
ePublisher Platform
Documentation

Published date: 12/30/2024

Table of Contents
ePublisher Platform Documentation... 1
What's New in ePublisher 2024.1.. 3

Adapters...3
Formats.. 3
Reverb 2.0..3
PDF - XSL-FO..4
User Interface... 4
Evaluation Materials... 4
Build Improvements...5
Stationery...5
General Improvements... 5

ePublisher 2024.1 Release Notes... 6
Improvements...6
Fixed Issues... 8
Summary..14

Contacting Quadralay..20

Conventions.. 21

Introduction to the WebWorks ePublisher Platform................................. 23
What Is ePublisher?... 23

Workflow...24
WebWorks ePublisher Platform Components.. 24
Supported Input Formats..25
Supported Output Formats..26

How ePublisher Helps You...26
Streamline and Automate the Content Publishing Process..............................26
Produce High Quality Deliverables with Fewer Individual Dependencies............27
Reduce Support Costs and Increase Customer Satisfaction............................ 27
Quickly Update and Deliver Content More Often...28
Reduce Content Management Life Cycle Costs... 28

How Organizations Use ePublisher... 29
Automatically Update Content on Web Sites.. 29
Deliver Full-Featured, Context-Sensitive Help Systems..................................30

Table of Contents | i

Produce Single-Sourced Print and Online Optimized Content..........................30

Planning and Installing ePublisher... 32
Licensing Considerations...32
Components and Supported Configurations... 32
Requirements.. 33

ePublisher Express, ePublisher Designer, and ePublisher AutoMap
Requirements.. 33
Additional Source Document Requirements... 34
Additional Output Format Requirements..35

WebWorks Reverb 2.0...35
Configuring web server for Reverb..35
Reverb browser requirements.. 36

WebWorks Reverb 1.0 Limitation..36
Dynamic HTML...36
PDF -XSL-FO..37
eBook - ePUB 2.0.. 37
Eclipse Help...37
Microsoft HTML Help 1.x... 37
Oracle Help... 38
PDF.. 38
Sun JavaHelp 2.0...38
WebWorks Help 5.0.. 38

Downloading ePublisher Installers..39
Microsoft Windows Requirements...40
Downloading and Installing the Microsoft .NET 4.7.2 Framework........................ 40
Installing ePublisher...41

Installation Order for ePublisher Components.. 41
Installing ePublisher Components...41
Installing Ghostscript..43

Ghostscript not Installed Warnings... 43
Configuring AutoMap for Microsoft Source Document Inputs.......................... 44
Understanding Installed Sample Projects and Stationery............................... 46

Working with Contract IDs..46
Viewing Licensing and Contract ID Information..47
Obtaining Contract IDs... 47
Entering Contract IDs...48
Managing Licensing in Environments without Internet Connectivity................. 49

ii | Table of Contents

Updating Licensing... 49
Deactivating Licensing.. 50

Upgrading from Previous Versions..50
Updating ePublisher installation... 50
Preparing existing projects for ePublisher Upgrade....................................... 51
Upgrading Typical ePublisher Implementations...52
Upgrading Implementations with Advanced Customizations........................... 54

Upgrading Advanced Customizations of WebWorks Reverb 2.0....................55
Uninstalling ePublisher..57
Troubleshooting Installation, License Keys, and Uninstallation............................58

Problems Installing ePublisher... 58
Error: Please Close all Running Sessions of Microsoft Word........................ 59

Problems with FrameMaker or Microsoft Word..60
Error: Error Communicating with Adobe FrameMaker................................ 60
Error: Cannot Duplicate Document... 60

Problems with Contract IDs and Licensing...61
No Contract ID Received...61
Error: No Valid License Key Found... 61
Other Contract ID and Licensing Problems.. 61

Exploring ePublisher...62
Understanding the ePublisher Workflow.. 62

Stationery Designers and ePublisher Designer... 62
Writers and ePublisher Express..64
Automating Output Generation with ePublisher AutoMap............................... 65

Exploring the ePublisher User Interfaces...65
Exploring the ePublisher Express User Interface...66
Exploring the ePublisher Designer User Interface... 67
Understanding the Start Page..67
Understanding Document Manager...68

Including or Excluding Files... 68
Understanding Output Explorer..69
Understanding the Log Window... 71
Understanding Style Designer..71
Understanding the Preview Window..72
Exploring the ePublisher AutoMap User Interface... 73

Customizing Your ePublisher Workspace... 74
Specifying General ePublisher Preferences.. 74

Table of Contents | iii

Miscellaneous ePublisher Windows...76
Add New Target Window...76
Conditions Window...77

Classic Tab.. 77
Expressions Tab (FrameMaker Only)...78

Cross Reference Rules Window..78
Deployment Configuration (Name) Window... 80
Deployment Editor Window... 80
Documents Window... 80
Edit Target Window..81
File Mapping Editor Window.. 81
Folder Deployment Editor Window... 82
Target Settings Window..82

Generated output location...82
Deploy to..83
List of Target Settings.. 83

Job Info Window..83
License Information Window... 84
Main ePublisher AutoMap Window..85
Main ePublisher Window... 86

Document Manager.. 86
Output Explorer... 87

Reports... 88
Reports - printable... 88

Start Page...89
Log Window.. 89
Preview Window...89
Document Designer..90
Style Designer...91

Font Family Picker Window..91
Manage Targets Window... 91
Merge Settings Window.. 92
New ePublisher AutoMap Job Window...93
New Project Wizard..93

New Project Window (New Project Wizard)..93
Browse For Folder Window (New Project Wizard)... 94
Source Documents Window (New Project Wizard).. 94

iv | Table of Contents

Preferences Window...94
General Tab (Preferences Window)...95
File Mappings Tab (Preferences Window)...96
Notification Tab (Preferences Window).. 97

Project Settings Window...98
File Mappings Tab (Project Settings Window)...98
General Tab (Project Settings Window)... 99
Input Configurations Tab (Project Settings Window)....................................100

Save As Stationery Window.. 103
Script Editor Window..104
Target Configuration Window...104

Info Tab (Target Configuration Window).. 105
Conditions Tab (Target Configuration Window)... 106
Variables Tab (Target Configuration Window)... 107
Target Settings Tab (Target Configuration Window).....................................108
Merge Settings Tab (Target Configuration Window)..................................... 108

Target Selection Window...109
User Information Window..110
Variables Window...111
WebWorks ePublisher Preferences Window.. 111

General Tab (WebWorks ePublisher Preferences Window).............................112
File Mappings Tab (WebWorks ePublisher Preferences Window).....................115
Editor Preferences Tab (WebWorks ePublisher Preferences Window).............. 116
Diff Preferences Tab (WebWorks ePublisher Preferences Window)..................116
Log Window Tab (WebWorks ePublisher Preferences Window).......................116

WebWorks Licensing Info Window.. 116

Producing Output from Stationery..118
What Makes an ePublisher Project... 118

ePublisher Projects... 118
Project Folder Structure.. 118

Source Documents... 121
Targets... 121
Stationery... 122
Creating Projects Based on Stationery..123
Working with Source Documents..124

Adding Source Documents to Projects...124
Opening Source Documents from Document Manager................................. 127

Table of Contents | v

Scanning Source Documents... 127
Scanning and Scanning Options... 127
Setting Scanning Options.. 128
Scanning Selected Documents... 129
Scanning All Documents..129

Relinking Source Documents..129
Removing Source Documents from Projects...130
Source Documents Groups.. 130
Organizing Source Documents Using Groups..131

Creating Top-Level Groups...132
Creating Subgroups.. 132
Renaming Groups... 132
Rearranging Source Documents in Groups... 133
Removing Groups... 133

Working with Targets..134
Specifying Active Targets.. 134
Adding Targets to Projects Based on Stationery... 134
Renaming Targets...135
Deleting Targets...136

Working with Projects...136
Saving Projects.. 136
Opening Existing Projects..136
Closing Projects... 137
Synchronizing Projects with Stationery..138

Manifest Files...139
Stationery Files.. 140
When to Synchronize.. 140
Automatically Synchronizing ePublisher Express Projects with Stationery....140
Manually Synchronizing ePublisher Express Projects with Stationery.......... 141
Project Information that is not Synchronized..142

Deleting Projects..142
Generating and Regenerating Output..143

Output Generation and Regeneration.. 143
Generating Output..144
Regenerating Output...145
Generating Output from FrameMaker or Microsoft Word.............................. 146
Modifying Help System Title Bars... 146

Viewing Output..147

vi | Table of Contents

Viewing Output by Automatically Opening Generated Output........................148
Viewing Output in Output Explorer... 149
Viewing Output in the Output Folder.. 152
Changing the Location of the Output Folder...152
Working with Output Log Files... 153

Validating Output Using Reports.. 154
Accessibility Reports... 155
Baggage Files Reports.. 155
Conditions Reports... 156
Filenames Reports.. 156
Links Reports...157
Styles Reports... 157
Topics Reports... 158
Images Reports..158
Printable Reports..158
Configuring Reports.. 159
Generating Reports...161
Report Messages.. 162

Accessibility Report Messages.. 162
Baggage Files Report Messages..163
Filename Report Messages...164
Links Report Messages..165
Topics Report Messages...168
Images Report Messages...169

Merging Top-level Groups (Multivolume Help).. 170
Deploying Output...173

Output Deployment.. 173
Creating Output Destinations...174
Specifying Output Destinations for Targets.. 175
Deploying Output to Output Destinations.. 176

Working with Target Settings...176
Specifying Accessibility Settings... 178
Specifying Baggage Files Settings.. 178

Baggage files info list... 179
Copy baggage file dependents... 181
Index baggage files.. 182
Index external links..182

Specifying Company Information..182

Table of Contents | vii

Specifying File Processing Behavior for Front Matter, Index, and Table of Contents
Files..183
Specifying Page Breaks Settings.. 184
Specifying Page, Image, and Table File Naming Patterns............................. 184
Specifying Index Settings..185
Specifying How Links to Files or External URLs Display in Browser Windows....185
Specifying Unknown File Links Behavior in Reverb......................................186
Specifying Character Encoding for Targets... 186
Specifying the Language Used by Targets..187
Specifying PDF Generation Settings.. 187
Specifying Table of Contents Settings... 188
Specifying Report Settings.. 190
Specifying Output Format-Specific Settings..190

Setting Variables in Projects..191
Setting Conditions in Projects..192
Setting Cross-References in Projects.. 193

Modifying Cross-Reference Formats in Projects...194
Adding Cross-Reference Formats to Projects.. 195
Deleting Cross-Reference Formats from Projects.....................................196

File Mappings for Source Documents.. 196
File Mappings...196
Modifying File Mappings.. 197
Creating New File Mappings...198
Deleting File Mappings..199

Scheduling and Integrating Processes with AutoMap............................. 201
How ePublisher Supports Automation... 201

What Is ePublisher AutoMap?.. 201
Benefits of Using ePublisher AutoMap... 201
Version Control System (VCS) Integration... 202
Content Management System (CMS) Integration.. 202

Preparing Projects, Stationery, and Source Files...203
Starting ePublisher AutoMap..203
Setting ePublisher AutoMap Preferences..204

Specifying the Job, Staging, and User Formats Folder Locations................204
Job Folder..204
Staging Folder..204
User Formats Folder..205

viii | Table of Contents

Automatic Scanning for Conditions and Variables....................................205
Keeping or Deleting Temporary Files... 206
Defining File Mappings.. 206
Defining Output Destinations... 207
Defining Email Notifications... 209
Selecting Console Language (English, German, French, and Japanese).......209

Working with Jobs..210
Creating a Project-Based Job...211
Creating a Stationery-Based Job.. 212
Duplicating an Existing Job..214
Editing an Existing Job... 215
Scheduling Jobs with Windows Scheduler.. 215
Deleting an Existing Schedule for a Job.. 216
Running an Existing Job..216
Viewing a Job Log File..216
Canceling a Job... 217
Deleting an Existing Job..217

Using Scripts for Additional Custom Processing..217
Writing Scripts... 218
Working Folder...218
Opening and Using the Script Editor...218
Scripting Variables..219
Scripting Examples...222

Show Time and Date Example... 222
Using Scripting Variables Example.. 223
CVS Version Control Checkout Example...224

Using the Command-Line Interface.. 227
Running ePublisher AutoMap from the Command Line.................................227
CLI Syntax and Reference...228
CLI Examples...231

Running a Project and Updating the Express project file.......................... 231
Running a Project and Generating Only One Target.................................231
Running a Project from Scratch and Deploying to a Clean Location............ 231
Running a Project and Deploying to an Alternate Location........................231
Running a Job Without Sending Notification When Done.......................... 231
Running a Job and Deploying to a Clean Location................................... 232
Running a Job Without Deploying the Content..232

Table of Contents | ix

Markdown++ Source Documents..233
Introduction.. 233
Getting Started with Markdown... 233
Learning Markdown.. 233

Paragraphs.. 234
Titles.. 237
Headings... 240
Lists... 252
Tables... 265
Blockquotes... 275
Code Fences.. 281
Code Blocks...284
Horizontal Rules... 287
Block HTML... 289
Bold, Italic, Strikethrough, Code.. 292
Links...297
Images... 300
Link References..301
Inline HTML... 303

Learning Markdown++..304
Markdown++ Basics... 304
Multiline Tables in Markdown++...306
Custom Styles... 315
Custom Aliases.. 318
Markers in Markdown++... 320
Conditions... 324
File Includes.. 329
Variables... 331

Adobe FrameMaker... 334
Adobe FrameMaker Formats and Standards...334

Standards for Single-Sourcing..334
Planning for Importing Elements Across Files...335
Paragraph Formats in FrameMaker... 335
Character Formats in FrameMaker..338
Bulleted and Numbered Lists in FrameMaker... 340
Image Formats and Considerations in FrameMaker..................................... 340

x | Table of Contents

Table Formats in FrameMaker.. 342
Cross Reference Formats in FrameMaker...343
Markers in FrameMaker...343
Variables and Conditions in FrameMaker... 348
Page Layouts in FrameMaker... 348
Reference Pages, Table of Contents, and Indexes in FrameMaker.................. 349

Implementing Online Features in FrameMaker... 349
Custom Marker Types in FrameMaker... 350
Paragraph and Character Formats in FrameMaker.......................................356
Obtaining and Applying the Latest Adobe FrameMaker Template................... 358
Importing Custom Marker Types in FrameMaker...359
Creating Custom Marker Types in FrameMaker...360
Creating a Passthrough Marker in FrameMaker...361
Creating Cross-References and Links in FrameMaker...................................362

Working with Tables in FrameMaker... 364
Applying Table Formats in FrameMaker... 364
Creating Table Header Rows in FrameMaker.. 364
Creating Table Footer Rows in FrameMaker..365

Working with Images in FrameMaker..366
Inserting Images in FrameMaker..367
Creating Image Links in FrameMaker..369
Creating Clickable Regions for Image Maps in FrameMaker.......................... 371

Creating Image Maps for Single Images in FrameMaker...........................371
Creating Image Maps for Composite Images in FrameMaker.....................373

Assigning Image Scales in FrameMaker...377
Assigning Image Styles in FrameMaker... 378

Working with Videos in FrameMaker...380
Creating Index Entries in FrameMaker.. 384
Using Variables in FrameMaker.. 386

Importing or Creating Variables in FrameMaker..387
Inserting Variables into FrameMaker...388
Changing Variable Values in FrameMaker.. 389
Deleting Variables in FrameMaker.. 389

Using Conditions in FrameMaker.. 390
Creating Conditions in FrameMaker.. 391
Applying Conditions in FrameMaker.. 392
Removing Conditions in FrameMaker.. 392
Modifying Conditions in FrameMaker...393

Table of Contents | xi

Showing and Hiding Conditions in FrameMaker.. 393
Using Passthrough Conditions in FrameMaker.. 394
Deleting Conditions in FrameMaker...395
Conditional Output Using Expressions in FrameMaker..................................396

Specifying Output File Names in FrameMaker.. 396
Creating Context-Sensitive Help in FrameMaker... 398

Context-Sensitive Help in FrameMaker..398
Planning for Context-Sensitive Help in FrameMaker.................................400

Specifying Context-Sensitive Help Links in FrameMaker...............................401
Creating Popup Windows in FrameMaker...403

Creating Popup Window Links in FrameMaker.. 404
Using Markers to Create Popup Windows in FrameMaker............................. 406
Using Paragraph Formats to Create Popup Windows in FrameMaker...............408

Creating Expand/Collapse Sections (Drop-Down Hotspots) in FrameMaker......... 409
Creating Related Topics in FrameMaker...411
Creating See Also Links in FrameMaker.. 414
Creating Meta Tag Keywords in FrameMaker..418
Assigning Custom Page Styles in FrameMaker... 420
Opening Topics in Custom Windows in FrameMaker.. 421
Customizing TOC Entry in FrameMaker... 423
Customizing Table of Contents Icons in FrameMaker.......................................427
Specifying Context Plug-ins in FrameMaker... 430
Creating Accessible Online Content in FrameMaker...433

Accessible Content in FrameMaker... 433
Accessible Content Navigation in FrameMaker..434
Validating Accessible Content in FrameMaker... 438
Assigning Alternate Text to Images and Image Maps in FrameMaker............. 438

Image and Image Map Alternate Text in FrameMaker..............................438
Assigning Alternate Text to Images in FrameMaker................................. 439
Assigning Alternate Text to Image Maps in FrameMaker...........................441

Assigning Long Descriptions to Images in FrameMaker................................442
Image Long Descriptions in FrameMaker... 442
Specifying Long Descriptions for Images in FrameMaker.......................... 444
Using Text in External Files to Assign Long Descriptions to Images in
FrameMaker...446
Excluding Images from Accessibility Report Checks in FrameMaker............448

Assigning Alternate Text (Summaries) to Tables in FrameMaker....................449
Excluding Tables from Accessibility Report Checks in FrameMaker................. 451

xii | Table of Contents

Assigning Alternate Text to Abbreviations in FrameMaker............................ 452
Assigning Alternate Text to Acronyms in FrameMaker..................................453
Providing Citations for Quotes in FrameMaker.. 455

Troubleshooting FrameMaker issues..457

Microsoft Word... 461
Microsoft Word Templates and Standards..461

Word Standards to Support Single-Sourcing.. 461
Microsoft Word Template File... 462
Creating a Clean Base Template File...462
Paragraph Styles in Word..463
Character Styles in Word.. 466
Bulleted and Numbered Lists in Word... 467

Bulleted Lists in Word... 468
Numbered Lists in Word..468

Image Styles and Considerations in Word... 468
Table Styles in Word...470
Field Codes..471
AutoText, AutoCorrect, and User-Defined Hotkeys...................................... 476
Toolbars and Menus in Word..476
Variables and Conditions in Word... 477
Page Layouts and Sections in Word.. 477
Table of Contents and Index in Word..477
Automation with Macros in Word..477

Implementing Online Features in Word... 478
Custom Marker Types in Word... 478
Paragraph and Character Formats in Word.. 485
Obtaining and Applying the Latest Microsoft Word Template.........................487

Working with the WebWorks Transit Menu for Word.. 488
WebWorks Transit Menu for Word...488
Installing the WebWorks Transit Menu for Word..488
Running Transit Menu in Secure Environments... 489
Initializing the WebWorks Transit Menu for Microsoft Word...........................492
Displaying and Hiding the WebWorks Transit Menu in Word..........................493
Creating Custom Marker Types Using the WebWorks Transit Menu in Word..... 494
Creating a Passthrough Marker in Word.. 495

