custom Paragraph Style can be given to Block HTML using
a Markdown++ style tag on the line directly above the Block
HTML.

<!--style:CustomHTML-->

<p>HTML block given the style name "CustomHTML"</p>

To learn more about Markdown++ tagging, see Learning
Markdown++.

ePublisher Style Information

56 | Markdown++

Style Behavior

All HTML fragments are wrapped in a container element, which
is given a style name. The default name is HTML , but can also
be a custom name if the style tag is used directly above an
HTML fragment.

HTML is unavailable for publishing in PDF or PDF XSL-FO output
due to incompatibility with those technologies. ePublisher will
remove any HTML content it detects before generating PDF
output.

Default Style Properties

Style Type: Paragraph

Style Name: HTML

Property Value

display block

overflow auto

If a custom style name is assigned to a Block HTML, that style
name will still inherit all of the listed default style information.

Block HTML | 57

Bold, Italic, Strikethrough, Code
Inline text can be styled to put emphasis or formatting on
certain phrases. Markdown offers wrappers for Bold, Italic,
Strikethrough, and Code.

Syntax
Bold text is created by wrapping a set of text with a pair of
either ** or __ characters.

Italic text is created by wrapping text with a pair of either * or
_ .

Strikethrough text is created by wrapping text between a pair of
~~ characters.

Code spans are created by wrapping text between a pair of `
characters.

Basics

Two simple examples for Bold text. Notice either * or _ can be
used, but there must be two on each side of the wrap. The start
and end characters must also match.

Here's **bold** and here's also __bold__.

Italic text is written similarly, using one * or _ instead of two.

Here's *italic* and here's also _italic_.

Same rules apply to Strikethrough text, using ~~ .

Using ~~strikethrough~~ text.

Code spans follow the same rules, too.

58 | Markdown++

Defining a `technical term`.

Mixing Styles of Text

Combinations of these can be used together. Make sure the
innermost pair of tags is closed before closing an outer pair.
Using unlike characters for different pairs helps with readability.
(Using * for bold, _ for italic, etc.)

We can write **bold and _italic_**.

Spanning Multiple Lines

Inline text decorators can span multiple lines, as long as there
are no empty lines between the start and end tags.

Writing a sentence that **has

bold text** across lines.

Markdown++

A custom Character Style can be given to Inline Text using a
Markdown++ style tag directly before the start tag of the Inline
Text.

Styling <!--style:CustomBold-->**inline text. Style
 name "CustomBold"**.

To learn more about Markdown++ tagging, see Learning
Markdown++.

ePublisher Style Information

Default Style Properties

Style Type: Character

Style Name: Bold , Italic , Strikethrough , Code

Bold, Italic, Strikethrough, Code | 59

Bold

Property Value

font weight bold

Italic

Property Value

font style italic

Strikethrough

Property Value

text decoration line-through

Code

Property Value

background color #efefef

font family Consolas

white space pre

If a custom style name is assigned to Inline HTML, that style
name will still inherit all of the listed default style information.

60 | Markdown++

Links
Links are an inline Markdown convention used to connect users
to other locations and resources in a set of information.

Syntax
Link syntax looks interesting, but is simple enough once written
a few times. Write the link's displayed text in between [and]
characters, and directly next to it write the link's URL between
(and) characters. Optionally, a title can be given to the Link,
written next to the link URL, separated by a space and wrapped
in " characters.

Basics

A basic Link example.

[Link Text](path/to/my_doc.md)

Titles are optional. Keep the URL and title separate with a space.
Wrap the title in " characters.

[Link Text](path/to/my_doc.md "Link Title")

Links can be the only thing on a line or mixed in anywhere inline
text can go.

To see more, follow the [Link](path/to/my_doc.md).

Relative paths, absolute paths, web links, and Aliases are all
valid path values.

[Link Text](../my_doc.md)

[Link Text](D:/Markdown/Docs/my_doc.md)

Links | 61

[Link Text](https://www.webworks.com)

[Link Text](#my-doc)

Using Link References

Links can make use of Link References to simplify URL
management for documents with many different link paths.

[Link Text][0]

[0]: my_image.png

Titles are also available and written the same way using Link
References.

[Link Text][0]

[0]: my_image.png "Link Title"

Markdown++

A custom Character Style can be given to an Image using a
Markdown++ style tag immediately before the Link syntax.

<!--style:CustomLink-->[Link Text](path/to/my_doc.md)

To learn more about Markdown++ tagging, see Learning
Markdown++.

Link Behavior
Links in ePublisher have a variety of ways to connect to other
resources in a publication. What they connect to depends on
what is used as a path value. All path values inside links also
apply to path values in Link References.

62 | Markdown++

Web Links

Write a fully qualified web URL in the path area to link to an
external resource. Make sure to start the URL with http:// or
https:// .

[WebWorks Website](https://www.webworks.com)

Link to Other Documents

Write the file path for the intended file in the path area to link to
another document. Relative paths need to resolve from the file
the link is written in. Absolute paths can also be used.

[link text](path/to/my_doc.md)

[link text](C:/Users/me/path/to/my_doc.md)

Link to Topics in Other Documents

To link to a specific section in a document, write the file path
followed immediately with the alias for the topic. This can be
either a Heading Alias or a Custom Alias. Relative paths need
to resolve from the file the link is written in. Absolute paths can
also be used.

The examples link to the alias #my-alias in my_doc.md .

[link text](path/to/my_doc.md#my-alias)

[link text](C:/Users/me/path/to/my_doc.md#my-alias)

Link to Topics in Same Document

Use an alias by itself to link to a topic in the current document.
This can be either a Heading Alias or a Custom Alias.

The example links to the alias #my-alias in the current
document.

Links | 63

[link text](#my-alias)

ePublisher Style Information

Default Style Properties

Style Type: Character

Style Name: Link

Property Value

text decoration underline

color #0078d7

If a custom style name is assigned to a Link, that style name
will still inherit all of the listed default style information.

64 | Markdown++

Images
Images are an inline Markdown convention used to display
graphics in a document.

Syntax
The image syntax is identical to the Link syntax, with the
addition of a ! character at the beginning. Alt text is written
between ![and] characters. Inside of (and) , the URL path
to the image should be written, then, optionally, a title wrapped
in " characters.

Basics

A basic Image example.

![alt text](path/to/my_image.png)

Titles are optional. Keep the URL and title separate with a space.

![alt text](path/to/my_image.png "Image Title")

Images can be the only thing on a line or mixed in anywhere
inline text can go.

Images can go anywhere text can: ![alt text](path/to/
my_image.png)

Relative paths and absolute paths can both be used.

![alt text](../my_image.png)

![alt text](D:/Images/my_image.png)

Using Link References

Images | 65

Images can also make use of [Link References][md-link-
reference] in the same way Links do.

![alt text][0]

[0]: my_image.png

Titles are also available and written the same way using Link
References.

![alt text][0]

[0]: my_image.png "Image Title"

Markdown++

A custom Graphic Style can be given to an Image using a
Markdown++ style tag immediately before the Image syntax.

<!--style:CustomImage-->![alt text](path/to/
my_image.png)

To learn more about Markdown++ tagging, see Learning
Markdown++.

ePublisher Style Information

Default Style Properties

Style Type: Graphic

Style Name: Image

If a custom style name is assigned to an Image, that style name
will still inherit all of the listed default style information.

66 | Markdown++

Link References
Link References accompany Links and Images, and are used
to keep path values in a separated location from text content.
They're useful for readability because they simplify links and
images in inline text, and can be written in a standalone location
for editing en masse.

This section requires familiarity with Links and Images to teach
referencing concepts.

Syntax
A Link Reference must be the only thing on a line. The link key
is written between [and]: . The URL path is written next,
separated by a space. Optionally, a title can be written after the
URL, separated by a space.

Once a Link Reference has been written, the link key from it
can be used with a Link or Image. Replace the Link/Image's
parenthesis () section with the link key between [and] .

Basics

A Link Reference example used with an accompanying Link.
The Link is written first and makes use of the link key, in this
example 0 .

[Link Text][0]

[0]: path/to/my_doc.md

Titles are optional. Keep the URL and title separate with a space.