Working with Tables in Word... 496
Applying Table Styles in Word..496

Table of Contents | xiii

Creating Table Header Rows in Word.. 497
Working with Images in Word... 498

Inserting Images in Word..499
Validating Images in Word.. 500
Creating Image Links in Word... 501
Creating Clickable Regions for Image Maps in Word....................................502

Creating Image Maps for Single Images in Word.................................... 503
Creating Image Maps for Composite Images in Word.............................. 504

Assigning Image Scales in Word.. 506
Assigning Image Styles in Word...509

Creating Index Entries in Word..510
Using Variables in Word..511

Creating Variables in Word.. 512
Inserting Variables into Word...513
Changing Variable Values in Word.. 513
Deleting Variables in Word.. 514

Using Conditions in Word..515
Creating Conditions in Word.. 516
Applying Conditions in Word..516
Validating Conditions in Word.. 517
Removing Conditions in Word.. 518
Modifying Conditions in Word...519
Highlighting All Conditions in Word...520
Displaying Conditionalized Content with Conflicting Settings in Word............. 520
Using Passthrough Conditions in Word.. 521
Deleting Conditions in Word.. 522

Specifying Output File Names in Word..522
Specifying Page Output File Names in Word...523

Specifying Image Output File Names in Word...524
Creating Context-Sensitive Help in Word...526

Context-Sensitive Help in Word..527
Planning for Context-Sensitive Help in Word.. 528

Specifying Context-Sensitive Help Links in Word.. 529
Creating Popup Windows in Word.. 531

Creating Popup Window Links in Word.. 532
Using Markers to Create Popup Windows in Word....................................... 535
Using Paragraph Styles to Create Popup Windows in Word...........................536

Creating Expand/Collapse Sections (Drop-Down Hotspots) in Word...................537

xiv | Table of Contents

Creating Related Topics in Word.. 539
Creating Links to PDF in Word...542
Creating See Also Links in Word.. 542
Creating Meta Tag Keywords in Word... 546
Assigning Custom Page Styles in Word... 548
Creating What’s This (Field-Level) Help in Word...549
Opening Topics in Custom Windows in Word..551
Customizing TOC Entry in Word...552
Customizing Table of Contents Icons in Word.. 555
Specifying Context Plug-ins in Word...559
Creating Accessible Online Content in Word.. 561

Accessible Content in Word... 561
Accessible Content Navigation in Word..563
Validating Accessible Content in Word...566
Assigning Alternate Text to Images and Image Maps in Word.......................566

Image and Image Map Alternate Text in Word....................................... 566
Assigning Alternate Text to Images in Word...567
Assigning Alternate Text to Image Maps in Word.................................... 568

Assigning Long Descriptions to Images in Word... 569
Image Long Descriptions... 569
Specifying Long Descriptions for Images in Word....................................570
Using Text in External Files to Assign Long Descriptions to Images in
Word...573
Excluding Images from Accessibility Report Checks in Word..................... 576

Assigning Alternate Text (Summaries) to Tables in Word............................. 578
Excluding Tables from Accessibility Report Checks in Word...........................580
Assigning Alternate Text to Abbreviations in Word...................................... 581
Assigning Alternate Text to Acronyms in Word... 582
Providing Citations for Quotes in Word..583

Troubleshooting Word issues... 585
Word warning dialogs that interrupt conversions.. 586

DITA - XML... 589
DITA Usage Standards..589

DITA Standards for Single-Sourcing..589
Mapping DITA Classes to ePublisher Styles..590
Defining Online Features with DITA.. 591
Configuring DITA Open Toolkit Version.. 592

Table of Contents | xv

Customizing the DITA DTD.. 593
DITA Specialization...593

DITA Support.. 594
Keyref elements...594
Conref extensions...594

Using Ditaval files in DITA.. 594
Using Passthrough outputclass in DITA... 595
Embedding a Video in DITA Source Documents..596

Embedding a Video file... 597
Linking to a Youtube Video..597

Creating Context-Sensitive Help in DITA Source Documents............................ 598
Context-Sensitive Help..598

Map Files...599
Planning for Context-Sensitive Help.. 600
Topic ID and File Name Requirements...601

Output Formats that support Creating Context-Sensitive Help Links In DITA
Source Documents... 601
Specifying Context-Sensitive Help Links in DITA Source Documents.............. 602

Creating Hyperlinks in DITA Source Documents... 603
Creating Popups in DITA Source Documents..603

Popups..603
Requirements for Creating Popups in DITA Source Documents......................604
Creating Popup Links in DITA Source Documents....................................... 605
Using Paragraph Styles to Create Popups in DITA Source Documents.............605

Creating Related Topics in DITA Source Documents.. 606
Related Topics..606
Requirements for Creating Related Topics Links in DITA Source Documents.... 607
Specifying Related Topics Links in DITA Source Documents..........................608

Creating See Also Links in DITA Source Documents..609
See Also Links... 609
Requirements for Creating See Also Links in DITA Source Documents............610
Specifying See Also Links in DITA Source Documents..................................611

Using the data element.. 611
Assigning Custom Page Styles to Pages in DITA Source Documents.................. 611

Page Styles... 612
Requirements for Specifying Custom Page Styles for Pages in DITA Source
Documents.. 612
Specifying Custom Page Styles for Pages in DITA Source Documents.............613

xvi | Table of Contents

Using Custom Graphic Styles for Images in DITA Source Documents.................614
Assigning Graphic Styles... 614
Default Graphic Styles for DITA... 614

Customizing TOC Entry in DITA... 615
Customizing Table of Contents Icons for Topics in DITA Source Documents Using
Legacy Outputs..617

Requirements for Specifying Custom Table of Contents Icons in DITA Source
Documents.. 618
Specifying Custom Table of Contents Icons in DITA Source Documents.......... 619

Using markopen and markclose... 621
Configuring markopen and markclose entries for dropdowns in ePublisher......622

Troubleshooting DITA issues..624

Markdown++ Output Format.. 627
Introduction.. 627
Setting up a Markdown++ Target in ePublisher... 627
Basic Workflow for Adding and Converting Documents.................................... 628
Configuration Tasks for Markdown++... 629
Markdown++ Tables and Layout.. 632

WebWorks Reverb 2.0.. 635
Choosing a Skin.. 636
Using SASS To Customize Reverb Interface... 640

Using Custom SASS files in Reverb Projects.. 641
Previewing Reverb Output...641
Delivering Reverb Output..641
Top-Level Groups in Reverb.. 642
Searching Output...642
Using Baggage Files... 642

Indexing Baggage Files and External URLs.. 643
Using Tidy for Indexing HTML Pages... 644
Assigning Relevance Weight to Your Source Documents Styles..................645
Assigning Relevance Weight to Your HTML and PDF Baggage Files............. 645
Search Highlighting in Baggage Files.. 647

Searching with URL Method.. 647
TOC or Index with URL Method... 648
Launching Context Sensitive Help for WebWorks Reverb 2.0............................ 648
End-user requirements in WebWorks Reverb 2.0..648
Analytics Event Tracking in Reverb 2.0... 649

Table of Contents | xvii

‘Was This Helpful?’ Buttons... 649
‘Was This Search Helpful?’ Buttons.. 650
Document Last Modified Date in Reverb..651
Drop-down Expand/Collapse All Toggle Button... 652
Google Translate Button..653
Customizable Header and Footer..654
Custom TOC Menu Items.. 655
Customizing a Bullet Icon using Font Awesome..656
Using the url_maps.xml reference file.. 657

PDF - XSL-FO.. 658
Why use PDF - XSL-FO output format?... 658
PDF-XSL-FO Page Regions...658
PDF XSL-FO Font Inclusions.. 660

Dynamic HTML.. 662
Dynamic HTML Output Viewer... 663
Delivering Dynamic HTML... 664

ePUB... 666
ePUB Platforms..666
ePUB Considerations...666

Meta Data... 667
Book Title and ID...667
Long Content...667
Page Styles... 667
Tables... 667
Cover..668
Syncing with Apple iPad..668

Eclipse Help.. 670
Eclipse Help Viewer..670
Delivering Eclipse Help... 671

HTML Help.. 672
Benefits of Microsoft HTML Help.. 672
Restrictions and Requirements for Microsoft HTML Help.................................. 673
HTML Help Viewer..673

Toolbar Pane in HTML Help..674

xviii | Table of Contents

Navigation Pane in HTML Help... 677
Topic Pane in HTML Help...677

Topic Only View in HTML Help... 677
HTML Help Workshop... 678

HTML Help Project File (.hhp)..678
HTML Help Contents File (.hhc)..678
HTML Help Index File (.hhk)..678
HTML Help Mapping File (.h)... 679

Delivering HTML Help... 679

Oracle Help... 680
Oracle Help Viewer...681
Oracle Help Files..681

Helpset .hs File in Oracle Help... 681
Control .xml Files... 682
Full Text Search .idx Index File.. 682
Manifest .mft File... 682

Delivering Oracle Help.. 682

Sun JavaHelp.. 683
Sun JavaHelp Files... 683

Helpset .hs File in Sun JavaHelp.. 683
Contents toc.xml File in Sun JavaHelp.. 684
Index ix.xml File in Sun JavaHelp.. 685
Map .jhm File in Sun JavaHelp...685

Delivering Sun JavaHelp... 685

WebWorks Help.. 687
The Frameset View in WebWorks Help..687

Navigation Pane in WebWorks Help.. 688
Toolbar Pane in WebWorks Help... 689
Topic Pane in WebWorks Help.. 690

Topic Only View in WebWorks Help.. 690
WebWorks Help Output Files... 691
Delivering WebWorks Help.. 691
Searching WebWorks Help...691

Designing, Deploying, and Managing Stationery..................................... 693
Understanding Stationery..693

Table of Contents | xix

Stationery Components...694
Understanding Stationery Synchronization...695

Designing Stationery.. 695
Creating a Stationery Design Project.. 695
Adding Output Formats to Your Stationery Design Project............................696

Adding a Target to Your Stationery Design Project.................................. 697
Selecting an Active Target in Your Stationery Design Project.....................697

Updating a Project to Include All Styles.. 697
Understanding Style Designer..698

Modifying Output with CSS Properties and Attributes.............................. 699
Understanding the CSS Box Model..699
Inheriting Style Properties and Options... 700
Understanding Options in Style Designer...701

Organizing and Managing Styles.. 701
Previewing the Output from a Source File... 702
Defining New Pages (Page Breaks)...702
Defining TOCs and Mini-TOCs.. 703

Defining the Table of Contents Structure (Levels)................................... 703
Generating and Naming the Table of Contents File.................................. 706
Defining the Table of Contents from an Irregular Heading Hierarchy.......... 707
Understanding the Table of Contents and Merge Settings.........................710
Defining the Icon for a Table of Contents Entry...................................... 710
Creating a Miniature Table of Contents..710
Modifying the Appearance of Mini-TOC Entries..711

Modifying the Appearance of Paragraphs... 713
The Prototype Style for Paragraphs...713
Setting the Background Color of a Paragraph...713
Setting the Border Style and Color of a Paragraph..................................713
Setting the Font for a Paragraph.. 714
Setting the Width, Height, and Positioning of a Paragraph........................714
Adjusting the Space Around a Paragraph...715
Setting the Text Color and Other Characteristics of a Paragraph................716
Modifying Paragraphs for Bidirectional Languages................................... 717
Disabling Autonumbering in Output.. 717
Defining the Appearance of Notes, Tips, Cautions, and Warnings...............718
Defining the Appearance of Bulleted Lists.. 718
Defining the Appearance of Numbered Lists...719
Fixing Paragraph Indentation Including Hanging Indent........................... 720

xx | Table of Contents

Modifying the Appearance of Characters..722
The Prototype Style for Characters... 722
Setting the Background Color of a Character... 722
Setting the Border Style and Color of Characters....................................723
Setting the Font for a Character...723
Adjusting the Space Around Characters...724
Setting the Color and Other Characteristics of Characters........................ 725
Modifying Characters for Bidirectional Languages....................................725

Defining the Appearance of Tables..726
The Prototype Style for Tables... 726
Setting the Background Color or Image of a Table.................................. 726
Setting the Border Style and Color of a Table.. 727
Setting the Width and Height of a Table..728
Setting the Vertical and Horizontal Alignment within a Table.....................728
Adjusting the Space Within and Around a Table......................................729
Modifying Header, Footer, and Body Rows of a Table............................... 730
Modifying Cells of a Table..731

Defining the Appearance of Images..731
Supported Image Formats... 731
Image Quality and Processing..732
The Prototype Style for Images..732
Defining Graphic Styles... 733
Setting the Border Style and Color of an Image..................................... 733
Modifying the Width, Height, and Positioning of an Image........................733
Adjusting the Space Around Images... 734
Using Thumbnails for Images...735
Setting the Maximum Width and Height for Images................................ 735
Modifying Image Size by Scale...736
Modifying Image Resolution... 736
Setting Color Bit Depth... 737
Choosing an Image File Format and Quality Level...................................738
Creating Grayscale Images.. 738
Setting Transparency for .gif and .png Images....................................... 739

Defining the Appearance of Pages.. 739
The Prototype Style for Pages..740
Displaying Company Logo and Information on a Page............................. 740
Modifying the Appearance of the Company Information........................... 741
Setting the Background Color or Image of a Page...................................743

Table of Contents | xxi

Setting the Border Style and Color of a Page... 743
Adjusting the Space Around a Page.. 744
Using a Custom CSS to Modify the Appearance of Content....................... 745
Modifying the Location and Separators of Breadcrumbs........................... 745
Modifying the Appearance of Breadcrumbs...746
Choosing the Location of Navigation Browse Buttons...............................747
Modifying the Navigation Browse Buttons.. 747
Associating a Page with a Page Style.. 749

Defining the Appearance of Links... 750
Saving a Snapshot (Backup Copy) of Your Project...................................... 751
Defining Marker Types.. 751
Defining File Names... 756

Specifying File Names for Pages Using Page Naming Patterns................... 756
Specifying File Names for Images Using Graphic Naming Patterns............. 759
Using Markers to Define File Names... 762

Defining Context-Sensitive Help Links...763
Defining Filename Markers for Context-Sensitive Help Links..................... 764
Defining TopicAlias Markers for Context-Sensitive Help Links.................... 765

Defining Expand/Collapse Sections (Drop-Down Hotspots)........................... 765
Using Styles and Markers for Expand/Collapse Sections...........................766
Modifying Images for Expand/Collapse Sections..................................... 767

Defining Popup Windows... 768
Using Marker Styles to Create Popup Windows....................................... 768
Using Paragraph Styles To Create Popup Windows.................................. 769
Assigning a Page Style to Popup Windows... 769

Defining Related Topics... 770
Using a Paragraph Style for Related Topics Lists..................................... 771

Defining See Also Links.. 772
Enabling See Also Functionality.. 773
Modifying the Appearance of the See Also Button................................... 774

Define the Default Settings for Each Target... 775
Defining the Default Index Settings.. 776
Defining the Default Processing of Variables...776
Defining the Default Processing of Conditions...777
Defining the Default Processing of Cross References............................... 778
Defining Default PDF Generation Settings.. 779
Defining the Accessibility Report to Validate Content............................... 780
Defining Other Reporting Options... 781

xxii | Table of Contents

Saving and Testing Stationery... 782
Backing Up Your Stationery Design Project, Stationery, and Projects............. 783

Deploying Stationery.. 784
Managing and Updating Stationery...785

Target Settings Reference.. 788
Accessibility Settings.. 788
Accessibility Report Settings..789
Analytics Settings.. 790
Baggage Files Settings... 790
Baggage Files Report Settings... 791
Company Information Settings.. 791
Conditions Report Settings.. 792
Cover Settings (eBook - ePUB 2.0).. 792
Eclipse Settings... 793
ePUB Settings (eBook - ePUB 2.0)...794
File Processing Settings.. 794
Filenames Report Settings...795
Files Settings...795
Footer Settings.. 808
Header Settings...809
HTML Help Settings..809
Images Report Settings.. 810
Index Settings...810
JavaHelp Settings...810
Links Settings..811
Links Report Settings... 813
Locale Settings.. 815
Menu Settings... 816
Oracle Help Settings...817
Page Settings.. 817
PDF Settings... 818
Result Options Settings (PDF - XSL-FO)..822
Search Settings... 822
Social Settings...823
Styles Settings (PDF - XSL-FO)..823
Styles Report Settings.. 825
Table of Contents Settings.. 825

Table of Contents | xxiii

Title Page Settings (PDF - XSL-FO).. 826
Toolbar Settings...829
Topics Report Settings.. 830
WebWorks Help Settings... 830
WebWorks Reverb Settings..832
WebWorks Reverb 2.0 Settings..836

Style Designer Reference..839
Advanced Properties...839
Aural Properties... 844
Background Properties..845
Body Properties... 850
Body Background Properties (Tables)..852
Border Properties... 862
Bullet Properties.. 863
Font Properties.. 865
Footer Properties (Tables)... 865
Footer Background Properties (Tables)..867
Header Properties (Tables).. 877
Header Background Properties (Tables)...879
HTML (Layout) Properties..889
Margin Properties...899
Markdown++ Properties..900
Master Page Properties (Pages)... 903
Navigation Properties (Pages)..905
Padding Properties... 906
Pagination Properties..908
Table Properties (Tables)...912
Text Properties.. 916
Markdown++ Options... 923
Paragraph Styles Options.. 925
Character Styles Options.. 938
Table Styles Options...941
Page Styles Options... 944
Page Styles Options (PDF - XSL-FO)...946
Graphic Styles Options... 949
Marker Styles Options.. 954

xxiv | Table of Contents

Customizing WebWorks Reverb 2.0.. 956
Changing the Appearance of WebWorks Reverb 2.0..956

Using SASS To Customize WebWorks Reverb 2.0..957
SASS Variables In WebWorks Reverb 2.0.. 960
Migrating SASS Overrides To Newer Format Versions.................................. 963
Layout Colors In WebWorks Reverb 2.0 Skins.. 964

Target Settings for WebWorks Reverb 2.0... 982
WebWorks Reverb 2.0 Target Settings.. 983
WebWorks Reverb 2.0 Toolbar Target Settings... 984
WebWorks Reverb 2.0 Analytics Target Settings... 986
WebWorks Reverb 2.0 Menu Target Settings.. 987
WebWorks Reverb 2.0 Page Target Settings...988
WebWorks Reverb 2.0 Footer Target Settings...990
Social Target Settings... 991
Selecting an Alternate Skin for WebWorks Reverb 2.0................................. 992

Customizing the Top-Level Entry File..993
Specifying the Entry Page Name.. 993
Specifying the Entry Page Style... 993

Customizing TOC Menu Item Display..994
Specifying TOC Item CSS Class... 994

Customizing the Splash Page in WebWorks Reverb 2.0................................... 994
Specifying the Splash Page Style... 994
Replacing the Splash Image.. 994
Modifying the Splash Page.. 995
Removing the Splash Page.. 995

Using Context-Sensitive Help in WebWorks Reverb 2.0................................... 995
Mapping Files in WebWorks Reverb 2.0... 996
Opening Context-Sensitive Help in WebWorks Reverb 2.0 using Standard
URLs...996
URL Commands Support by WebWorks Reverb 2.0..................................... 997
Opening Context-Sensitive Help in WebWorks Reverb 2.0 using JavaScript..... 998
Opening Context-Sensitive Help in WebWorks Reverb 2.0 using the WebWorks
Help API... 998

Configuring Client-Side Search for Reverb 2.0... 999
Configuring Synonyms.. 999

Searching WebWorks Reverb 2.0 - URL Method..1000
Incorporating Google Analytics for Your Reverb 2.0 Files............................... 1000
Configuring Commenting and End-User Feedback for Reverb 2.0.................... 1001

Table of Contents | xxv

Customizing Icons in Your Reverb 2.0 Output Using Font Awesome................. 1001
Incorporating Web Fonts in Your Reverb 2.0 Output......................................1002

Steps to Create Your First Disqus Site...1004
‘Was This Helpful?’ Buttons... 1004
Dropdown Collapse/Expand All Toggle Button...1004
Document Last Modified Date/Publish Date..1005
Customizing Related Topics..1006

Customizing Related Topic Styling/Appearance... 1006
Enabling/Disabling Related Topic Dropdown Behavior................................ 1006

Customizing PDF - XSL-FO..1007
Custom Header and Footers.. 1007
Document Last Modified Date/Publish Date..1008
Page Template Customizations... 1009

Customizing Dynamic HTML..1010
Using SASS to change the Appearance of Dynamic HTML.............................. 1010
Modifying the Appearance of the Table of Contents in Dynamic HTML.............. 1010
Modifying the Appearance of the Index in Dynamic HTML.............................. 1011
Other Changes to Text in the TOC and Index in Dynamic HTML...................... 1013
Document Last Modified Date/Publish Date..1014

Customizing Eclipse Help.. 1016
Using Markers to Specify Context Plug-ins in Eclipse Help..............................1016
Using Markers to Specify Topic Descriptions for Context-Sensitive Help Topics in
Eclipse Help...1017

Customizing Oracle Help and Sun JavaHelp.. 1018
Defining the Navigation Pane in Oracle Help.. 1018
Using Custom Windows in Oracle Help..1018
Defining the Navigation Pane in Sun JavaHelp... 1019
Using Context-Sensitive Help in Oracle Help and Sun JavaHelp.......................1020

Mapping Files in Oracle Help and Sun JavaHelp.. 1020
Testing Context-Sensitive Oracle Help and Sun JavaHelp........................... 1021

Customizing WebWorks Help.. 1022
Renaming the Top-Level Entry File... 1022
Selecting a Theme... 1022
Customizing the Splash Page in WebWorks Help...1023

Replacing the Splash Image.. 1023

xxvi | Table of Contents

Removing the Splash Page.. 1024
Customizing the Toolbar in WebWorks Help... 1024

Adding and Removing Toolbar Buttons in WebWorks Help.......................... 1024
Replacing the Toolbar Buttons in WebWorks Help......................................1026
Changing the Background Color of the Toolbar... 1028

Customizing the Navigation Pane in WebWorks Help..................................... 1029
Setting the Initial Width of the WebWorks Help Navigation Pane................. 1029
Controlling the Navigation Pane Hover Text Appearance.............................1030
Changing the Font Color on the Navigation Pane Tabs in WebWorks Help...... 1032
Using Custom Icons on the Contents Tab in WebWorks Help.......................1033
Modifying the Appearance of the Search Message in WebWorks Help........... 1035
Modifying the Search Ranking..1037
Modifying the Search Highlighting...1039
Synonyms..1039

Minimum word length & common words.. 1040
Using Context-Sensitive Help in WebWorks Help.......................................1041
Mapping Files in WebWorks Help.. 1041
Opening Context-Sensitive Help in WebWorks Help using Standard URLs...... 1042
Opening Context-Sensitive Help with the WebWorks Help API.....................1043
Opening Context-Sensitive Help with the Javascript API.............................1043

Advanced Format and Target Customizations....................................... 1045
Understanding Customized Processing.. 1045
Format and Target Overrides... 1046

Creating Format Overrides...1046
Creating Target Overrides..1048
Managing Overrides.. 1050

Customizing Page Templates (*.asp).. 1052
Page Templates Reference... 1053

Namespace and Attributes... 1053
Using ePublisher Style Variables in Page Templates...................................1060
Using Markers in Page Templates... 1061

ePublisher Pipeline and Transforms..1062
Terminology...1062
Processing Workflow... 1063
Transformation Process... 1064

Adapters Transform Source Documents to WIF...1064

Table of Contents | xxvii

WebWorks Intermediate Format (WIF).. 1065
Processing Files by Type..1065
Identifying Files to Process.. 1067
TOC Processing Example... 1068

Stationery, Projects, and Overrides...1068
File Locations... 1068
File Processing... 1070
ePublisher File Types...1071

Format Trait Info (*.fti) Files..1071
format.wwfmt Files... 1072
files.info Files... 1072
Stationery Design Project .wep File... 1072
Project .wrp File... 1073
Stationery .wxsp File...1073

XSL Match Templates..1073
Root Match Templates... 1073
Root Match Templates in ePublisher.. 1074

Extension Objects...1074

Introduction..1077
Audience... 1077
Help..1077
Conventions...1077

Formatting...1077
Terminology... 1078

Organization.. 1079
About XML and XSL..1079

Architectural Overview... 1080
Real World Example... 1081

File Reference... 1082
File Locations...1082
File Processing... 1084
What This Means For The User.. 1085

File Types..1085
Format Trait Info (*.fti).. 1085

Explanation..1085

xxviii | Table of Contents

Components...1086
Relationships..1088

format.wwfmt.. 1089
Explanation..1089
Components...1089
Relationships..1092

files.info.. 1092
Explanation..1092
Components...1092
Relationships..1092

Designer Project File (.wep).. 1092
Stationery File (.wsxp)..1092
Express Project File (.wrp).. 1093

XSL Match Templates..1093
Root Match Templates...1093

Root Match Templates in ePublisher Designer...1094
Real Life Example...1095

Extension Objects... 1095

Output Customizations..1095

Transform Overrides... 1096
Creating Transform Overrides.. 1096

Information about Overriding files.. 1096

XSLT Reference...1099
XSLT Documentation...1099
Good to Know..1100
Using Extension Objects..1100

General XSL Extensions...1100
Microsoft Extensions... 1101
Using ePublisher XSLT Extensions...1102

ePublisher Platform XSLT Extensions... 1103
Class Documentation.. 1106
Adapter...1106

void AddToPDFPageNumberOffset (int addToPageNumberOffset)................. 1107

Table of Contents | xxix

bool GeneratePDF (string originalDocumentPath, string
conversionPDFDocumentPath, bool singleFile, XPathNodeIterator
tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string
pdfJobSettings, string pdfFilePath)..1109
bool GeneratePDFWithSaveAs (string originalDocumentPath, string
conversionPDFDocumentPath, bool singleFile, XPathNodeIterator
tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string
pdfJobSettings, string pdfFilePath)..1111
bool GeneratePostScriptForImage (object input, string postScriptPath).........1113
long GeneratePostScriptForPDF (string originalDocumentPath, string
conversionPDFDocumentPath, bool singleFile, XPathNodeIterator
tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string
postScriptFilePath).. 1114
void SetPDFPageNumberOffset (int pageNumberOffset)............................. 1116
bool TemporaryLicense (string toolAdapterName)..................................... 1117

AdapterConfiguration.. 1118
string GetValue (string name)..1118
string GetValue (string name, string defaultValue).................................... 1119

DateTimeUtilities.. 1120
string GetNow (string format)..1120
string GetGenerateStart (string format).. 1122
string GetFileCreated (string filepath, string format)................................. 1123
string GetFileLastModified (string filepath, string format)........................... 1124
string GetFromDateTimeString (string dateTime, string inputFormat, string
outputFormat)..1125

Environment.. 1126
string ApplicationBaseHelpURI ().. 1127
string CurrentUILocale ()...1128
long GetTotalMemory ().. 1128
long GetTotalMemory (bool forceFullCollection)...1128
string HTMLHelpWorkshopPath ()..1129
string JavaBits ()..1129
string JavaHome ()...1129
string JavaVersion ()...1129
string JDKBits ().. 1130
string JDKHome ()..1130
string JDKVersion ()..1130
string JREBits ()...1130
string JREHome ().. 1131
string JREVersion ()..1131

xxx | Table of Contents

bool RequestedPipeline (string pipelineName).. 1131
Exec... 1132

XPathNodeIterator Execute (string commandLine).................................... 1135
XPathNodeIterator ExecuteCommand (string command [, string argument1,
string argument2, string argument3, string argument4, string argument5,
string argument6, string argument7, string argument8, string argument9, string
argument10, string argument11, string argument12, string argument13, string
argument14, string argument15, string argument16, string argument17, string
argument18, string argument19, string argument20])...............................1136
XPathNodeIterator ExecuteCommandNoReturn (string command)............... 1137
XPathNodeIterator ExecuteCommandInDirectory (string directoryPath, string
command [, string argument1, string argument2, string argument3, string
argument4, string argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string argument11, string
argument12, string argument13, string argument14, string argument15, string
argument16, string argument17, string argument18, string argument19, string
argument20])...1138
XPathNodeIterator ExecuteCommandInDirectoryWithTimeout (long
timeoutInSeconds, string directoryPath, string command [, string argument1,
string argument2, string argument3, string argument4, string argument5,
string argument6, string argument7, string argument8, string argument9, string
argument10, string argument11, string argument12, string argument13, string
argument14, string argument15, string argument16, string argument17, string
argument18, string argument19, string argument20])...............................1139
XPathNodeIterator ExecuteCommandWithTimeout (long timeoutInSeconds, string
command [, string argument1, string argument2, string argument3, string
argument4, string argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string argument11, string
argument12, string argument13, string argument14, string argument15, string
argument16, string argument17, string argument18, string argument19, string
argument20])...1140
XPathNodeIterator ExecuteInDirectory (string directoryPath, string
commandLine)... 1141
XPathNodeIterator ExecuteInDirectoryWithTimeout (long timeoutInSeconds,
string directoryPath, string commandLine)...1142
XPathNodeIterator ExecuteProgramWithArguments (string program, string
arguments)..1143
XPathNodeIterator ExecuteProgramWithArgumentsInDirectory (string
directoryPath, string program, string arguments)..................................... 1144
XPathNodeIterator ExecuteProgramWithArgumentsInDirectoryWithTimeout (long
timeoutInSeconds, string directoryPath, string program, string arguments).. 1145
XPathNodeIterator ExecuteProgramWithArgumentsWithTimeout (long
timeoutInSeconds, string program, string arguments)...............................1146

Table of Contents | xxxi

XPathNodeIterator ExecuteWithTimeout (long timeoutInSeconds, string
commandLine)... 1147

ExecPython..1148
XPathNodeIterator ExecutePyScriptInCommandLine (string commandLine)... 1149
XPathNodeIterator ExecPyScript (string pyScriptPath [, string argument1, string
argument2, string argument3, string argument4, string argument5, string
argument6, string argument7, string argument8, string argument9, string
argument10, string argument11, string argument12, string argument13, string
argument14, string argument15, string argument16, string argument17, string
argument18, string argument19]).. 1150
XPathNodeIterator ExecutePyScriptInDirectoryInCommandLine (string
directoryPath, string commandLine)..1151
XPathNodeIterator ExecPyScriptInDirectory (string directoryPath, string
pyScriptPath [, string argument1, string argument2, string argument3, string
argument4, string argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string argument11, string
argument12, string argument13, string argument14, string argument15, string
argument16, string argument17, string argument18, string argument19])... 1152

Sass... 1153
XPathNodeIterator SassToCss (string inputSassFilePath, string
outputCssFilePath).. 1153
void ReplaceAllVariablesInFile (string inputSassFilePath, object
replacements).. 1154

ExslDocument.. 1155
void Document (object input, string path [, string encoding, string method, string
version, string indent, string omit_xml_declaration, string standalone, string
doctype_public, string doctype_system, string cdata_section_elements, string
media_type])... 1156
XPathNodeIterator LoadXMLWithoutResolver (string uriAsString [, bool
preserveSpace])... 1157
XPathNodeIterator LoadXMLWithResolver (string uriAsString [, bool
preserveSpace])... 1159
XPathNodeIterator MakeEmptyElement (object input)................................1160

Files..1161
bool UpToDate (string path, string projectChecksum, string groupID, string
documentID, string actionChecksum).. 1162

FileSystem...1164
bool AppendFileWithFile (string targetPath, string sourcePath)....................1167
bool ChecksumUpToDate (string path, string checksum)............................ 1169
string Combine (string path, string component1 [, string component2, string
component3, string component4, string component5, string component6, string
component7, string component8, string component9, string component10]).1171

xxxii | Table of Contents

XPathNodeIterator CopyDirectoryFiles (string sourceDirectoryPath, string
destinationDirectoryPath)...1172
XPathNodeIterator CopyFile (string sourcePath, string destinationPath)........1174
bool CreateDirectory (string path).. 1176
void DeleteDirectory (string path).. 1178
void DeleteFile (string path).. 1180
bool DirectoryExists (string path)... 1182
bool Exists (string path)..1184
bool FileExists (string path)... 1186
bool FilesEqual (string alphaPath, string betaPath)....................................1188
string GetAbsoluteFrom (string relativePath, string referencePath).............. 1190
string GetBaseName (string path).. 1192
string GetChecksum (string path)...1193
string GetDirectoryName (string path).. 1195
string GetExtension (string path)..1197
string GetFileName (string path).. 1199
string GetFileNameWithoutExtension (string path).................................... 1201
XPathNodeIterator GetFiles (string path)... 1203
string GetLongPathName (string path).. 1205
XPathNodeIterator GetRelativeFiles (string path)...................................... 1207
string GetRelativeTo (string path, string anchorPath).................................1209
string GetShortPathName (string path)... 1211
string GetTempFileName ().. 1213
string GetTempPath ()...1213
string GetWithExtensionReplaced (string path, string extension)................. 1213
string MakeValidFileName (string fileNameSeed).......................................1215
void TranslateFileToEncoding (string sourceFilePath, string
sourceFileEncodingName, string destinationFilePath, string
destinationFileEncodingName).. 1216

Fonts.. 1218
bool UnicodeFont (string fontFamily)...1218

Imaging.. 1219
XPathNodeIterator GetInfo (string imageFilePath)..................................... 1220
void MapPDFLinks (object fileTable, string fileToFix, string fileToWrite, string
originalFilePath, string outputFilePath, bool useAbsPath)............................1222
bool MergePDFs (object sourceFileList, string targetFilePath)...................... 1224
bool MergePDFs (object sourceFileList, object fileTable, string targetFilePath)1226
bool PostScriptToPDF (string postScriptFilePath, string pdfJobSettings, string
pdfFilePath)... 1228

Table of Contents | xxxiii

XPathNodeIterator RasterizePostScript (string postScriptFilePath, int
renderHorizontalDPI, int renderVerticalDPI, int renderWidth, int
renderHeight, string targetImageFormatAsString, int targetImageColorDepth,
bool targetImageGrayscale, bool targetImageTransparent, bool
targetImageInterlaced, int targetImageQuality, string targetFilePath).......... 1230
XPathNodeIterator Transform (string inputImageFilePath, string
outputImageFormat, int outputImageWidth, int outputImageHeight, string
outputImageFilePath).. 1231
XPathNodeIterator Transform (string inputImageFilePath, string
outputImageFormatAsString, int Choice_outputImageQuality_outputImageWidth,
int Choice_outputImageWidth_outputImageHeight, string
Choice_outputImageHeight_outputImageFilePath, string
Choice_outputImageFilePath_outputResolution).. 1232
XPathNodeIterator Transform (string inputImageFilePath, string
outputImageFormatAsString, int outputImageQuality, int outputImageWidth, int
outputImageHeight, string outputImageFilePath, int outputResolution)........ 1233

Log...1235
void Error (string message1 [, string message2, string message3, string
message4, string message5, string message6, string message7, string
message8, string message9, string message10])......................................1236
void Message (string message1 [, string message2, string message3,
string message4, string message5, string message6, string message7, string
message8, string message9, string message10])......................................1237
void Warning (string message1 [, string message2, string message3, string
message4, string message5, string message6, string message7, string
message8, string message9, string message10])......................................1238

MultiSearchReplaceExtension... 1239
void ReplaceAllInFile (string inputEncodingAsString, string inputFilePath, string
outputFilePath, object replacements).. 1239
void ReplaceAllInFile (string inputEncodingAsString, string inputFilePath, string
outputEncodingAsString, string outputFilePath, object replacements)...........1241
string ReplaceAllInString (string input, object replacements)...................... 1242

NodeSet.. 1243
XPathNodeIterator FirstUnique (object input, string attributeLocalName)......1243
XPathNodeIterator FirstUniqueWithNamespace (object input, string
attributeLocalName, string attributeNamespaceURI)..................................1246
XPathNodeIterator LastUnique (object input, string attributeLocalName)...... 1248
XPathNodeIterator LastUniqueWithNamespace (object input, string
attributeLocalName, string attributeNamespaceURI)..................................1250

Progress..1252
bool Abort ()... 1253
void Cancel ()..1253
void End ()..1253

xxxiv | Table of Contents

void QueueAlert (string message)...1253
void Retry ()..1254
void SetStatus (string message).. 1254
void Start (int totalSubSteps).. 1255

Project.. 1256
bool DocumentExtension (string extension)... 1259
bool GetConditionIsPassThrough (string conditionName)............................1260
string GetConfigurationChangeID ().. 1261
XPathNodeIterator GetContextRule (string ruleTypeAsString, string ruleName,
string documentID, string uniqueID)...1261
string GetDocumentDataDirectoryPath (string documentID)....................... 1262
string GetDocumentGroupPath (string documentID)..................................1263
string GetDocumentID (string documentPath [, string groupID]).................1264
string GetDocumentPath (string documentID).. 1265
string GetDocumentsToGenerateChecksum ()... 1266
string GetFormatID ()... 1266
string GetFormatName ().. 1266
string GetFormatSetting (string name)..1266
string GetFormatSetting (string name, string defaultValue)........................ 1267
string GetGroupDataDirectoryPath (string groupID).................................. 1268
string GetGroupName (string groupID)... 1269
XPathNodeIterator GetOverrideRule (string ruleTypeAsString, string ruleName,
string documentID, string uniqueID)...1270
string GetProjectDataDirectoryPath ()... 1271
string GetProjectDirectoryPath ()..1271
long GetProjectDocumentsCount ()... 1271
string GetProjectFilesDirectoryPath ()..1271
string GetProjectFormatDirectoryPath ().. 1272
string GetProjectName ()...1272
string GetProjectReportsDirectoryPath ()... 1272
string GetProjectTargetName ().. 1272
string GetProjectTargetOverrideDirectoryPath ()..1272
XPathNodeIterator GetRule (string ruleTypeAsString, string ruleName).........1273
string GetTargetDataDirectoryPath ().. 1274
string GetTargetFilesInfoPath (string targetIDAsString)..............................1274
string GetTargetOutputDirectoryPath ()... 1275
string GetTargetReportsDirectoryPath ().. 1275

StageInfo.. 1275

Table of Contents | xxxv

string Get (string param_key)..1276
void Set (string param_key, string param_value)......................................1277