[Link Text][0]

[0]: path/to/my_doc.md "Link Title"

Link References | 67

A Link Reference example with an accompanying Image.

![alt text][0]

[0]: path/to/my_image.png

Make sure to keep the Reference on it's own line. The Link or
Image can be used anywhere text is allowed, though.

For more info, check the [Link][0].

[0]: my_doc.md

Use Unique Values for Link Keys

Any text will work for the link key, but something unique that
can be searched for will help in the authoring process. Link keys
must be one-of-a-kind as well. In the case of overlapping link
keys, the last link key written will be the accepted one.

[wwdoc_0001]: my_doc.md

[wwdoc_0002]: doc2.md

[wwdoc_0003]: doc3.md

[wwimg_0001]: img1.png

[wwimg_0002]: img2.png

[wwimg_0003]: img3.png

68 | Markdown++

Inline HTML
The common markup language for web technology, HTML, can
be used in Markdown documents mixed with text and other
inline elements. Refer to W3Schools' HTML Tutorial to learn
more about how to write and use HTML.

Syntax
Inline HTML is created by writing a valid HTML fragment in an
area where other inline content exists.

Basics

Simple Inline HTML using a strong element.

Write words with bold emphasis.

Markdown and Inline HTML

Markdown syntax can be mixed with Inline HTML.

We can write **bold** text.

Markdown++

A custom Character Style can be given to Inline HTML using a
Markdown++ style tag directly before the Inline HTML.

Styling <!--style:CustomHTML-->inline HTML.
 Style name "CustomHTML".

To learn more about Markdown++ tagging, see Learning
Markdown++.

Inline HTML | 69

https://www.w3schools.com/html/

ePublisher Style Information

Style Behavior

All HTML fragments are wrapped in a container element, which
is given a style name. The default name is HTML , but can also
be a custom name if the style tag is used directly before an
HTML fragment.

HTML is unavailable for publishing in PDF or PDF XSL-FO output
due to incompatibility with those technologies. ePublisher will
remove any HTML content it detects before generating PDF
output.

Default Style Properties

Style Type: Character

Style Name: HTML

If a custom style name is assigned to Inline HTML, that style
name will still inherit all of the listed default style information.

70 | Markdown++

Learning Markdown++
This section will detail the features of Markdown++, how to
write them, and how to use them in ePublisher. For quick
reference material, see the Markdown Cheat Sheet.

Markdown++ is a superset of Markdown, meaning that any
convention available in Markdown also applies to Markdown++.
Learn about Markdown before reading this section.

Quick Links

Markdown++ Basics

Custom Styles

Aliases

Markers

Conditional Text

File Includes

Variables

Learning Markdown++ | 71

Markdown++ Basics
Markdown++ is a superset of Markdown. Because of this, all
Markdown files are also Markdown++ files. Any tools used for
Markdown also work well for Markdown++.

Filling out Markdown with a full designing & publishing
experience, while also maintaining readability, is a major design
goal of Markdown++. Another goal is to preserve the integrity
of rendering and previews across the many Markdown tools out
there.

Markdown++ uses the HTML Comment tag with a set of
commands inside them for most of it's features. Using these
enables Markdown++ syntax to be transparent when documents
are rendered or previewed, and aids in quick learning by using a
well-established pattern.

Learning the HTML Comment tag opens the door to learning
most of the features Markdown++ offers.

Syntax
Write an HTML Comment by starting with <!-- and ending
with --> . Any text can be written between these two patterns.
Keeping the entire comment on a single line is required by
Markdown++.

Any unrecognized text inside of a comment gets treated as a
regular HTML comment and carries through to the output.

Basics

A simple comment tag with a Custom Style Name command.
Keep the tag on a single line.

<!--style:CustomStyle-->

Apply commands to block-level elements by adding the
tag to the line directly above the block element. The style
CustomParagraph is added to a paragraph below.

72 | Markdown++

<!-- style:CustomParagraph -->

A customized paragraph, named "CustomParagraph".

Apply commands to inline elements by adding the tag directly
before the inline syntax. Don't put space between the comment
tag and the inline syntax. The style CustomBold is added to
bold text below.

Customizing some <!--style:CustomBold-->**bold text**.