StringUtilities... 1278
string CSSClassName (string styleName)...1280
string DecodeURI (string value)... 1281
string DecodeURIComponent (string value)..1282
string EclipseId (string identifier)... 1283
string EncodeURI (string value)..1284
string EncodeURIComponent (string value).. 1285
string EscapeForXMLAttribute (string value)... 1286
string Format (string format, string argument1 [, string argument2, string
argument3, string argument4, string argument5, string argument6, string
argument7, string argument8, string argument9, string argument10])........ 1287
string FromFile (string sourceFilePath, string sourceFileEncodingName)........1288
string JavaScriptEncoding (string value).. 1289
bool MatchExpression (string input, string matchExpressionAsString).......... 1290
string MatchExpressionValue (string input, string matchExpressionAsString). 1292
string MD5Checksum (string value).. 1294
string NCNAME (string identifier)..1295
string NormalizeQuotes (string value)... 1296
string OEBClassName (string styleName)...1297
string Replace (string input, string search, string replacement)...................1298
string ReplaceWithExpression (string input, string searchExpressionAsString,
string replacement).. 1299
string ReplaceWithExpressionForCount (string input, string
searchExpressionAsString, string replacement, int count).......................... 1300
string SHA1Checksum (string value)...1301
string ToLower (string value)... 1302
string ToUpper (string value)... 1303
string ToCamel (string value)...1304
string ToPascal (string value)... 1305
bool EndsWith (string input, string suffix)..1306
string WebWorksHelpContextOrTopic (string key)......................................1307

Units...1308
double Convert (double sourceValue, string sourceUnits, string targetUnits). 1309
string CSSRGBColor (string htmlColor)..1310
string EncodingFromCodePage (int codePage).. 1312
string NumericPrefix (string value)... 1314
string RTFColor (string htmlColor).. 1315

xxxvi | Table of Contents

string UnitsSuffix (string value)..1317
URI...1318

string AsFilePath (string uriAsString)...1319
string AsURI (string filePathAsString)..1321
string EscapeData (string unescapedString)... 1323
string EscapeUri (string unescapedUri)..1324
string GetRelativeTo (string uriAsString, string anchorUriAsString)...............1325
bool IsFile (string uriAsString)... 1327
string MakeAbsolute (string absoluteUriAsString, string uriAsString)............ 1329
XPathNodeIterator PossibleResolvedUris (string uriAsString).......................1331
string Unescape (string escapedString)... 1333

ZipExtension.. 1335
void Zip (string zipFilePath, object nodes)... 1336
void ZipAdd (string zipFilePath, object nodes).. 1337
void ZipAddWithoutCompression (string zipFilePath, object nodes).............. 1338
void ZipDirectory (string zipFilePath, string directoryPath)......................... 1339
void ZipDirectoryWithoutCompression (string zipFilePath, string
directoryPath).. 1340
void ZipExtract (string zipFilePath, string targetDirectory)..........................1341
void ZipWithoutCompression (string zipFilePath, object nodes)................... 1342

Frequently Asked Questions... 1344
What changed in Font Awesome version 5.15.4 from 4.7.x that impacts Reverb
2.0?..1344
How do I disable automatic Preview generation in Designer?..........................1345
How do I capture source file meta data in the published HTML output?............ 1346
How do I use a Project Variable's value in the published output?.................... 1347
How do I upgrade an existing WebWorks Reverb 2.0 project to a newer
version?.. 1348
How to add an image icon and stylize your DITA Hazard statement elements?.. 1348
How to supplement or replace Reverb Toolbar Group Tabs............................. 1349
Invalid File Path Characters Filtered from Generated File Names..................... 1351
How to enable 'WebWorks Menu' (Transit) Add-in for Microsoft Word............... 1352
How do I set image horizontal alignment in ePublisher?................................ 1354
Why is the PDF format skipping Markdown files?..1355
How can a markdown file include another?..1355
How can you insert an Index Marker into a Markdown file?............................1356
How to use alternate DITA-OT installation with ePublisher............................. 1356
How do I embed HTML within DITA source content?..................................... 1356

Table of Contents | xxxvii

How to use Context Links in Reverb 2.0... 1358
What happens if a Reverb link is no longer valid?...1359
How do I know what baggage files are in my Reverb 2.0 output?................... 1359
What user interactions can Reverb track in Google Analytics?.........................1360
How can I modify the Reverb search result summary?.................................. 1361
How to add Keywords meta data to generated HTML pages........................... 1361
Why does HTML content within my source file not publish to PDF?.................. 1362

xxxviii | Table of Contents

ePublisher Platform Documentation
What's New in ePublisher 2024.1

Welcome to the ePublisher Platform Documentation! Here you'll find everything
you need to effectively create, customize, and publish your content using
ePublisher's powerful tools. Whether you're a first-time user or a seasoned pro, our
documentation is designed to guide you through every step.

Chat With WebWorks Wizard on ChatGPT
For an even faster way to get your questions answered, try out WebWorks Wizard.
This custom GPT assistant is trained on the same documentation you're reading,
making it a perfect companion to help you find what you need quickly and easily.
Usage of WebWorks Wizard is free, and only requires an OpenAI account to access.

Main Sections
Explore the main sections using the links below, search for specific topics with the
search bar, or browse through the Table of Contents.

Latest Release
• What's New
• Release Notes

Authoring Content
• Markdown++
• Adobe FrameMaker
• Microsoft Word
• DITA XML

ePublisher Plaorm Documentaon | 1

https://chatgpt.com/g/g-rrdPeSWgd-webworks-wizard

Using ePublisher
• ePublisher Interface
• Automap Interface

Generating Output
• Output Formats

Customizing Output
• Designing Stationery
• Advanced Customizations

Frequently Asked Questions
• FAQs

2 | ePublisher Plaorm Documentaon

What's New in ePublisher 2024.1
Read on to learn about the latest features available in this ePublisher release.

Adapters
FrameMaker 2022 Update 4/5 Support
The FrameMaker adapter has been updated to support update 4 and 5 of version
2022, enabling improved compatibility with the latest authoring tools. Users can
now leverage the newest features and capabilities available in FrameMaker 2022
within ePublisher.

Markdown++ Enhancements
• Added support for parsing multiline tables in Markdown++, improving

flexibility when handling complex tables.
• Implemented multiline table output in Markdown to enhance content display

consistency.
• Plain-text URLs now properly render in output, ensuring that Markdown files

are displayed as expected.
• Index markers with multiple entries no longer have leading whitespace,

ensuring better structured and clearer output.

Formats
Markdown++ Output Format

• Introduced a new Markdown++ output format, allowing for more advanced
Markdown features and improved compatibility with existing workflows.

• Locale strings for Danish and other languages updated, providing better
localization support.

• Renamed "Quote WIF" element to "Block" for greater clarity and consistency.

XML+XSL Output Deprecation
• XML+XSL output format has been deprecated in this release to streamline

supported formats and reduce maintenance complexity.

Reverb 2.0
Popups Support

• Full support for creating Popup content.
• Enhanced popup behavior for hyperlinks to generated content, providing a

more responsive user experience.

Reverb 2.0 | 3

Performance Enhancements
• Improved load performance and eliminated duplicate files to streamline

Reverb 2.0 operations.
• Enhanced efficiency of ASP template file dependency copying, resulting in

faster build times.

PDF - XSL-FO Integration
• Project-wide PDFs are now supported using the page toolbar PDF buttons if it

is the only "Result" specified in the Copy PDFs from target target used for
PDF generation.

• Added PDF buttons to the Splash and "File Not Found" pages.

PDF - XSL-FO
• Added Paragraph Style Option: Start new page sequence which allows

users to change page layouts within the same generated PDF. In prior
releases this functionality was achieved using the Page break priority
which was less flexible and could cause excessive page breaking between
paragraphs.

• Improved macro support within the title page, headers, and footers.
Including the ability to use ePublisher project variables (projvars) and
source content meta data via style variables (wwvars).

• Improved default experience with page headers and footers.

User Interface
Style Designer Inheritance

• Style target properties, options, and target options can now inherit their
values the same way properties have always been able to inherit their values.

• Style properties and options display inherited values when either an "Explicit"
value has been set or if a default value exists for that property/option
somewhere in the inheritance hierarchy.

Updated Release Artwork
• Updated the release artwork for version 2024.1, providing a refreshed visual

experience for users.

Script Error Dialog Fix
• Fixed the script error dialog that appeared when accessing help or trial guide,

ensuring a smoother user experience.

Evaluation Materials

4 | Evaluaon Materials

Updated Evaluation Package
• Updated ePublisher evaluation materials for 2024.1, ensuring new users have

access to the most recent information and guidance.

Build Improvements
Version and Signtool Updates

• Version updated for the 2024.1 release.

Stationery
Saving Stationery Enhancements

• Resolved issues with saving as Stationery on read-only project folders with
customizations, allowing users to maintain their workflow more effectively.

General Improvements
Windows Long File Path Awareness

• Windows filenames and paths are no longer limited to 249/260 characters.

Memory Management and Conversion Times
• Improved conversion times by optimizing memory management, resulting in

faster and more efficient project processing.

General Improvements | 5

ePublisher 2024.1 Release Notes
Improvements
Fixed Issues
Summary

Improvements
Adapters

• Updated FrameMaker support to include version 2022, ensuring compatibility
with the latest authoring tools (EPUB2516).

• Parse multiline tables in Markdown++ for more flexibility when handling
complex content (EPUB2535).

Core
• Style properties, target properties, options, and target options now all

support inheritance.
• Style properties and options display inherited value and source when

available.
• Improved conversion times affected by memory management, resulting in

more efficient project handling (EPUB2524).
• Enhanced support for long filename paths, addressing limitations with paths

beyond 249/260 characters (EPUB2522).

Formats
• Renamed "Quote" WIF element to "Block" for increased clarity in formatting

(EPUB2528).
• Locale strings for Danish and other languages have been added, expanding

the language support (EPUB2450).
• Added the ability to generate output in Markdown++ format, enhancing

compatibility with Markdown workflows (EPUB2519).
• Deprecated XML+XSL output format to streamline supported formats and

simplify maintenance (EPUB2537).

Licensing
• Upgraded License Generator to .NET 4.7.2, with improved TLS handling to

meet modern security standards (EPUB2540).
• Fixed misleading license error messages, changing 'GroupID' to 'Contract ID'

for better clarity (EPUB2531).

User Interface

6 | Improvements

• Fixed script error dialog when accessing help or trial guide, resulting in a
smoother user experience (EPUB2529).

• Updated release artwork for version 2024.1, refreshing the visual
presentation (EPUB2532).

Reverb 2.0
• Enhanced popup behavior for hyperlinks to generated content, providing a

more intuitive user experience (EPUB2387).
• Improved load performance and eliminated duplicate files for better efficiency

(EPUB2511).
• Improved efficiency of ASP template file dependency copying, reducing build

times (EPUB2533).
• Addressed issues with combined index letter groups being out of order,

improving the indexing experience (EPUB2509).
• Added support for project-wide PDF button links (EPUB2584), now also

available in the Splash and NotFound pages.

Markdown Adapter
• Implemented multiline table output to improve content display consistency

(EPUB2534).
• Fixed an issue where plain-text URLs did not render correctly in output,

ensuring all links are visible (EPUB2514).
• Addressed footnotes not publishing as documented, improving Markdown

compliance (EPUB2518).
• Index markers with multiple entries now correctly handle leading whitespace

(EPUB2525).
• Fixed an issue where code fences with style tags were ignored, ensuring

proper code formatting (EPUB2527).
• Resolved an issue with stylized quotes or apostrophes causing generation to

fail, enhancing content stability (EPUB2515).

Build
• Version updated for 2024.1 release, reflecting the latest updates and

enhancements (EPUB2536).
• Signtool emergency bypass implemented to address specific build scenarios

(EPUB2520).
• License key updated for the 2024.1 version (EPUB2538).

Evaluation Materials
• Updated ePublisher evaluation materials to provide prospective users with

the latest information and guidance (EPUB2542).

Stationery

Improvements | 7

• Resolved issues with saving as Stationery on read-only project folders with
customizations, ensuring smoother workflows (EPUB2513).

Documentation
• Improved online help packaging to ensure accurate and easily accessible

information (EPUB2539).
• Matched product integration URL links to the new website for better

navigation and usability (EPUB2543).

PDF Generation
• Title page, header, and footer macros now support project variables and

ePublisher style option variables.
• RunningTitle and ChapterTitle variables work more consistently across

page breaks.
• Eliminated page breaking from FrameMaker and Word source documents as

these are redundant and confusing.
• Added Start new page sequence paragraph style option.
• Improved master page default region handling for easier initial setup.
• Generating selected documents no longer tries to compile other unselected

documents.
• Fixed an issue with the XSL-FO bullet property that was not rendering image

files correctly (EPUB2545).
• Eliminated empty-value FO properties to improve PDF output quality

(EPUB2549).
• Style group label HTML now labeled as Layout .
• Title page headers and footers are supported but disabled in the Title.asp

file (EPUB2578).

Fixed Issues
List of Issues Fixed in This Release

8 | Fixed Issues

Issue ID Summary

EPUB1657 WebWorks Help - Infinite reload loading
blank.html in Chrome

EPUB1874 Reverb 2.0 - Index entries should have
option to group by letter not group

EPUB2114 Formats - Bullet and note paragraph
styles need a better way to handle
vertical alignment

EPUB2116 HTML Formats - meta description tag in
generated files and marker type

EPUB2146 PDF deploy incorrectly copies the Files
folder contents

EPUB2377 Reverb 2.0 - Scroll-to elements too
close to top of page

EPUB2387 Reverb 2.0 - Popup behavior for
hyperlinks to generated content

EPUB2416 Windows Protected Folders cause
ePublisher to crash instead of graceful
failure

EPUB2450 Formats - Locale strings for Danish and
other languages

EPUB2478 Reverb 2.0 - Search highlighting does
not filter stop words

EPUB2482 Reverb 2.0 - HTML Baggage file
dependences are not copied to output
folder

EPUB2484 Reverb - url_maps.xml Page element
href attributes are incorrectly escaping
underscore characters

EPUB2485 Build - Version for 2023.1

EPUB2486 DITA - Hazardstatement paragraph style
name for the icon has incorrect 'Type'
suffix

Fixed Issues | 9

Issue ID Summary

EPUB2488 FrameMaker - Native PDF generation
fails without Distiller with 32bit
FrameMaker

EPUB2489 Word - Improve Digital Signature for
WebWorks Menu and other addins

EPUB2491 DITA - Upgraded DITA OT 4.0 support to
use version 4.0.2

EPUB2492 DITA - Support for DITA OT version 4.1
using release 4.1.2

EPUB2493 Update HTML release notes

EPUB2494 Documentation - Update ePublisher
online help

EPUB2495 DITA - ant pipeline failure calling
fn:concat() with multiple item
sequence

EPUB2496 Reverb 2.0 - #context links to different
help sets on same server are incorrectly
treated as internal links

EPUB2502 Reverb 2.0 - Make TOC Icon
Configurable to Left or Right

EPUB2503 ePublisher - Update Release Artwork for
2023.1

EPUB2505 Build - License Key for 2023.1

EPUB2506 Update Evaluation Materials to match
latest release

EPUB2507 Update ePublisher Express Evaluation
Guide

EPUB2509 Reverb 2.0 - Combined Index letter
groups out of order sometimes

EPUB2511 Reverb 2.0 - Improve load performance
and eliminate duplicate files

10 | Fixed Issues

Issue ID Summary

EPUB2513 Saving as Stationery on Read-only
Project folder with customizations can
fail

EPUB2514 Markdown - Plain-text URLs do not
render in Output

EPUB2516 FrameMaker - Update FDK for
FrameMaker 2022 Update 4

EPUB2519 Markdown - Generate output in
Markdown++ format

EPUB2520 Build - Signtool emergency bypass

EPUB2521 Reverb 2.0 - No way to redirect 404 Not
Found links to the First page

EPUB2522 Long filename paths beyond 249/260
character limit not working

EPUB2524 Improve conversion times affected by
memory management

EPUB2525 Markdown Adapter - Index markers with
multiple entries may have leading white
space

EPUB2528 Formats - Rename Quote WIF element
to Block

EPUB2529 User Interface - Script error dialog
appears when accessing help or trial
guide

EPUB2530 Reverb 1.0 - Generation error when
Search Implementation target setting
set to None

EPUB2531 License error message says 'GroupID'
instead of 'Contract ID'

EPUB2532 ePublisher - Update Release Artwork for
2024.1

Fixed Issues | 11

Issue ID Summary

EPUB2533 Reverb 2.0 - Improve efficiency of
ASP template file dependency copy
operations

EPUB2534 Markdown - Implement multiline table
output

EPUB2535 Adapters - Parse multiline tables in
Markdown++

EPUB2536 Build - Version for 2024.1

EPUB2537 Build - Deprecate XML+XSL output
format

EPUB2538 Build - License Key for 2024.1

EPUB2539 Documentation - Online Help packaging

EPUB2543 Match website product integration URL
links to new website

EPUB2544 Task - Update Release Notes

EPUB2545 PDF - XSL-FO Bullet property using
image file not rendering

EPUB2549 PDF - XSL-FO Eliminate empty-value FO
properties

EPUB2550 PDF - XSL-FO Invalid property values
containing NaNpt for text-indent and
margin-left

EPUB2554 Reverb 2.0 - Corporate skin doesn't
ever finish loading

EPUB2555 PDF - XSL-FO break-before and other
layout properties ignored for UList/OList
styles

EPUB2556 Reverb - Google Translate language
selector is not fully visible

EPUB2557 Improve security by removing
all usage of Windows
System.IO.Path.GetTempFileName()

12 | Fixed Issues

Issue ID Summary

EPUB2558 Word Transit help menu does not
display online help

EPUB2559 Update DockableHelp to not use
WebWorks Help API

EPUB2560 Update WebWorks Help API to match
WebWorks Help SDK v. 4.0.11

EPUB2561 PDF - XSL-FO TOC, Index style prefix
target setting should not be a dropdown

EPUB2562 PDF - XSL-FO Word source documents
create excessive PDF page breaks

EPUB2563 PDF - XSL-FO Replace style option:
'Page break priority' with 'Start new
page sequence'

EPUB2564 User Interface - Launch links in user's
default browser instead of WebBrowser
form

EPUB2565 Style Designer inheritance does not
work for target properties or options

EPUB2566 PDF - XSL-FO Improve default master
page region handling

EPUB2567 User Interface - PDF - XSL-FO not
displaying properties consistently

EPUB2568 Reverb 2.0 - Deployment fails to copy
analytics.js and connect.js to the deploy
folder

EPUB2569 User Interface - In PDF - XSL-FO,
rename HTML property group to Layout

EPUB2570 User Interface - Style Designer property
source assignment not working
consistently

EPUB2571 Installer - Remove empty folder for
Designer > Helpers > WebWorks

Fixed Issues | 13

Issue ID Summary

EPUB2572 PDF - XSL-FO Generate selected can
cause FOP failure of non-selected
documents

EPUB2575 PDF - XSL-FO Title page, headers,
footers can use variables and source
meta data

EPUB2577 PDF - XSL-FO Running titles used in
headers/footers are not consistently set

EPUB2578 PDF - XSL-FO Title page headers/footers
can be enabled in Title.asp

EPUB2579 PDF - XSL-FO float property emitted
in images and causes RenderX XEP
exception

EPUB2580 User Interface - Deleting Style with
set properties and options sometimes
causes exception

EPUB2581 PDF - XSL-FO Set first body page-
sequence initial-page-number
property to 1 when not set

EPUB2582 Reverb 2.0 - Use project-wide
generated PDF for PDF icon link

EPUB2583 PDF - XSL-FO Line breaks create
excessive white-space and can cause
page breaks

EPUB2584 PDF - XSL-FO Project-wide PDF filename
should use Merge Settings Title

Summary
The ePublisher 2024.1 release introduces significant improvements in support
for the latest software versions, enhances memory management and load
performance, and resolves multiple issues across Markdown, Reverb, and other
formats. Key upgrades to licensing, PDF generation, and evaluation materials
ensure better usability and compliance. This release also optimizes the user
experience through several performance enhancements and issue fixes.