Whitespace OK

In general, it is safe to include any amount of whitespace
between the comment tags. Use it as necessary for readability.

<!-- style: CustomStyle -->

Multiple Commands

Any number of commands can be put inside the comment.
Separate the commands with a ; character. This example
applies two commands to a Heading 1: a Custom Style Name,
and a Custom Alias.

<!-- style:CustomHeading1 ; #custom-heading1 -->

Heading 1

Start & End Tags

Some features, like Conditional Text, require start & end tags.
The example wraps condition tags around content meant only
for printed publications.

<!--condition:print_only-->

Print Only

This ccontent is meant for print only.

Markdown++ Basics | 73

<!--/condition-->

74 | Markdown++

Custom Styles
The Custom Style command overrides the default Style Name
of a Markdown element with a user-defined Style Name. Using
this feature enables a virtually limitless amount of styles for
designing & publishing in ePublisher.

Syntax
The Custom Style command is created by writing style:
followed by the name of the intended style.

Basics

A basic Custom Style command applied to a Paragraph.

<!--style:CustomParagraph-->

This paragraph has it's style name customized to
 "CustomParagraph".

Put the tag on the line above any block-level element to
customize it. Make sure there are no empty lines between the
tag and the block element. The tag needs to be the only thing
on it's line.

<!--style:CustomHeading1-->

This Heading has been renamed to "CustomHeading1".

For Custom Styles on inline text content, put the tag directly
before the starting syntax. No space should be put between the
tag and the inline syntax. A string of bold text is customized
with the Style Namme CustomBold below.

This paragraph has customized <!--style:CustomBold--
>**bold text**.

Custom Styles | 75

Mix with Other Commands

Custom Styles can be in the same comment tag with other
commands. Separate them with a ; character. A Custom Style
and Custom Alias are written in the same tag below.

<!-- style:CustomStyle ; #custom-alias -->

Custom Style Command Behavior
Through the Custom Style command, it is possible to get name
entries for almost any type of style into ePublisher's Style
Designer. How to do so varies based on style type.

Custom Paragraph Style

Add the style tag to the line directly above a block-level element
to give it a custom Paragraph Style. This applies to any block-
level element, except for Tables.

<!--style:CustomParagraph-->

This is a custom paragraph called "CustomParagraph".

<!--style:CustomHeading1-->

This is a custom paragraph called "CustomParagraph".

<!--style:UList-->

- custom list

- unordered

- called "CustomUList"

<!--styleCustomBlockquote-->

76 | Markdown++

> This is a custom blockquote

>

<!--style:CustomHTML-->

<div>

 <p>This is customized HTML. Named "CustomHTML".</p>

</div>

Custom Character Style

Add a style tag directly before inline syntax to create a custom
Character Style. Remember, no space between the tag and
the inline syntax. This applies to any inline syntax, except for
Images.

This is customized <!--style:CustomBold-->**bold
 text**.

This is customized <!--style:CustomItalic-->*italic
 text*.

This is a customized <!--style:CustomLink-->[link]
(my_doc.md).

This is a customized <!--style:CustomHTML--
>Inline HTML.

Custom Graphic Style

Add a style tag directly before image syntax to create a custom
Graphic Style. Remember, no space between the tag and the
image syntax.

<!--style:CustomImage-->![alt text](my_image.png)

Custom Styles | 77

<!--style:CustomImage-->![alt text][link_key]

Custom Table Style

Like custom Paragraph Styles, add the tag to the line directly
above Table syntax to give it a custom Table Style.

<!--style:CustomTable-->

| name | age | city |

|------|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

<!--style:CustomTable-->

 name | age | city

------|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Custom Page Style

Custom Page Styles need to be created through the Custom
Markers command. Refer to the linked section for details.

<!--markers:{"PageStyle": "CustomPage"}-->

Topic Heading

Custom Marker Style

Custom Marker Styles need to be created through the Custom
Markers command. Refer to the linked section for details.

78 | Markdown++

<!--markers:{"Keywords": "topic, heading, markers"}-->

Topic Heading

Custom Styles | 79

Custom Aliases
Use a Custom Alias to give an element a unique pointer for
linking to in other places in the publication. The Custom Alias is
a powerful tool that can simplify link management and speed up
authoring and editing.