14 | Summary

Summary | 15

Copyright © 2001-2023 Quadralay® Corporation. All rights reserved.

Quadralay and WebWorks are registered trademarks of Quadralay Corporation.
FrameMaker is a registered trademark of Adobe Systems, Inc. Microsoft and
Windows are registered trademarks of Microsoft Corporation. Oracle is a registered
trademark of Oracle Corporation. Sun, Java and JavaHelp are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other
countries. . Doc-To-Help is a registered trademark of ComponentOne LLC. All other
trademarks used herein are the properties of their respective owners and are used
for identification purposes only.

Portions of this software are copyrighted by others, as follows:

.NET Framework Checker NSIS plugin

All NSIS source code, plug-ins, documentation, examples, header files and
graphics, with the exception of the compression modules and where otherwise
noted, are licensed under the zlib/libpng license.

Apache

Copyright © 1999-2006 The Apache Software Foundation

DITA-OT

The DITA Open Toolkit is licensed for use, at the user’s election, under the Common
Public License v1.0 or the Apache Software Foundation License v2.0. If, at the time
of use, the Project Management Committee has designated another version of these
licenses or another license as being applicable to the DITA Open Toolkit, user may
select to have its subsequent use of the DITA Open Toolkit governed by such other
designated license.

Copyright © 1999-2006 The Apache Software Foundation

Flvplayer

The flvplayer is licensed for use under the Mozilla Public License (MPL) version 1.1.

Ghostscript API wrapper

Copyright © 2004, Pelagon Limited. All rights reserved.

HTML Tidy

Copyright (c) 1998-2016 World Wide Web Consortium (Massachusetts Institute of
Technology, European Research Consortium for Informatics and Mathematics, Keio
University). All Rights Reserved.

16 | Summary

Additional contributions (c) 2001-2016 University of Toronto, Terry Teague,
@geoffmcl, HTACG, and others.

IKVM

Copyright © 2002-2011 Jeroen Frijters All rights reserved.

ImageMagick

Copyright © 2002 ImageMagick Studio, a non-profit organization dedicated to
making software imaging solutions freely available.

International Components for Unicode (ICU)

Copyright © 1995-2003 International Business Machines Corporation and others. All
rights reserved.

iText

Copyright © 1999-2005 by Bruno Lowagie and Paulo Soares. All rights reserved.

jQuery

Copyright © jQuery Foundation.

Java and JavaHelp

Copyright © 2003 Sun Microsystems, Inc. All rights reserved. Use is subject to
license terms. Sun, Sun Microsystems, the Sun Logo, Solaris, Java, the Java Coffee
Cup Logo, JDK, Java Foundation Classes (J.F.C.), Java Plug-in and JavaHelp are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

JGL - The Generic Collection Library for Java™

Copyright © 1997 ObjectSpace, Inc. All Rights Reserved.

Microsoft DotNetZip

Copyright © 2006, 2007 Microsoft Corporation, One Microsoft Way, Redmond,
Washington 98052-6399 U.S.A. All rights reserved.

Microsoft Help Workshop

Copyright © 2004 Microsoft Corporation, One Microsoft Way, Redmond, Washington
98052-6399 U.S.A. All rights reserved.

Mistune

Copyright (c) 2014 - 2015, Hsiaoming Yang. All rights reserved.

Summary | 17

NetAdvantage

Copyright ©1992-2005 Infragistics, Inc., Windsor Corporate Park, 50 Millstone
Road, Building 200 - Suite 150, East Windsor, NJ 08520. All rights reserved.

Newtonsoft.Json

Copyright (c) 2007 James Newton-King.

NSIS (Nullsoft Scriptable Install System)

Copyright (C) 1999-2017 Contributors.

All NSIS source code, plug-ins, documentation, examples, header files
and graphics, with the exception of the compression modules and where
otherwise noted, are licensed under the zlib/libpng license.

nsisDDE plugin

Copyright (c) 2005-2010 Olivier Marcoux.

Oracle Help

Copyright © 2002 Oracle Corporation. All Rights Reserved.

Python

The Python programming language by Guido van Rossum, PythonLabs, and many
contributors -- Python Software Foundation License version 3

The Python Software Foundation License version 3 is an OSI Approved Open
Source license. It consists of a stack of licenses that also include other licenses that
apply to older parts of the Python code base. All of these are included in the OSI
Approved license: PSF License, BeOpen Python License, CNRI Python License, and
CWI Python License. The intellectual property rights for Python are managed by the
Python Software Foundation.

Saxon

Copyright © 1999-2003 Intalio, Inc. All Rights Reserved.

Various .Net Utilities

Portions copyright © 2002-2004 The Genghis Group (http://
www.genghisgroup.com/)

Xerces

Copyright © 1999-2004 The Apache Software Foundation. All rights reserved.

18 | Summary

Summary | 19

Contacting Quadralay
Please contact us with your questions and comments. We look forward to hearing
from you. If you need assistance with an issue, please contact Technical Support.
The Support Web site allows you to review the support policy and create a case to
track an issue.

20 | Contacng Quadralay

Telephone: 877.893.2967
512.719.3399

Email: info@webworks.com

Support www.webworks.com/Support/

Web Site: www.webworks.com

Conventions
WebWorks ePublisher documentation uses consistent conventions to help you
identify items. The following table summarizes these conventions.

Convenons | 21

mailto:info@webworks.com
http://www.webworks.com/Support/
http://www.webworks.com

Convention Use

Bold Window and menu items

Technical terms, when introduced

Italics Book titles

Variable names

Emphasized words

Fixed Font File and folder names

Commands and code examples

Text you must type

Text (output) displayed in the command-line
interface

Orange Links

> Submenu selections, such as Target > Target
Settings

Brackets, such as
[value]

Optional parameters of a command

Braces, such as {value} Required parameters of a command

Logical OR, such as
value1 | value2

Exclusive parameters. Choose one parameter.

22 | Convenons

Introduction to the WebWorks
ePublisher Platform

What Is ePublisher?
How ePublisher Helps You
How Organizations Use ePublisher

Content development, publication, and maintenance are complex, time-consuming
processes. Each day, companies spend numerous hours writing, formatting, and
publishing information needed by internal and external users. At the same time,
these users search among vast amounts of content to find the information they
want and need. Companies need to streamline content production processes while
delivering the content to users when, where, and how they need it.

Adding to this complexity, teams across the company use multiple content
authoring tools, such as Markdown++, Adobe FrameMaker, Microsoft Word, and
XML editors, to create the content. These teams must be able to use the authoring
tools that best meet their needs. However, mastering these tools for content
development is only half the battle. Content developers also need tools to publish
content consistently in multiple formats, such as print, HTML, and PDF. This
requirement is difficult to meet and often leads to increased production costs or an
inconsistent corporate image. In addition, corporate branding standards change
over time, and implementing these changes across all content adds to production
and maintenance costs.

With all these variations in content creation, publication, and maintenance,
delivering the right information to the right people in the right format and at the
right time is an endless and costly struggle that consumes enormous time and
resources across organizations.

What Is ePublisher?
The WebWorks ePublisher Platform (ePublisher) is a powerful, comprehensive
solution that delivers cost-effective processes for efficiently publishing and
maintaining online and print information. ePublisher gives you the flexibility to
deliver content from multiple types of source documents, such as Markdown+
+, Adobe FrameMaker, Microsoft Word, and DITA, in virtually any output format
you need without incurring training or software deployment expenses. The open,
standards-based architecture provides a powerful engine that does not lock your
content in a proprietary format that can become outdated as tools and standards
change.

With the robust combination of input and output formats supported by ePublisher,
you can develop the content using your preferred content authoring tools, and then
produce and maintain all your deliverables within a single publishing environment.
You can implement a consistent look and feel across all deliverables and quickly

What Is ePublisher? | 23

modify and deploy that branding if and when needed. ePublisher integrates
seamlessly with your content management or version control systems, so you can
automatically generate and deploy the deliverables you need and reduce the time
demands on your teams.

Workflow
WebWorks ePublisher Platform components provide a workflow that ensures you
can deliver your content, your way, every time. A successful online content delivery
workflow includes the following items:

Creation and automation of consistent, reusable online content designs

Packaging of online content designs for seamless, consistent reuse

Application of online content designs to new and existing projects to ensure
consistent content delivery and deployment

ePublisher supports this workflow by allowing ePublisher users to perform the
following tasks:

Stationery designers use ePublisher Designer to create and manage online
content designs, then package the designs into Stationery for writers to use

Writers use ePublisher Express and Stationery to create and deploy consistent
online content

ePublisher AutoMap can be configured to automatically generate and deploy
online content

For more information about the WebWorks ePublisher Platform components that
support this workflow, see “WebWorks ePublisher Platform Components”. For more
information about the ePublisher workflow, see “Understanding the ePublisher
Workflow”.

WebWorks ePublisher Platform
Components
With ePublisher, you can write your content in your preferred authoring tools, then
use ePublisher components to design and deliver your content. The ePublisher
components allow you to design all the content output formats you need, and
then automate the publication process and integrate it with your company-wide
processes, such as product builds and Web site updates.

ePublisher includes the following components:

ePublisher Designer

24 | WebWorks ePublisher Plaorm Components

The design tool for creating and designing Stationery. Stationery defines
the appearance and functionality of all the output formats you need.
ePublisher provides several default formats that you can use as a basis for
your Stationery, and then you can customize that standard and save it as
your Stationery for your deliverables produced using the other ePublisher
components.

ePublisher Express

The on-demand publishing tool that transforms your content based on your
Stationery and converts your source documents into the desired output
formats. This component is installed on the desktop and integrates with
your existing authoring tools to support the features you require, such as
related topics and expand/collapse sections within your deliverable. With this
component, you can quickly prepare your source documents and generate
your final deliverables.

ePublisher AutoMap

The automation tool that enables you to automate the content conversion
process, batch processing, and integration with content management or
version control systems. This component lets you schedule conversion
projects to occur at times when you are not using your computer. For
example, you can schedule the conversion to occur overnight. Then, when
you arrive the next morning, your transformed content is ready for you.
You can also automatically generate and deploy deliverables to meet your
specific needs, such as updating Web site content based on updated source
documents.

ePublisher Legacy Formats

Supports projects that use output format versions of ePublisher that are no
longer supported. These are available in a separate installer. Contact support
for details.

Supported Input Formats
ePublisher provides a single-sourcing environment that works with the following
input formats.

Markdown++

Adobe FrameMaker

Microsoft Word

DITA XML Files

Supported Input Formats | 25

Supported Output Formats
ePublisher lets you define your output formats, such as XHTML and WebWorks
Help, so content developers can focus on developing quality content without
worrying about tedious conversion requirements for various deliverables. You
can manage your content as you want and produce deliverables in the following
formats:

WebWorks Reverb 2.0

WebWorks Reverb

WebWorks Help 5.0

Dynamic HTML

Microsoft HTML Help

Eclipse Help

Sun JavaHelp 2.0

Oracle Help

PDF

PDF - XSL-FO

eBook - ePUB 2.0

XML+XSL

How ePublisher Helps You
With ePublisher and its agile enterprise publishing capabilities, you have
unparalleled design flexibility with the ability to deliver your information, regardless
of input format, in multiple output formats. This solution enables both large and
small organizations to implement the publishing environment that works best for
them.

Streamline and Automate the Content
Publishing Process
In a traditional content authoring environment, a content author produces content
designed for a single output format. This environment typically has the following
limitations:

26 | Streamline and Automate the Content Publishing Process

Content is often duplicated across multiple content-producing teams.

Content is not maintained consistently across the multiple teams.

Production is expensive with multiple tools and technologies.

Using ePublisher, you can quickly publish content from your source documents. You
can develop the content using your preferred content authoring environment, such
as Markdown++, Microsoft Word, Adobe FrameMaker, or DITA. You do not have to
spend time and resources learning how to format content for each and every output
format in which your content will be delivered. You can focus on the content, and
then use your Stationery to quickly and easily deliver information in the multiple
formats that meet the requirements for your organization.

ePublisher reduces wasted time and expenses that occur when multiple groups in
your organization unknowingly produce the same information at the same time.
This publishing environment allows your organization to produce content one time.
This content can then be shared in varying input formats across your organization.

Produce High Quality Deliverables with
Fewer Individual Dependencies
Instead of requiring team members to understand the entire process to produce
content in multiple formats, team members can focus on their areas of expertise.
Content developers can create informative content to add value to the products and
services they document. You can also expand the skills of individual team members
into important new areas, which strengthens your team as a whole.

ePublisher lets you concentrate on producing high-quality content within the
authoring environment that works for you. You spend much less time on designing,
implementing, and delivering multiple output formats. With ePublisher, you quickly
generate complete, ready-to-deploy publications.

ePublisher also allows you to preview, proof, and review your content before you
publish and deploy it. The comprehensive reports and on-demand reporting help
you identify and correct any issues that may effect your online content, such as
invalid styles, missing links, and compliance with Web accessibility standards. In
this way, ePublisher ensures that the content you produce is of the highest quality
and consistency.

Reduce Support Costs and Increase
Customer Satisfaction
When you consider the many steps content goes through to get from the content
developer to its final destination, publishing content can be a tedious, costly

Reduce Support Costs and Increase Customer Sasfacon | 27

process. When an organization does not commit its attention and resources to
product information, the negative results impact many aspects of the business.

Customers want to find their solution by reading as little as possible. Consistent
content helps customers skim the content and find the information they need.
The time content developers spend formatting content for various output formats
reduces the time they have to review and improve the content. Customers
can become frustrated when they spend time sorting through inconsistent and
potentially inaccurate or incomplete information.

Frustrated customers quickly give up and contact customer support, often with a
negative impression of the company. Increased customer support calls, especially
for basic concepts and product usage, can waste valuable company resources.

ePublisher provides a workflow designed to make the publishing process as
non-intrusive as possible. By allowing you to choose your preferred authoring
environment and having role-focused software components, training time and
production costs are reduced. The published content is consistent and delivers more
value to your customers.

Quickly Update and Deliver Content More
Often
If your style or online content requirements change in your organization, you need
to make changes throughout your content to implement these new requirements.
Extended production times increase the difficulty and complexity of these changes.
ePublisher streamlines the production process to enable you to quickly implement
and deploy updated content. With these streamlined processes in place, you can
deliver updated content more often.

ePublisher allows you to define and deploy centralized Stationery that all projects
use. When corporate standards change, such as logos and branding, you can
quickly update the Stationery to incorporate the new standards. Then, content
developers can import the updated Stationery into their projects and publish their
updated deliverables using the new standards without changing or redesigning their
source documents.

Reduce Content Management Life Cycle
Costs
Due to the limitations of the traditional content model, many organizations want
to move to a single-sourcing environment. Single sourcing allows the same
content to be used multiple times and delivered in different formats. Organizations
use single sourcing to eliminate duplicate content, reduce content translation and
maintenance costs, improve content consistency, and minimize errors. Single
sourcing also allows organizations to produce information in various formats using
the same source.

28 | Reduce Content Management Life Cycle Costs

Many single-sourcing solutions require all content authors to use the same
authoring tool. ePublisher allows you to develop the content using your preferred
content authoring environments, such as Markdown++, Microsoft Word, Adobe
FrameMaker, or DITA. Each department can standardize on the authoring tool that
is right for them, and ePublisher ties all the input formats together with a single,
unified, reliable publishing process. ePublisher allows you to create integrated
deliverables with source documents from multiple authoring tools.

With ePublisher, you can use your existing authoring tools and content management
systems to meet organization-wide publishing needs without incurring training or
software deployment expenses. The open architecture, based on industry-standard
XSL, provides a flexible solution that you can customize to meet your needs without
locking you into a proprietary format that could result in expensive future migration
costs.

How Organizations Use ePublisher
Companies use ePublisher to meet many of their content development, delivery,
and maintenance needs:

Update Web sites automatically with thousands of HTML pages every day

Merge content across functional boundaries and deliver consistent content on
corporate intranets and extranets

Deliver integrated, context-sensitive help systems with products

Single-source and deliver content in online and print formats

Deploy content for multiple platforms and devices

The following sections highlight several ways you can use ePublisher to deliver
consistent, comprehensive information.

Automatically Update Content on Web Sites
Corporate Web sites have evolved into far more than just flashy advertising with
contact information for your business. In addition to attention grabbing marketing
about products and features, many company Web sites feature tutorials, product
demos, specific product requirements and details, and Web 2.0 resources such as
community forums where customers can share information.

With ePublisher, you can consistently update the content on your Web site to
maintain the latest information and make sure it is available to your customers.
You can schedule and automate content processing and deployment to deliver up to
date information each and every day.

Automacally Update Content on Web Sites | 29

ePublisher also allows you to easily maintain corporate intranets and publish source
documents from multiple organizations across your company. You can define
a standard Stationery and templates for teams to use. You can then define an
ePublisher job and schedule it to search a drop-box folder on a regular basis and
publish the content from the source documents in that folder using your standard
Stationery. This scenario ensures your team members have the latest information
they need and reduces the expenses associated with publishing and maintaining
this content on your intranet.

Deliver Full-Featured, Context-Sensitive
Help Systems
Products need to provide comprehensive help systems that meet the needs of many
potential audiences. Content design and delivery must ensure that users get the
information they need when, where, and how they need it. Some products need to
deliver different content to different audiences. Other products are sold by multiple
companies and require distinct product branding.

ePublisher provides comprehensive support for many advanced features used in
online content design and delivery, including the following elements:

Customizable browse navigation and breadcrumbs

Customizable table of contents and mini-TOCs

Expandable/collapsible text sections

Related topics

Images, image maps, and multiple forms of multimedia

Context-sensitive help topics

Merged help systems (multi-volume help)

Variables and conditions

Includes (one source file includes another)

Accessibility features, such as alternate text and long descriptions

Field-level help

Produce Single-Sourced Print and Online
Optimized Content

30 | Produce Single-Sourced Print and Online Opmized Content

Customers have different needs and expectations for product content. In many
cases, producing information in multiple formats for users involves extensive
conversion and customization work to develop and deliver the various formats.
Content authors must shift their attention to manipulating and converting the
content into the many different user formats, often for both print and online,
instead of focusing their time and efforts on developing quality information for
users.

With ePublisher, you can quickly and efficiently produce consistent, effective print
and online content in multiple formats. ePublisher provides XML/XSL processing and
intelligent caching to process your source documents faster than ever before.

ePublisher produces the formatting code for you, whether it is HTML, XML,
Formatting Objects (PDF generation), or a completely custom format. You do not
need to know how to tag files for various output formats. With ePublisher, content
developers can produce a printable PDF manual and a comprehensive online help
deliverable immediately after finishing their content using the Stationery defined
separately from their content.