Syntax
Create a Custom Alias by starting with a single # character,
followed any alphanumeric characters, - , or _ . Space
characters cannot be used in an alias; the Alias will cut off
before the space.

Basics

A basic Custom Alias applied to a Heading 1.

<!--#custom-alias-->

Custom Aliased Heading

Inline syntax can be given an Alias as well.

This <!--#bold-keyword-->**bold text** has a custom
 alias.

Mix with Other Commands

Custom Aliases can be in the same comment tag with other
commands. Separate them with a ; character. A Custom Style
and Custom Alias are written in the same tag below.

<!-- style:CustomStyle ; #custom-alias -->

80 | Markdown++

Custom Alias Behavior
Custom Aliases create an entry in the document's WIF that
enable linking to the element it was created with.

Using a Custom Alias

The first step in using a Custom Alias is to create one by adding
the Alias tag to the location that will be linked to. Below, the
Custom Alias #my-alias is created, associated with a Heading
1.

<!--#my-alias-->

A Topic Heading

After that, the Alias #my-alias can be used in the path value
for Links and Link References. Once the link is clicked, it will
take readers to the location the Alias was created.

Refer to the linked sections for detailed instructions on using
these elements.

Some quick examples for Links:

[link text](#my-alias)

[link text](my_doc.md#my-alias)

Some quick examples for Link References:

[link text][link_key]

[link_key]: #my-alias

[link text][link_key]

[link_key]: my_doc.md#my-alias

Custom Aliases | 81

Markers in Markdown++
Markers are pieces of metadata that can be inserted into a
document to add different features or change behavior of the
publication. Markers are useful for many things, like adding
keywords to a topic to improve search relevance, or instructing
ePublisher to pass text through to the output without any
processing.

Syntax
The Markers command has two main parts. Start the command
with markers: , and follow it with a JSON Object Literal. The
Marker name is written in the object key area, and the Marker
value goes into the object value area. Make sure all keys and
all values are wrapped in " , and separated by : . Multiple key/
value pairs for Markers can be written, separated with , .

Basics

A basic Markers command with a Keywords marker.

<!--markers:{"Keywords": "webworks"}-->

About WebWorks

Multiple Markers can be added in one command. Separate the
key/value pairs with , .

<!--markers:{"Keywords": "webworks"}-->

About WebWorks

The Markers command is available for inline-level syntax as
well.

Add a custom <!--markers:{"Keywords": "inline,
 marker"}-->**marker**.

82 | Markdown++

https://www.w3schools.com/Js/js_json_objects.asp

Mix with Other Commands

Markers can be in the same comment tag with other commands.
Separate them with a ; character. A Custom Style and Markers
are written in the same tag below.

<!-- style:CustomStyle ; markers:{"Keywords":
 "webworks"} -->

Markers Behavior
Markers associate a piece of data with an element on the page.
To learn more about ePublisher's built-in Markers and what they
do, see the Markers reference table.

Using a Marker

First thing to do is write the Marker in the intended area of the
content. The Marker needs to be tagged to a content element,
like a Paragraph or Heading.

Below, a Keywords Marker is tagged to a Heading 1.

<!--markers:{"Keywords": "markers, content, create"}--
>

Using Markers in Source Content

Next, scan the document in ePublisher. This will add the Marker
in the Marker Styles area of the Style Designer.

Markers in Markdown++ | 83

https://webworks.com/Documentation/Reverb/#page/Designing%20Templates%20and%20Stationery/Designing%20Stationery.3.091.htm

With the Marker added to ePublisher, output can now be
generated with new Keywords added. This Marker will improve
search relevance in outputs with searching capabilities, like
Reverb 2.0.

84 | Markdown++

https://webworks.com/Documentation/Reverb/#page/Designing%20Templates%20and%20Stationery/Selecting%20Formats.1.56.htm

Markers in Markdown++ | 85

Conditions
Conditions allow an author to create sections of content that are
available in certain contexts, and excluded in others. They can
be useful for the Edit/Review process, or to switch out sections
meant only for print or the Web.