Produce Single-Sourced Print and Online Opmized Content | 31

Planning and Installing ePublisher
Licensing Considerations
Components and Supported Configurations
Requirements
Downloading ePublisher Installers
Microsoft Windows Requirements
Downloading and Installing the Microsoft .NET 4.7.2 Framework
Installing ePublisher
Working with Contract IDs
Upgrading from Previous Versions
Uninstalling ePublisher
Troubleshooting Installation, License Keys, and Uninstallation

This section helps you plan your ePublisher installation and install ePublisher
components. This section provides information about ePublisher components and
supported configurations and ePublisher requirements. This section also explains
how to download and install ePublisher components, use your contract identifier
(Contract ID), work with license keys, upgrade ePublisher, and troubleshoot
installation and licensing issues.Windows

Licensing Considerations
Before you can generate output using ePublisher, you must have a valid Contract
ID. ePublisher uses your Contract ID to automatically handle the licensing of all
ePublisher components and features. You Contract ID is valid for your ePublisher
use. Your contact ID may also be valid for other users, as long as the other users
were included in the contract associated with the contract ID at the time ePublisher
was purchased or the other users have been added to the same contract.

Currently ePublisher is licensed based on component and source document input
format. ePublisher components include ePublisher Express, ePublisher Designer,
and ePublisher AutoMap. ePublisher input formats include Adobe FrameMaker,
Microsoft Word, and DITA-XML. Based on the input format of the files you use
to author content, you may have access to one or more input formats. For more
information about each ePublisher component, see “WebWorks ePublisher Platform
Components”. For more information about Contract IDs, see “Working with Contract
IDs”.

Components and Supported
Configurations
Stationery designers must install ePublisher Designer and ePublisher Express on
their computers. Stationery designers use ePublisher Designer to design Stationery
and ePublisher Express to test Stationery.

32 | Components and Supported Configuraons

Writers install ePublisher Express on their computers. Writers use ePublisher
Express to generate output using Stationery created by a Stationery designer.

If you want to use AutoMap to automate output generation and integrate your
output generation with content management or version control systems, install
ePublisher AutoMap and ePublisher Express on the computer where you want to
use ePublisher AutoMap. ePublisher AutoMap requires ePublisher Express. You
can install ePublisher AutoMap on its own separate computer, or you can install
ePublisher AutoMap on a Stationery designer or writer computer where ePublisher
Express is already installed.

The following figure shows a sample ePublisher configuration.

Requirements
This section lists requirements for ePublisher components and input and output
formats.

ePublisher Express, ePublisher Designer,
and ePublisher AutoMap Requirements
The following table lists the minimum and recommended system requirements for
ePublisher Express, ePublisher Designer, and ePublisher AutoMap.

Note: Memory requirements can vary with the size of the job, including number
of files to generate, size of each file, number of images and tables, and
more. Generally, performance increases with available memory. The following
values provide good performance for an average job.

ePublisher Express, ePublisher Designer, and ePublisher AutoMap Requirements | 33

 Minimum Recommended

Processor Intel i3 3.0 GHz Xeon Dual Core

Memory 1 GB RAM 16 GB RAM

Available Disk Space 1 GB available hard disk
space

2 GB available hard disk
space

Operating System Microsoft Windows 10 Microsoft Windows 10
or 11

ePublisher AutoMap
is also supported on
Windows Server 2012 -
2022.

Additional Software Java 11+

Ghostscript (installed
from Internet if
missing, more info at:
www.ghostscript.com)

Microsoft .NET
Framework 4.7.2
(installed from Internet
if missing)

Java 17 LTS (installed
from Internet if
missing)

Ghostscript (installed
from Internet if
missing, more info at:
www.ghostscript.com)

Microsoft .NET
Framework 4.7.2
(installed from Internet
if missing)

Display 800 x 600 display screen
resolution

1280 x 1024 display
screen resolution (dual
monitors supported)

Additional Source Document Requirements
The following table lists the minimum and recommended system requirements for
and Markdown++, Adobe FrameMaker, Microsoft Word, DITA Open Toolkit.

34 | Addional Source Document Requirements

https://github.com/ArtifexSoftware/ghostpdl-downloads/releases
https://github.com/ArtifexSoftware/ghostpdl-downloads/releases

Input Format Minimum Recommended

Markdown++ N/A N/A

Adobe FrameMaker FrameMaker 2017 FrameMaker 2022

Microsoft Word Word 2013 Word 2021

DITA Open Toolkit Oracle JRE or JDK (Java),
version 11+

Oracle JDK (or
compatible), version 17
LTS

For additional information, please refer to the following page for up-to-
date input requirements: https://www.webworks.com/Support/ePublisher/
System_Requirements/

Additional Output Format Requirements
You can use ePublisher to produce output in several different formats. This section
provides output format requirements for each output format ePublisher supports.

WebWorks Reverb 2.0
WebWorks Reverb 2.0 can now be viewed directly from your computer’s file system
or from a running web server. This means that you can use this format to deliver
online help as part of a non-networked help system. However, in order to provide
Reverb’s social-media capabilities (i.e. commenting, likes) to your end-users you
must deploy the output to a system that is running a web server. Then your end-
users must access the content via an http or https url. If you do not have a
web server, you can configure IIS on Windows or any other available web server
software. For more information on IIS, consult the following resource.

When you are using ePublisher to generate WebWorks Reverb, ePublisher includes a
viewer that you can use on the computer where you installed ePublisher to view the
WebWorks Reverb output you generated using ePublisher.

Configuring web server for Reverb

If deploying Reverb output to a public web server that has X-FRAME-OPTIONS
configured, make sure that for HTML pages this header is not configured as follows:
X-Frame-Options: DENY

Configuring web server for Reverb | 35

https://www.webworks.com/Support/ePublisher/System_Requirements/
https://www.webworks.com/Support/ePublisher/System_Requirements/
http://wiki.webworks.com/Permalinks/Solutions/Output/WebWorksReverb/ConfiguringIIS

Instead it should be configured as:
X-Frame-Options: SAMEORIGIN

Reverb browser requirements

WebWorks Reverb has been tested on the following platforms:

Internet Explorer 10+

Note: Internet Explorer has been discontinued by Microsoft

Microsoft Edge

Mozilla Firefox

Safari

Chromium browsers (Brave, Google Chrome, etc.)

Local Deployment Limitations

Google Translate and Disqus Commenting are not functional when content
is deployed locally (i.e. not hosted on a web server). However, all other
capabilities of the help system will still be functional.

Web Server Deployment Requirements

End users are not required to enable DOM storage. However, if not enabled,
the Thumbs Up, Thumbs Down features will not record analytic events.

WebWorks Reverb 1.0 Limitation
WebWorks Reverb 1.0 is the predecessor version of Reverb and requires that you
deploy your output to a web server (not directly from your computer’s file system).

When you are using ePublisher to generate WebWorks Reverb 1.0, ePublisher
includes a viewer that you can use on the computer where you installed ePublisher
to view the output you generated using ePublisher.

Dynamic HTML
To view Dynamic HTML, users must have a browser that supports HTML 4.0
installed. HTML 4.0 was published in late 1997, and the major browsers, such as
Internet Explorer, Firefox, and Safari support HTML 4.0. For more information about
the HTML version a browser supports, see the documentation for the browser. If
you choose to implement online features that require JavaScript, such as popups,
users may also need JavaScript enabled. Most browsers have JavaScript enabled by
default.

36 | Dynamic HTML

PDF -XSL-FO
For generating PDF output, the PDF - XSL-FO output format is the best choice if
you want to have complete control of your output’s styling using ePublisher. If you
are using Adobe FrameMaker or Microsoft Word, you can consider using the PDF
output format, which relies upon the print engine of those authoring environments
for styling.

To generate PDF - XSL-FO files, you must have the Java2 Platform SDK version
1.2.2 or later installed. You can download the Java2 Platform SDK for free from the
Sun Microsystems Web site at http://java.sun.com/javase/index.jsp.

Note: Make sure to use Java version 8, 64-bit, if possible.

eBook - ePUB 2.0
To generate output in this format, there are no external tools required. However,
you will need a compatible ePUB reader in order to view the generated output.
For development purposes, it is common practice to use an ePUB reader on your
computer desktop, for example, you can use Adobe Digital Editions available at:
https://www.adobe.com/solutions/ebook/digital-editions.html.

Eclipse Help
To generate Eclipse Help, you must have the Java2 Platform SDK version 1.2.2 or
later installed. You can download the Java2 Platform SDK for free from the Sun
Microsystems Web site at http://java.sun.com/javase/index.jsp.

If you are using ePublisher to generate Eclipse Help, ePublisher includes a viewer
that you can use on the computer where you installed ePublisher to view the Eclipse
Help you generated using ePublisher.

To view Eclipse Help when you include Eclipse Help with an application, users must
have the Eclipse integrated development environment (IDE) installed. Typically,
application developers configure their applications to install the Eclipse IDE with
the Eclipse Help content to ensure users can view the Eclipse Help while using the
application. To view Eclipse Help, users must also have Microsoft Internet Explorer
6.0 or later or a Mozilla-based browser 1.7 or later installed.

Microsoft HTML Help 1.x
To generate Microsoft HTML Help, you must have Microsoft HTML Help Workshop 1.x
installed. If you do not have Microsoft HTML Help Workshop installed, ePublisher will
ask you if you want to install Microsoft HTML Help Workshop during the ePublisher
installation process. You can also download the Microsoft HTML Help Workshop for
free from the Microsoft Developer Network Web site at http://msdn.microsoft.com/
en-us/library/ms669985.aspx.

Microso HTML Help 1.x | 37

http://java.sun.com/javase/index.jsp
https://www.adobe.com/solutions/ebook/digital-editions.html
http://java.sun.com/javase/index.jsp
http://msdn.microsoft.com/en-us/library/ms669985.aspx
http://msdn.microsoft.com/en-us/library/ms669985.aspx

To view Microsoft HTML Help, users must have the Microsoft HTML Help viewer
installed. The Microsoft HTML Help viewer is installed with most Windows operating
systems in use today. Users must also have Internet Explorer 4.0 or later installed.
Microsoft HTML Help does not require that users use Internet Explorer as their
default browser. Microsoft

Note: Due to the legacy nature of this help run time, if you are generating your
help from a networked location, you must map your help drive to a mapped
letter such as z:\. UNC drives such as \\server.example.com\directory will not
work as output locations for this help format. For more information on this
issue, please refer to Microsoft’s Support website and search for your version
of Windows.

Oracle Help
To generate Oracle Help, you must have the Java2 Platform SDK version 1.2.2 or
later installed on your computer. You can download the Java2 Platform SDK for free
from the Sun Microsystems Web site at http://java.sun.com/javase/index.jsp. The
Java 2 Platform is also known as the Java Platform, Standard Edition (Java SE).

To view Oracle Help, users must have the Java Runtime Environment (JRE) installed
on their computer. Typically application developers configure their applications to
install the JRE with the Oracle Help content to ensure users can view the Oracle
Help while using the application. Oracle Help components must be installed and
viewed on the local computer.

PDF
Most modern browsers such as Chrome and Microsoft Edge have the ability to read
PDF files by default, though the user may also install Adobe Reader if a desktop
application is needed. You can download Adobe Reader for free from the Adobe Web
Site at http://www.adobe.com/products/acrobat/readstep2_allversions.html.

Sun JavaHelp 2.0
To generate Sun JavaHelp 2.0, you must have the Java2 Platform SDK version 1.2.2
or later installed on your computer. You can download the Java2 Platform SDK for
free from the Sun Microsystems Web site at http://java.sun.com/javase/index.jsp.
The Java 2 Platform is also known as the Java Platform, Standard Edition (Java SE).

To view Sun JavaHelp, users must have the Java Runtime Environment (JRE)
installed on their computer. Typically, application developers configure their
applications to install the JRE with the Sun JavaHelp content to ensure users can
view the Sun JavaHelp while using the application. Sun JavaHelp components must
be installed and viewed on the local computer.

WebWorks Help 5.0

38 | WebWorks Help 5.0

http://support.microsoft.com/
http://java.sun.com/javase/index.jsp
http://www.adobe.com/products/acrobat/readstep2_allversions.html
http://java.sun.com/javase/index.jsp

To view WebWorks Help, users must have JavaScript enabled in the browser. If
JavaScript is not enabled, then the help system does not display in its entirety. For
more information about determining whether JavaScript is enabled in your browser,
see your browser options.

WebWorks Help has been tested on the following platforms:

Note: Due to modern browser security constraints, WebWorks Help 5.0, does
not support local file system deployments (i.e. file:// URLs).

Microsoft Internet Explorer

Note: Internet Explorer has been discontinued by Microsoft.

Microsoft Edge

Mozilla Firefox

Safari

Chromium browsers (such as Brave, Google Chrome)

Opera

Please refer to the WebWorks wiki for an up-to-date list of supported browsers:
http://wiki.webworks.com/Permalinks/BrowserSupport

Downloading ePublisher Installers
ePublisher installers are available for download as .exe files on a secure area on
the WebWorks Web site. You can obtain ePublisher installers through one of the
following methods:

If you are evaluating ePublisher, the WebWorks customer service team
will send you an email that contains a link to the location where you can
download the ePublisher installer.

If you are a new ePublisher customer, the WebWorks customer service
team will send you an email that contains a link to the location where you can
download the ePublisher installer when you purchase ePublisher.

If you are an existing ePublisher customer with an active
maintenance agreement, the WebWorks customer service team will
automatically send you an email that contains a link to the location where you
can download the ePublisher installer each time a new version of ePublisher
releases. If you have a My Cases login for the WebWorks technical support
Web site, you can also obtain the ePublisher installer in the My Cases area
when you log in to the WebWorks technical support site.

Downloading ePublisher Installers | 39

http://wiki.webworks.com/Permalinks/BrowserSupport

If you are an existing ePublisher customer without an active
maintenance agreement, contact the WebWorks account management
team for more information.

The link you receive to the download location for the ePublisher installer is typically
active for only one to two weeks. ePublisher installer download locations are
changed often for security reasons. If you need the latest link to an ePublisher
download kit, you can request a link by submitting a support request on the
WebWorks Web site at http://www.webworks.com/Support/. WebWorks technical
support will verify that you purchased an ePublisher license for the requested
component and then provide a link where you can download the requested installer.

To download an ePublisher installer

1. Click the download link in the email from WebWorks.

2. On the WebWorks download page, click the link for the ePublisher component
you want to install.

3. Click Save.

4. Browse to a location on your local computer where you want to save the
installer, and then click Save.

5. Click Close when the download completes.

6. Browse to the location on your local computer where you saved the .exe file
for the ePublisher component.

7. Run the .exe file.

Microsoft Windows Requirements
ePublisher Requirements for running on Microsoft Windows.

Downloading and Installing the
Microsoft .NET 4.7.2 Framework
ePublisher components require the Microsoft .NET 4.7.2 Framework.

Note: The ePublisher Express installer will handle the download and installation of
this component if it is not present on the user’s machine. If the user cannot
connect to the Internet while installing, then this component will need to be
downloaded and installed manually before proceeding with the ePublisher
Express installation. This component can be found for free at: https://
dotnet.microsoft.com/download/dotnet-framework/net472 .

40 | Downloading and Installing the Microso .NET 4.7.2 Framework

http://www.webworks.com/Support/

In any case, after the installation of the Microsoft .NET 4.7.2, the user may need to
restart the computer before installing ePublisher Express.

Installing ePublisher
This section explains how to install ePublisher components. Read this section before
you install ePublisher components.

Installation Order for ePublisher
Components
Ensure you install ePublisher components in the correct order. Review the following
installation options before you install ePublisher components:

If you want to generate output using Stationery created by a
Stationery designer, install only ePublisher Express on the computer.

If you want to design Stationery and generate output, install ePublisher
Express and ePublisher Designer on the computer.

Note: ePublisher Designer requires ePublisher Express. Ensure you install
ePublisher Express on the computer before you install ePublisher
Designer.

If you want to schedule and automate output generation, install
ePublisher Express and ePublisher AutoMap on the computer where you want
to use ePublisher AutoMap.

ePublisher AutoMap requires ePublisher Express. Ensure you install ePublisher
Express on the computer before you install ePublisher AutoMap. You can
install ePublisher AutoMap using one of the following configurations:

On its own separate computer where ePublisher Express is already
installed

On a Stationery design computer where ePublisher Express and
ePublisher Designer are already installed

On a writer computer where ePublisher Express is already installed

Installing ePublisher Components
This section provides instructions for installing ePublisher components, including
ePublisher Express, ePublisher Designer, and ePublisher AutoMap.

Installing ePublisher Components | 41

Note: You must install ePublisher Express first. Then, you can install ePublisher
Designer and ePublisher AutoMap. Both ePublisher Designer and ePublisher
AutoMap require ePublisher Express.

If you are upgrading from a previous version of ePublisher, review the
upgrade instructions. For more information, see “Upgrading from Previous
Versions”.

To install ePublisher components

1. Log on as a user using an account that is a member of the Administrators
group on the local computer.

2. Close all instances of Microsoft Office applications running on the local
computer, including instances of Microsoft Word and Microsoft Outlook. Close
all instances of Adobe FrameMaker running on the computer.

3. Run the WebWorks ePublisher <Product> (<32|64>-
bit).<Version>.<Build_Number>.exe file for the ePublisher component you
want to install.

4. Review the welcome message, and then click Next.

5. Review the license agreement. If you agree to the terms of the agreement,
click I Agree.

6. Select the application shortcuts you want to create, and then click Next.

7. Specify the location of the installation directory, and then click Next. The
default installation directory is C:\Program Files (x86)\WebWorks or C:
\Program Files\WebWorks .

8. Click Next to confirm your selections and to begin installing the ePublisher
component.

9. In the WebWorks Licensing Info window, complete the following steps:

a. Enter your Contract ID. If you previously installed ePublisher on the
computer using a valid Contract ID, ePublisher will automatically
detect the Contract ID and display your Contract ID information. For
more information about contract IDs and obtaining a Contract ID, see
“Working with Contract IDs” “Obtaining Contract IDs”.

b. Enter your email address. If you have an email address that you use as
your WebWorks support login, enter that email address.

c. Enter the name of your computer.

d. Click Confirm.

42 | Installing ePublisher Components

10. If the installer displays the HTML Help Workshop 1.3 Setup window,
you can install Microsoft HTML Help Workshop 1.3 as part of your ePublisher
installation. Install Microsoft HTML Help Workshop if you plan to generate
Microsoft HTML Help output.

If you want to install Microsoft HTML Help Workshop 1.3, click
Yes, and then follow the instructions to install Microsoft HTML Help
Workshop.

If you do not want to install Microsoft HTML Help Workshop 1.3,
click No.

11. Click Close when the installation completes. ePublisher also opens a new
browser window and displays a page on the www.webworks.com web site
when the installation completes.

Installing Ghostscript
Beginning with the 2019.2 release of ePublisher, the Ghostscript postscript
processing tool will no longer be bundled with the ePublisher Express installer.
Instead, the ePublisher Express installer attempts to detect if Ghostscript is already
installed and if not, will attempt to automatically download and install it. If the
installer is unable to install Ghostscript, then you can follow the steps below to
manually install it on your system.

Ghostscript can be installed either before or after you install ePublisher. However,
if you run conversions that require postscript processing, ePublisher will generate
error messages in its generation log and the output may be missing image files.

To download and install Ghostscript

1. Access the Ghostscript download page at: https://github.com/ArtifexSoftware/
ghostpdl-downloads/releases.

2. Click on the link labeled gs<VERSION>w64.exe or gs<VERSION>w32.exe
depending on if you are using the 64-bit or 32-bit version of ePublisher. For
example: gs9550w64.exe for the 64-bit version of ePublisher.

3. Run the installer, it should have a filename similar to: gs9550w64.exe .

4. Check Generate cidfmap for Windows CJK TrueType fonts.

5. If ePublisher was running, make sure to restart it before continuing to use it.

Ghostscript not Installed Warnings
If Ghostscript is not installed ePublisher will generate warnings of the following
form:

Ghostscript not Installed Warnings | 43

https://github.com/ArtifexSoftware/ghostpdl-downloads/releases
https://github.com/ArtifexSoftware/ghostpdl-downloads/releases

[Warning] Attempt to render PostScript to 'jpeg' returned
 'Unable to load DLL 'gsdll32.dll': The specified module
 could not be found. (Exception from HRESULT: 0x8007007E) at
 Pelagon.GhostScript.gsapi_new_instance(IntPtr& pInstance, IntPtr
 pCallerHandle)

Once Ghostscript is installed, restart ePublisher and generate the project again.

Configuring AutoMap for Microsoft Source
Document Inputs
When installing ePublisher AutoMap and if publishing Microsoft Word documents, it
may be necessary to configure the DCOM Login Identify for the Microsoft Word
97 - 2003 Document configuration. Depending on how you or your team will be
running ePublisher AutoMap the user account that Microsoft Word will be launched
as should be set accordingly.

To configure the DCOM account Identify of Microsoft Word

1. If working with a 32-bit version of Microsoft Word, from the Start
menu, type: mmc comexp.msc /32

2. If working with a 64-bit version of Microsoft Word, from the Start
menu, type: mmc comexp.msc

3. In the Component Services dialog, select Component Services >
Computers > My Computer > DCOM Config.

4. Underneath DCOM Config, right-click Microsoft Word 97 - 2003
Document and select Properties.

44 | Configuring AutoMap for Microso Source Document Inputs

5. In the Microsoft Word 97 - 2003 Document Properties dialog, select the
Identity tab, then specify the user account to use to run Microsoft Word,
which may or may not be a specific user depending on how you are planning
to use ePublisher AutoMap.

Configuring AutoMap for Microso Source Document Inputs | 45

Understanding Installed Sample Projects
and Stationery
ePublisher Express and ePublisher Designer install sample projects and Stationery.
You can use these sample projects and Stationery to see some examples of how
you can use ePublisher to generate output. For more information about using
these sample projects and Stationery to generate output, see “Customizing Your
ePublisher Workspace”.

Working with Contract IDs
ePublisher no longer requires you to manually enter license keys. ePublisher now
uses Contract IDs to enable product functionality, which simplifies the ePublisher
licensing process.

46 | Working with Contract IDs

A Contract ID is a unique identifier that identifies the number of users and type
of functionality enabled for your ePublisher installation. WebWorks generates
an appropriate Contract ID for your ePublisher installation when you purchase
ePublisher or request an evaluation copy of ePublisher. A Contract ID enables
functionality based on the items and time frame specified in the purchase contract
between your company and WebWorks.

If you have a valid contract ID for one version of the ePublisher product, when a
new version of ePublisher releases, you can continue to use your same Contract
ID when you upgrade to the new version of the product. You can also continue to
use your same Contract ID if you have to uninstall and then re-install a version of
ePublisher.

ePublisher licensing is flexible, and the WebWorks team can work with
you ensure that you have the licensing that is right for you. Contact
WebWorks Sales at sales@webworks.com or WebWorks Customer Service at
customerservice@webworks.com to discuss any special licensing needs you may
have.

Viewing Licensing and Contract ID
Information
You can view licensing information in the License Information window in ePublisher.
ePublisher uses adapter license keys, or activation codes, to enable ePublisher
functionality. Adapter licensing information is specified in your Contract ID.
ePublisher uses an Internet connection to connect to the ePublisher licensing server
and periodically retrieve and update adapter activation codes as needed based on
your Contract ID.

Note: If you need to install ePublisher in an environment without Internet
connectivity, WebWorks can provide Contract IDs that support this
environment. For more information, see “Managing Licensing in Environments
without Internet Connectivity”.

ePublisher licenses, or activation codes, do not display in the ePublisher user
interface, but you can view the adapters for which you are licensed and your
Contract ID number in the ePublisher user interface.

To view ePublisher licensing and Contract ID information

1. On the Help menu, click License Keys. ePublisher displays the input formats
for which the component is licensed in the License Information window.

2. If you want to view your Contract ID number, click Register.

Obtaining Contract IDs

Obtaining Contract IDs | 47

mailto:sales@webworks.com
mailto:customerservice@webworks.com

ePublisher now uses Contract IDs instead of license keys to enable ePublisher
functionality.

If you are evaluating ePublisher, the WebWorks customer service team will
send you an email that contains a Contract ID you can use when you install an
evaluation copy of ePublisher. If you have not received an evaluation Contract
ID or are having problems with your evaluation license, send an email to
customerservice@webworks.com.

If you are a new ePublisher customer, the WebWorks customer service
team will send you an email that contains your Contract ID when you purchase
ePublisher. If you have not received a Contract ID or are having problems with your
licensing, send an email to customerservice@webworks.com.

If you are an existing ePublisher customer with an active maintenance
agreement, the WebWorks customer service team will automatically send you an
email that contains a link to the location where you can download the ePublisher
installer. ePublisher will automatically detect and use your existing Contract ID
each time you install a new version of the ePublisher product. If you have not
received a Contract ID or are having problems with licensing, send an email to
customerservice@webworks.com or submit a support request.

If you are an existing ePublisher customer without an active maintenance
agreement, contact the WebWorks account management team for more
information about obtaining your Contract ID by sending an email to
sales@webworks.com.

For more information about Contract IDs, see “Working with Contract IDs” and
“Entering Contract IDs”.

Entering Contract IDs
ePublisher now uses Contract IDs instead of license keys to enable ePublisher
functionality. You must enter your Contract ID, email address, and computer name
before you can use ePublisher components. The Contract ID enables the ePublisher
product components and ePublisher input formats for which you are licensed. For
more information about Contract IDs, see “Working with Contract IDs”.

To enter a Contract ID

1. On the Help menu, click License Keys. ePublisher displays the input formats
for which the component is licensed in the License Information window.

2. Click Register.

3. In the Contract field, enter your Contract ID.

48 | Entering Contract IDs

mailto:customerservice@webworks.com
mailto:customerservice@webworks.com
mailto:customerservice@webworks.com
mailto:sales@webworks.com

4. In the Email field, enter your email address. If you have an email address
that you use as your WebWorks support login, enter that email address.

5. In the Computer Name field, enter the name of the computer where you are
installing ePublisher.

6. Click Confirm.

Managing Licensing in Environments
without Internet Connectivity
ePublisher uses an Internet connection to connect to the ePublisher
licensing server and retrieve or update adapter activation codes as needed
based on your Contract ID. If you need to install ePublisher in a restricted
environment where ePublisher computers do not have Internet access, contact
WebWorks Sales at sales@webworks.com or WebWorks Customer Service at
customerservice@webworks.com to request a non-network Contract ID. The
ePublisher licensing model is flexible, and WebWorks can work with you to provide
non-network Contract IDs or other licensing solutions appropriate for your
environment.

Updating Licensing
ePublisher automatically contacts the ePublisher licensing server as needed to
obtain updated activation codes. ePublisher communicates with the ePublisher
licensing server using an Internet connection. ePublisher obtains updated activation
codes as appropriate based on the licensing specified in your Contract ID.

Note: If your ePublisher is installed in an environment without Internet
connectivity, WebWorks can provide Contract IDs that support this
environment. For more information, see “Managing Licensing in Environments
without Internet Connectivity”

Typically, you will not need to request updated activation codes, as ePublisher
obtains updated codes for your automatically. However, you can manually request
updated activations codes in the ePublisher interface. For example, you may want
to manually request updated activation codes if you know that the computer where
you installed ePublisher will not have Internet access for a long period of time.
When you request updated activations codes in the ePublisher interface, ePublisher
immediately establishes an Internet connection to the ePublisher licensing server
and automatically obtains updated activation codes for the ePublisher adapters for
which you are licensed.

To update ePublisher licensing

1. On the Help menu, click License Keys. ePublisher displays the input formats
for which the component is licensed in the License Information window.

Updang Licensing | 49

mailto:sales@webworks.com
mailto:customerservice@webworks.com

2. Click Refresh keys. ePublisher retrieves updated activation codes from the
ePublisher licensing server.

Deactivating Licensing
You can deactivate ePublisher licensing in the ePublisher user interface.
Deactivating licensing for the current ePublisher installation allows you to install
ePublisher on a different computer without affecting the number of available seats
allowed by your contract.

Note: The terms of the ePublisher end-user license agreement (EULA) allow you to
install ePublisher Express or ePublisher Designer on one office computer and
on one home or travelling computer for each assigned ePublisher user seat.
ePublisher AutoMap licensing terms can vary based on whether ePublisher
AutoMap was purchased on a per writer or per server basis, or in conjunction
with a Content Management System (CMS).

To deactivate ePublisher licensing:

1. On the Help menu, click License Keys.

2. Click Unregister.

Upgrading from Previous Versions
In most cases, upgrading from a previous version to a new version of ePublisher
can be accomplished in just a few steps. This section explains how to prepare for an
upgrade, how to upgrade a typical ePublisher installation, and how to upgrade an
ePublisher implementation with advanced customizations.

Updating ePublisher installation
Note: If you are transitioning from 32-bit ePublisher to 64-bit ePublisher or vice-

versa, be sure to use the installer from the older product or Windows’
Add/Remove Programs to Uninstall the previous version of ePublisher
before installing the new version of ePublisher. Versions of ePublisher on a
different bit platform should be uninstalled before installing a new version of
ePublisher on a different bit platform.

If you are installing an ePublisher component that is of version 2018.2 or higher
and your currently installed component is version 2014.1 or higher, then your
component will automatically be uninstalled for you when you choose the option to
update. Otherwise, before installing a new version of an ePublisher component, you
must uninstall any previous versions of the component. Uninstalling an ePublisher
component removes the installation folder and registry entries for the component
from the computer. Since Windows has different registries for 32-bit and 64-bit
applications, this only applies to installers of the same platform.

50 | Updang ePublisher installaon

To update/repair an ePublisher component with an ePublisher executable
installer

1. Close all ePublisher user interfaces.

2. Close all instances of Microsoft Office applications running on the local
computer, including instances of Microsoft Word and Microsoft Outlook. Close
all instances of Adobe FrameMaker running on the computer.

3. Double click the executable installer.

4. Select whether you want to Update/Repair, and then click Next.

5. Follow the instructions in the consecutive pages.

Preparing existing projects for ePublisher
Upgrade
To ensure smooth migration of existing projects and stationeries perform the
following steps:

Save your Stationery, Stationery design projects, and any projects you
currently use to generate output to a secure location. Stationery defines the
appearance and functionality of all the output formats you need. Stationery
design projects are the ePublisher Designer projects used to create
Stationery. For more information about Stationery and Stationery design
projects, see “Understanding Stationery” and “Creating a Stationery Design
Project”. For more information about Stationery and Stationery design
projects, see “Understanding Stationery” and “Creating a Stationery Design
Project”.

If you implemented overrides when designing Stationery, then you will
need to make sure and migrate each overridden file so that it is compatible
with the latest format files of the new release, or decide to keep the base
format version of the file unchanged. Examples of overrides include the
following items:

Modifications to the Page.asp file

Custom .css files

Custom .scss files

Modifications to image files

Preparing exisng projects for ePublisher Upgrade | 51

Any advanced overrides such as modifications to .xsl or .fti files or
files in the Formats or Targets folder.

When the Stationery designer creates and saves Stationery, ePublisher creates the
following folders:

StationeryName\Formats\OutputFormat

StationeryName\Formats\OutputFormat.base

where StationeryName is the name the Stationery designer specified for the
Stationery, and OutputFormat is the type of output format the Stationery Designer
specified for a target in the Stationery.

The StationeryName\Formats\OutputFormat folder contains any customizations
or overrides the Stationery designer specified when designing the Stationery.
ePublisher Express synchronizes with the files in the OutputFormat folder and
uses the information about customizations and overrides contained in files in the
OutputFormat folder to generate output.

Note: The Stationery may have one or more OutputFormat folders, based on the
settings the Stationery designer specified.

The StationeryName\Formats\OutputFormat.base folder contains copies
of all the files located in the \Program Files\WebWorks\ePublisher
\ release_number\Formats\OutputFormat folder. These files define the default
output format and transforms and are installed by default when you install
ePublisher.

Stationery designers can do a compare, or diff, between the files located in these
folders to quickly see any customizations or overrides specified for the Stationery.
Stationery designers can use this information to help them reapply customizations
and overrides as needed when designing a newer version of the Stationery in
ePublisher Designer.

For more information about overrides, see “Stationery, Projects, and Overrides”.

Upgrading Typical ePublisher
Implementations
After you save your existing Stationery design projects, Stationery, any projects
you currently use to generate output, and any copies of override files to a secure
location, perform the following steps:

On the Stationery designer computer, uninstall all existing versions of
ePublisher components, such as ePublisher Express, ePublisher Designer, and
ePublisher AutoMap. The Stationery design computer is the computer the

52 | Upgrading Typical ePublisher Implementaons

Stationery designer uses to create and update Stationery. ePublisher Express
and ePublisher Designer are installed on the Stationery design computer.
Based on your configuration, ePublisher AutoMap may also be installed on the
Stationery design computer.

Install the new version of ePublisher Express and ePublisher Designer on
the Stationery designer computer. Also install the new version of ePublisher
AutoMap if you run ePublisher AutoMap on the Stationery designer computer.

Open your existing Stationery design projects using the new version of
ePublisher Designer.

Generate output and verify that your output generates as expected. Make any
adjustments as needed.

If you have implemented typical overrides in a Stationery design
project, such as overrides to Page.asp files, custom .css files, or
image files, you can continue to use your overrides to these files, and
the new version of ePublisher will recognize and use these existing
modifications when generating output.

If you have implemented advanced overrides, such as overrides to
.xsl or .fti files, or overrides to files in the Formats folder, update
these files in your new ePublisher installation to include your advanced
overrides. For more information, see “Upgrading Implementations with
Advanced Customizations”.

Note: When ePublisher Designer detects overrides, by default it will not
update to the latest version of the format. This means that no
modifications will be necessary in order to continue using your
Stationery. However, in this default mode, you will not get any of
the format improvements built into the latest release. If you want
these improvements, then you will have to configure the Project
Settings to use the latest version of ePublisher’s formats.

Create new Stationery for each Stationery design project.

Deploy the updated Stationery to an appropriate location.

On each writer computer, update ePublisher Express installation.

The next time writers generate output, they open their existing projects using
the new version of ePublisher Express. Writers can choose to synchronize their
projects immediately to obtain the latest Stationery and then generate output,
or writers can continue using their existing Stationery until they are ready to
move to the latest version of the Stationery.

Upgrading Typical ePublisher Implementaons | 53

Upgrading Implementations with Advanced
Customizations
If you have implemented advanced overrides in the Stationery design, such as
overrides to .xsl or.fti files, or overrides to files in the Formats folder, ensure
you save a copy of the following items to a secure location before uninstalling a
previous version of ePublisher and installing a new version:

Overrides currently used in the Stationery design project

A copy of the original files from which the overrides were created

If you want to continue to use your advanced customizations with the new version
of ePublisher, first uninstall your previous ePublisher version and then install a new
ePublisher version. Then identify and include your overrides in the new versions
of the ePublisher files as appropriate by performing a three-way merge of the
following items:

A copy of the existing override file used in the Stationery design project,
located in the StationeryName\Formats\OutputFormat folder, where
StationeryName is the name the Stationery designer specified for the
Stationery, and OutputFormat is the type of output format the Stationery
Designer specified for a target in the Stationery.

A copy of the original file from which the override was created, available in the
StationeryName\Formats\OutputFormat.base folder, where StationeryName
is the name the Stationery designer specified for the Stationery, and
OutputFormat is the type of output format the Stationery Designer specified
for a target in the Stationery.

A copy of the new file from the new version of ePublisher

Performing a three-way merge allows you to identify the code you changed when
you created the override, and also allows you to quickly and easily create the
override again in the new ePublisher files. You may find tools such as Araxis Merge
Pro, available at http://www.araxis.com/merge, or KDiff3, available at http://
kdiff3.sourceforge.net, helpful as you compare and merge override files.

After you perform your three-way merge and update the files you want to override
in the new version of ePublisher with the overrides you specified in the previous
version, test your overrides by generating output using the new version of
ePublisher Designer and the Stationery design project to confirm your output
generates appropriately. After you verify the output generated correctly using your
advanced customizations, you can create new Stationery using the Stationery
design project and then deploy the updated Stationery that includes your advanced
customizations to writers to use to generate output.

54 | Upgrading Implementaons with Advanced Customizaons

http://www.araxix.com/merge
http://kdiff3.sourceforge.net
http://kdiff3.sourceforge.net

Upgrading Advanced Customizations of
WebWorks Reverb 2.0
Most of the time, you will only need to customize the _*.scss files to achieve all
of your styling requirements for your WebWorks Reverb 2.0 output. However, the
Reverb 2.0 format is highly customizable and if necessary you can make advanced
customizations to this format. If you are upgrading from a prior release, then you
will want to understand what files are most likely to be customized and how this is
affected if you change the Skin Target Setting.

If you have or plan to make advanced customizations to the WebWorks Reverb 2.0
layout or look-and-feel, then most likely you will have to modify one or more of the
following files.

Upgrading Advanced Customizaons of WebWorks Reverb 2.0 | 55

Table 5: Advanced Reverb 2.0 Files that are typically customized

Filename The display area or items affected by this file

webworks.scss Content panel styling only. Includes the styling of the
MiniTOC, RelatedTopics, Social Buttons.

skin.scss Styling of TOC, Index, Toolbar, and Breadcrumbs. All
icons used in the skin.png sprite file are managed
here. Styling of content that appears above the Toolbar,
such as the company information.

search.scss Styling of the search results page.

skin.png (derived from
skin.Fireworks.png)

PNG file with alpha channel that stores all of the Reverb
icons.

connect.asp Used to manage the button placement in the toolbar.
Also manages the TOC/Index/Search panel title for the
Corporate skin.

connect.scss Manages basic structure of the entry-point file
generated from the connect.asp template file.

When working with alternate skins, you need to be aware of which files are
most likely affected as a result of changing the skin type. If you have Advanced
Customizations in any of these files, then you need to re-examine the diffs of these
files after you switch the skin type. Most likely you will have minimal differences.
Here are some basic steps you can follow to make sure you translate those changes
to the new skin properly.

Basic steps for setting an alternate skin type when Advanced
customizations are present

1. Check your Advanced Customizations for files listed in “Advanced Reverb
2.0 Files that are typically customized”.

2. Make sure any of these commonly customized files are implemented as
Target Overrides as opposed to Format Overrides. Setting an alternate
skin type will create an implicit target override that will have priority over any
format overrides of the same name.

56 | Upgrading Advanced Customizaons of WebWorks Reverb 2.0

3. Before changing the skin type you will need to record any existing file
differences. On the Advanced menu click Manage Target Customizations.
Now use the procedure discussed in “Format and Target Overrides” to record
these file differences. These file differences will be used later after the skin
type has been changed.