Syntax
Conditional text is written between two HTML Comment Tags.
In the first tag, write one or more conditions between <!--
condition: and --> . The second closing tag is always written
as <!--/condition--> . Between the tags, any valid Markdown
++ content can be written. Condition names must only use
alphanumeric characters, - , and _ . Do not use spaces in
Condition names.

See Condition Operators for details on advanced conditional
logic syntax.

Basics

A Condition containing a single Paragraph, using the Condition
print_only .

<!--condition:print_only-->

This paragraph is meant only for print.

<!--/condition-->

Conditions can contain multiple block-level elements.

<!--condition:print_only-->

The Print Section

This sections is meant only for print.

86 | Markdown++

It will not be visible if `print_only` is set to
 `Hidden`.

<!--/condition-->

Conditions can be used with inline content, too.

Go to the Section <!--condition:print_only-->on page
 304<!--/condition--> for more details.

Operators

Complex logic can be used with Conditions using a set of
Operators. This block is hidden when production is set
Visible using the ! (logical NOT) operator.

<!--condition:!production-->

This paragraph is not meant for production
 publications.

<!--/condition-->

Multiple Conditions

Multiple Conditions can be used in a single conditional block
Operators. This example only show the block of text if
print_only AND production are set to Visible .

<!--condition:print_only production-->

This paragraph is meant only for print and production.

<!--/condition-->

Conditions Behavior
Conditions are rendered or removed from the document when
publishing based on values set in the Conditions Window.
Conditions are considered unset, and therefore always render,

Conditions | 87

https://webworks.com/Documentation/Reverb/#page/Reference%20Information/ePublisher%20Window%20Descriptions.3.003.htm

if they haven't been scanned into ePublisher. Conditions are
also considered unset if they still have the default value Use
 document condition in the Conditions Window.

Using Conditions

First, create a condition by writing it in a source document.
Below, and block of conditional text is created with the Condition
print_only .

<!--condition:print_only-->

The Print Section

This sections is meant only for print.

It will not be visible if `print_only` is set to
 `Hidden`.

<!--/condition-->

Next, scan the document in ePublisher. This will add the
Condition print_only to the Conditions Window.

88 | Markdown++

Once scanned, the print_only Condition's value can be
changed to either Visible or Hidden . The Condition is
considered unset, and will always render, if the value is left with
the default, Use document value .

Conditions | 89

Condition Operators

Using Operators, an author can create additional logic to
determine whether conditional text should be rendered or
hidden.

In a conditional statement, the block of text renders if the
entire statement evaluates to true . The block is hidden if the
statement evaluates to false .

In this context, Visible is considered true , and Hidden
is considered false . Use document value disables the
conditional statement and always renders the block.

Combine Condition names and Operators to create complex
statements to determine if the content should be rendered or
removed in the publication.

The Space Operator - Logical AND

The space character in a conditional statement is a Logical AND.
Meaning, if the statements on both sides of evaluate to true ,
the statement passes.

The conditional text below is rendered if print_only AND
production are set to Visible .

90 | Markdown++

<!--condition:print_only production-->

This paragraph is meant only for print and production.

<!--/condition-->

The , Operator - Logical OR

The , character in a conditional statement is a Logical OR.
Meaning, if a statement on either side of , evaluates to true ,
the statement passes.

The conditional text below is rendered if one of print_only OR
production are set to Visible .

<!--condition:print_only,production-->

This paragraph is meant for either print or
 production.

<!--/condition-->

The ! Operator - Logical NOT

The ! character in a conditional statement is a Logical
NOT. Adding ! to the beginning of a Condition reverses it's
truthiness. Meaning, a Condition with ! on the front of it's name
evaluates Visible to false and Hidden to true .

The conditional text below is removed if production is set to
Visible .

<!--condition:!production-->

This paragraph is not meant for production.

<!--/condition-->

Conditions and Includes

Conditions can be used as expected in File Includes since they
are processed at the same time as Includes. Additionally,

Conditions | 91

Includes can be used inside of conditions to import entire
documents based on certain Conditions.

92 | Markdown++

File Includes
A File Include statement points to another Markdown++ file and
imports the file's contents at the location of the statement. This
enables multi-file structure in a single document.

Syntax
An Include statement is created by writing a path to a
Markdown++ document between <!--include: and --> .
Relative paths and absolute paths are both valid path values.
Web paths are not supported. The include statement must be
the only thing on a line.

Basics

A basic Include statement. The Include must be written on it's
own line to work properly.

<!--include:my_file.md-->

Relative paths and absolute paths are fine to use.

<!--include:my_file.md-->

<!--include:C:/Users/Me/Docs/my_file.md-->

Multiple includes can be used in the same document.

<!--include:my_file.md-->

<!--include:doc_2.md-->

File Includes | 93

File Includes Behavior
When ePublisher detects a File Include statement, the file is
read, and the Include tag is replaced with the content of the file.
If the no file is found at the path given, the Include tag will be
passed through to the output as an HTML Comment.

Using a File Include

To use an Include statement, all that needs to be done is write
the tag where the file's content is to be imported. Below, an
include statement is written below a Title.

Learning ePublisher

===================

<!--include:epublisher_basics.md-->

This can even be done inside of documents used in an Include
statement, as long as it is not a [Recursive Include][mdp-
includes-recursion]. Use this feature to create Map Files for
many Markdown++ documents, or create documents needed for
content re-use.

Recursive Includes

If an Include statement tries to insert a document that has
already been inserted by a parent file, ePublisher's generation
log will display a message like this one:

[Warning]

Skipping recursive include file:

 'C:\Users\Me\Documents\include_doc.md'

 in file: 'C:\Users\Me\main_doc.md'

This message displays because ePublisher cannot insert the
document. Doing so would create a recursive loop and would

94 | Markdown++

break the generation. If this message is recieved, it's time to
look at the layout of Includes in the source documents.

The message can be useful to track down the file in error.
The first file path refers to the file in the attempted Include
statement. The second file path refers to where the Include
occured.

File Includes | 95

Variables
Variables represent a shorthand to store a value that can be re-
used across a set of documents. They're useful to store content
that only needs to be written once, but is used in the same way
in many places. Store values like product names, copyright text,
publication dates, and more inside of Variables.

Syntax
Variables are the only syntax in Markdown++ that doesn't use
the HTML Comment Tag.

To write one, start with $, write the variable name using
alphanumeric characters, - , and _ . End the Variable with ; . Do
not use spaces in the Variables's name.

Basics

A simple example of writing a Variable, called product_name .

$product_name;

Variables can be intermixed with other text content.

Document last published on $publish_date;.

The full range of Markdown features is available with Variables
as well, both around them and written in their values.

The documentation for our product, **$product_name;**.

Variable Behavior
Variables, once scanned into ePublisher, can be given values
that are saved to an ePublisher Project.

96 | Markdown++

Using Variables

First, a Variable must be created by writing it into a document.
Here, we create a Variable called publish_date .

Document last published on $publish_date;.

Next, scan the document in ePublisher. This will add the Variable
to the Variables Window.

The Variable can now be given a value, typed in the input field
next to the Variable's name in the Variable Window.

Variables | 97

https://webworks.com/Documentation/Reverb/#page/Reference%20Information/ePublisher%20Window%20Descriptions.3.116.htm

Use Document Value

The Use Document Value checkbox inside the Variables
Window does not apply to Markdown++ Variables, since their
values are instead maintained in ePublisher. There's no change
in behavior based on if the box is checked or not. This feature
applies to legacy source document types, such as FrameMaker
and Word.

See Online Help for Markdown++ cheatsheet.

98 | Markdown++

	Table of Contents
	Markdown++ Source Documents
	Introduction
	Getting Started with Markdown
	Learning Markdown
	Paragraphs
	Titles
	Headings
	Lists
	Tables
	Blockquotes
	Code Fences
	Code Blocks
	Horizontal Rules
	Block HTML
	Bold, Italic, Strikethrough, Code
	Links
	Images
	Link References
	Inline HTML

	Learning Markdown++
	Markdown++ Basics
	Custom Styles
	Custom Aliases
	Markers in Markdown++
	Conditions
	File Includes
	Variables