4. On the Target menu, click Target Settings.

5. In the WebWorks Reverb category, select the right column of the Skin entry
to display the file picker button.

6. Click the file picker button to bring up an Open file dialog which will display
a list of skin plugin files. Each skin plugin file is identifiable by a .weplugin
extension.

7. Browse to the plugin file that you wish to use and double-click it to set the
skin to that value.

8. At this point, you need to consider either removing your existing
customizations and then re-implementing them using the information from
your previously recorded file differences. Or managing the differences directly
by comparing the differences using the procedure discussed in “Format and
Target Overrides”. Either method will work.

Uninstalling ePublisher
Uninstalling an ePublisher component removes the installation folder and registry
entries for the component from the computer.

Before uninstalling ePublisher, consider unregistering the license key(s) using
the menu: Help > License Keys... and then selecting the Unregister button.
Unregistering will make the license available for use on a different system.

Note: When uninstalling ePublisher Express, all other components should also be
uninstalled. Doing this ensures that all components are compatible with each
other and get installed with the same version and build number.

If ePublisher installed the WebWorks Transit menu for Microsoft Word on
the computer, ePublisher removes the WebWorks Transit menu and WebWorks
Transit registry entries when you uninstall the last ePublisher component on the
computer.

To uninstall an ePublisher component with an ePublisher executable
installer

1. Close all ePublisher user interfaces.

Uninstalling ePublisher | 57

2. Close all instances of Microsoft Office applications running on the local
computer, including instances of Microsoft Word and Microsoft Outlook. Close
all instances of Adobe FrameMaker running on the computer.

3. Double click the executable installer.

4. Select the Uninstall option, and then click Next.

5. Follow the instructions in the consecutive pages.

To uninstall an ePublisher component using Windows Control Panel

1. Close all ePublisher user interfaces.

2. Close all instances of Microsoft Office applications running on the local
computer, including instances of Microsoft Word and Microsoft Outlook. Close
all instances of Adobe FrameMaker running on the computer.

3. Open Control Panel.

4. Open Add or Remove Programs.

5. Select the ePublisher component you want to uninstall.

6. Click Remove.

7. Click Yes to confirm you want to remove the ePublisher component from your
computer. ePublisher removes the selected ePublisher component.

Troubleshooting Installation, License
Keys, and Uninstallation
This section helps you troubleshoot issues related to the following ePublisher
issues:

Installing ePublisher. For more information, see “Problems Installing
ePublisher”.

Obtaining, adding, and removing Contract IDs and working with licensing. For
more information, see “Problems with FrameMaker or Microsoft Word”.

Problems Installing ePublisher
This section helps you troubleshoot issues related to installing ePublisher.

58 | Problems Installing ePublisher

Error: Please Close all Running Sessions of
Microsoft Word
If you have any Microsoft Office processes running when installing ePublisher,
including instances of Microsoft Word and Microsoft Outlook, ePublisher displays the
following error message.

To resolve this issue

1. Close any running instances of Microsoft Word.

2. Close Microsoft Outlook.

3. Open Task Manager.

4. Click on the Processes tab.

5. Search for WINWORD.EXE . You can click on the Image Name column to sort
the processes alphabetically.

6. If there is a WINWORD.EXE process running, complete the following
steps:

a. Select WINWORD.EXE .

b. Click End Process to close all running Word processes. Task Manager
displays the following warning.

Error: Please Close all Running Sessions of Microso Word | 59

c. Click Yes.

d. Close Task Manager, and then proceed with your ePublisher installation.

7. If there are no WINWORD.EXE processes running, proceed with your
ePublisher installation.

Problems with FrameMaker or Microsoft
Word
This section helps you troubleshoot issues related to ePublisher interacting with
FrameMaker and Microsoft Word.

Error: Error Communicating with Adobe
FrameMaker
If you install FrameMaker after installing ePublisher, the ePublisher add-ins for
FrameMaker might not be installed.

To resolve this issue

1. Make sure all FrameMaker instances are shutdown and no background
instances are running.

2. Run a 'Update/Repair' install using the ePublisher Express installer.

Error: Cannot Duplicate Document
This error will occur if you install FrameMaker or Microsoft Word after installing
ePublisher, the ePublisher add-ins for Word and FrameMaker might not be installed.

To resolve this issue

60 | Error: Cannot Duplicate Document

1. Make sure all FrameMaker or Word instances are shutdown and no
background instances are running.

2. Run a 'Update/Repair' install using the ePublisher Express installer.

Problems with Contract IDs and Licensing
This section helps you troubleshoot issues related to obtaining, adding, and
removing Contract IDs. For more information about Contract IDs, see “Working with
Contract IDs”.

No Contract ID Received
After you purchase ePublisher components, your WebWorks customer service team
will e-mail your Contract ID that enables licensing for the products your purchased.
If you have not received a Contract ID, send an email to sales@webworks.com. For
more information about Contract IDs, see “Working with Contract IDs”.

Error: No Valid License Key Found
You must enter a Contract ID before you can generate output. If you have not
entered your Contract ID information, ePublisher displays an error stating that no
valid license key was found to enable support for your content authoring tool.

If you have entered a Contract ID but still receive this error, verify you entered your
Contract ID information correctly. For more information about Contract IDs, see
“Working with Contract IDs”.

Other Contract ID and Licensing Problems
If you have received your Contract ID and entered your Contract ID into
ePublisher but you are having problems with licensing, send an email to
customerservice@webworks.com. For more information about Contract IDs, see
“Working with Contract IDs”.

Note: ePublisher licensing is flexible, and the WebWorks team can work with you
ensure that you have the licensing that is right for you.

Other Contract ID and Licensing Problems | 61

mailto:sales@webworks.com
mailto:customerservice@webworks.com

Exploring ePublisher
Understanding the ePublisher Workflow
Exploring the ePublisher User Interfaces
Customizing Your ePublisher Workspace
Specifying General ePublisher Preferences

This section helps you understand the ePublisher workflow, from the tasks that the
Stationery designer performs, such as preparing source document templates and
creating Stationery, through the tasks that writers perform, such as preparing their
source documents for output generation, generating output, and validating their
generated output.

This section also provides an overview of each ePublisher user interface and,
through the use of sample Exploring ePublisher source documents, projects, and
Stationery, helps you understand how you can quickly and easily produce online
content that meets required styles and standards

Understanding the ePublisher
Workflow
ePublisher allows your organization to quickly and easily produce online content
that meets your organization’s styles and standards. With ePublisher, you use the
following workflow to quickly and easily generate online content:

Stationery designers create new or modify existing source document
templates and then use ePublisher Designer to create Stationery for writers to
use to generate output. For more information, see “Stationery Designers and
ePublisher Designer”.

Writers use ePublisher Express and the Stationery created by a Stationery
designer to generate and validate online content. For more information, see
“Writers and ePublisher Express”.

ePublisher AutoMap can automatically generate and deploy online content
using the Stationery created by a Stationery designer and source documents
created by writers. For more information, see “Automating Output Generation
with ePublisher AutoMap”.

Stationery Designers and ePublisher
Designer
If you are a Stationery designer, your first step when you work with ePublisher will
be to identify which input formats will be used to author source documents, which
types of output need to be generated, and which online features should be included
in generated output.

62 | Staonery Designers and ePublisher Designer

After you identify your input and output formats and the features you want
to include in your online content, your next step is to either create source
document templates or prepare your existing source document templates for
output generation. Stationery designers use source document templates to
configure settings and create Stationery for writers to use when generating
output. Writers use the source document templates to create content and prepare
source documents for output generation. If writers already use source document
templates, Stationery designers can simply prepare the existing source document
templates for output generation. If writers are not currently using source document
templates, the Stationery designer creates a source document template for each
content authoring tool used by the authors in the organization. Writers then use the
styles and standards defined in the template to prepare their source files for output
generation.

For example, if all writers use Adobe FrameMaker and Adobe FrameMaker templates
when authoring content, the Stationery designer can take the existing Adobe
FrameMaker templates, modify the templates as needed to support online content,
and then use the existing templates to create Stationery. If writers use both Adobe
FrameMaker and Microsoft Word but are not yet consistently using templates, the
Stationery designer creates a new standard set of both Adobe FrameMaker and
Microsoft Word templates for writers to use when authoring content.

After the Stationery designer prepares source document templates for the content
authoring tools writers use, the Stationery designer uses ePublisher Designer to
perform the following tasks:

Create a Stationery design project using the source document templates.

Configure settings and options in the Stationery design project that define the
look, feel, and behavior for each output target.

For example, the Stationery designer can specify if ePublisher should use
the existing styles and formatting in the source documents when generating
output to ensure the source documents and online content share the same
look and feel. The Stationery designer can also specify that online content
have a completely different look and feel than the source documents based on
online output design goals and business needs.

Create Stationery using the settings defined in the Stationery design project.
The Stationery defines the style and behavior of generated output, and writers
use the settings in the Stationery when they generate output from their
source documents.

After the Stationery designer creates the Stationery, the Stationery designer
places the ePublisher Stationery and source document template files on a shared
network folder for writers to use as they author their content, prepare their source
documents for output generation, and generate output.

Staonery Designers and ePublisher Designer | 63

Writers and ePublisher Express
With ePublisher, writers use their preferred content authoring tool and the source
document templates provided by the Stationery designer to create content and
prepare their source documents for output generation. Writers can use Markdown
++, Microsoft Word, structured or unstructured Adobe FrameMaker, and DITA-
XML content authoring tools to author content. Writers format, or tag, their
source documents by applying styles and formats, and then ePublisher uses this
information to generate the appropriate output based on the settings the Stationery
designer specified in the Stationery. Writers do not need to worry about output
design. Instead, writers can focus on creating the content users need.

When writers are ready to generate online content, writers use ePublisher Express
to perform the following tasks:

Create an ePublisher Express project based on Stationery created by a
Stationery designer.

Add the source documents they want to use to generate output to the
ePublisher Express project.

Generate output. The output that writers generate adheres to the styles
and standards defined by the Stationery designer in the Stationery. Writers
can generate output on demand. ePublisher can also automatically generate
output based on a schedule if ePublisher AutoMap is implemented.

Deploy generated output. Writers can deploy their generation to a Web site or
to a central location from which a product build can obtain the files. ePublisher
can automatically deploy output if ePublisher AutoMap is implemented.

Check the generated output into a version control system or copy the
generated output to a central archive location.

Although writers typically use the Stationery provided by the Stationery designer
without modification, writers can use ePublisher Express to perform some
customizations of output target settings if they have target setting modification
permissions. For example, writers can customize company information such as
company name, phone number, and Web site information in their generated
output if they have target setting modification permissions. If writers need to
customize any target or project settings, they should first ensure they have
appropriate target setting modification permissions. After they make any target
setting customizations, they regenerate their output and verify their target setting
customizations before deploying their final output.

Most writers prefer to use ePublisher Express to perform an initial output generation
early in their project cycle. This allows writers to quickly and easily verify that
they are formatting their source documents correctly and also confirm that their
generated output has the appearance and features they want. After an initial

64 | Writers and ePublisher Express

verification of the generated output early in the project cycle, writers continue to
add content to their source documents, then regenerate output on a periodic basis,
such as once a week, as the project progresses.

If ePublisher AutoMap is implemented, ePublisher AutoMap can be configured to
automatically generate output for writers on a regular schedule. For example,
ePublisher AutoMap can be configured to automatically generate output for a
project every night. When writers arrive at work the next day, writers can quickly
and easily verify that the latest content they added to their source documents is
formatted correctly and displays appropriately in their generated output. Periodic
output generation using the latest version of source documents and Stationery
provides the following benefits:

Allows writers to quickly and easily confirm that they are formatting their
source documents correctly and feel confident that their generated output
always conforms to the standards and styles defined in their project
Stationery by the Stationery designer

Reduces the amount of time writers spend doing a quality assurance review
for their generated output at the end of a project cycle

Helps eliminate post-generation editing and processing, which save
organizations time and money

Ensures that the end of the project cycle is smooth and hassle-free

ePublisher allows writers to quickly and easily produce high-quality output
according to specifications each time they generate output.

Automating Output Generation with
ePublisher AutoMap
If you implement ePublisher AutoMap, you can configure ePublisher AutoMap to
automate your output generation using Stationery created by a Stationery designer
and source documents created by writers.

Exploring the ePublisher User
Interfaces
The WebWorks ePublisher Platform provides the following user interfaces:

ePublisher Express user interface, which writers use when generating output

ePublisher Designer user interface, which Stationery designers use when
creating and updating Stationery

Exploring the ePublisher User Interfaces | 65

ePublisher AutoMap user interface, used to automate output generation and
integrate the output generation process with source control systems and
product build systems

This section provides an overview of each of these ePublisher user interfaces.

Exploring the ePublisher Express User
Interface
The ePublisher Express user interface includes the following windows:

Start page. For more information, see “Understanding the Start Page”.

Document Manager. For more information, see “Understanding Document
Manager”.

Output Explorer. For more information, see “Understanding Output Explorer”.

Log Window. For more information, see “Understanding the Log Window”.

The following figure shows the ePublisher Express user interface.

66 | Exploring the ePublisher Express User Interface

Exploring the ePublisher Designer User
Interface
The ePublisher Designer user interface includes the following windows:

Start page. For more information, see “Understanding the Start Page”.

Document Manager. For more information, see “Understanding Document
Manager”.

Output Explorer. For more information, see “Understanding Output Explorer”.

Log Window. For more information, see “Understanding the Log Window”.

Style Designer. For more information, see “Understanding Style Designer”.

Preview window. For more information, see “Understanding the Preview
Window”.

The following figure shows the ePublisher Designer user interface.

Understanding the Start Page
The Start page is available in both ePublisher Express and ePublisher Designer. The
Start page lists the most recently opened ePublisher projects. You click on a project

Understanding the Start Page | 67

name on the Start page to open the associated project file. You can also specify the
number of projects you want to display on the Start page. For more information
about specifying the number of projects you want to display on the Start page, see
“Specifying General ePublisher Preferences”.

The following figure shows the Start page.

Understanding Document Manager
Document Manager is available in both ePublisher Express and ePublisher Designer.
Document Manager allows you to organize the source documents in your project.
Within Document Manager, you can add, remove, and rearrange the groups and
source documents in your project. The following figure shows Document Manager.

Including or Excluding Files

68 | Including or Excluding Files

ePublisher allows you to include/exclude documents from processing on a target by
target basis. This capability is available to all ePublisher users, regardless of their
source authoring format. Users working with Adobe FrameMaker book files will see
that ePublisher scans default include/exclude values from their source documents.

To include or exclude a document from processing, right-click on any file or book.
The context menu will appear with the Include/Exclude option. Clicking this item
will reveal three choices: Include, Exclude and Use Document Value. Clicking
Exclude will create a red dotted line around the file that will indicated that this
source file will not be created in the output file. Clicking include will show as normal
and if it is not changed in the FM source, will be included. The Use Document Value
will take whatever is set in FrameMaker and if already set to Exclude in the source
will show the dotted red lines around the source documents.

Note: Include/exclude settings are configured on a per Target. For example in this
project’s WebWorks Help target, ecology.book (along with all child files) is
excluded:

In the same project’s WebWorks Reverb target, ecology.book book is
included for processing while Exploring ePublisher.book (and child files)
is excluded.

Understanding Output Explorer

Understanding Output Explorer | 69

Output Explorer is available in both ePublisher Express and ePublisher Designer.
Output Explorer displays all of the files generated by ePublisher.

The following figure shows Output Explorer.

The output files displayed in the Output Explorer depend on the item you select in
Document Manger. Output Explorer displays items as follows:

If you have a source document selected in Document Manager,
ePublisher displays the source document group in Output Explorer. The source
document group displayed in Output Explorer contains the Files group, which
lists all of the generated topic files, the Images group, which lists all of the
generated images for your output, and the Reports group, which lists Styles,
Links, Accessibility, Filenames, and Topics reports.

If you have a top-level group selected in Document Manager,
ePublisher displays the top-level group in Output Explorer. The top-level group
displayed in Output Explorer contains the Navigation group, which lists the
entry-point file for the generated output based on the active target selected
in the project, and the Reports group, which lists Styles, Links, Accessibility,
Filenames, and Topics reports.

If you have a subgroup selected in Document Manager, ePublisher
displays the subgroup in Output Explorer. The subgroup contains the entry-
point file for the generated output.

If you have more than one top-level group in Document Manager, in
addition to displaying the top-level group you select in Document Manager
in Output Explorer, ePublisher also displays a Merge Output group in Output
Explorer. The Merge Output group displays the merged entry-point file created
from each top-level group entry point file. You can use the merged entry-point

70 | Understanding Output Explorer

file ePublisher automatically creates when you have more than one top-level
group in Document Manager to created merged help systems.

For more information about merged help systems, see “Merging Top-level
Groups (Multivolume Help)”.

Understanding the Log Window
The Log Window is available in both ePublisher Express and ePublisher Designer.
The Log Window displays the log ePublisher creates when generating output. When
ePublisher creates a log during output generation, you can see the status of the
output generation process and any errors generated. You can also quickly and easily
see which pipelines ePublisher processed, which settings ePublisher applied, and
which files ePublisher parsed. For more information about viewing or working with
logs, see the “Working with Output Log Files”.The following figure shows the Log
Window.

Understanding Style Designer
Style Designer is available in only ePublisher Designer. ePublisher intelligently
discovers the styles in the source documents and presents a list of these styles in
Style Designer. Stationery designers then define how output should be generated
by specifying properties and options for each style. Stationery designers use
Style Designer to define how paragraphs, characters, tables, and images display
in generated output, including the color or font of a paragraph style, the style
of a table border, the layout of a page, and the file format of converted images.
Stationery designers can also specify other aspects of generated output, such as
page layout and when topic pages are created.

ePublisher uses the styles in source documents along with the settings the
Stationery designer defines in the Stationery to generate output. Using styles
in source documents and Stationery settings allows precise control over the
appearance and behavior of generated output.

The following figure shows Style Designer.

Understanding Style Designer | 71

Understanding the Preview Window
The Preview window is available in only ePublisher Designer. When designing
Stationery, Stationery designers can use the Preview window to quickly see
how modifications made to styles and project settings affect the appearance of
generated output. You can generate a preview of output from a source file in
ePublisher Designer when you select a source document in Document Manager.
However, some online content features, such as popup windows, links, and
conditions, are not displayed or active in the Preview window.

The following figure shows the Preview window.

72 | Understanding the Preview Window

For more information about using the preview window in ePublisher Designer when
designing Stationery, see “Previewing the Output from a Source File”.

Exploring the ePublisher AutoMap User
Interface
The ePublisher AutoMap user interface allows you to create, edit, and schedule
ePublisher AutoMap jobs. The following figure shows the ePublisher AutoMap user
interface.

Exploring the ePublisher AutoMap User Interface | 73

For more information about using ePublisher AutoMap, see “Scheduling and
Integrating Processes with AutoMap”.

Customizing Your ePublisher
Workspace
By default, the ePublisher user interface comes preset with certain toolbar icons and
window settings. ePublisher gives you extensive control over the appearance of the
user interface by allowing you to customize the display of windows and toolbars.

When you open ePublisher for the first time, Document Manager and Output
Explorer are docked and the Log Window is undocked. When a window is undocked,
it displays as a tab in the sidebar, and it will auto-hide unless you hover over the
tab in the sidebar. When you hover over an undocked window, the window displays.

You can customize the display of windows in the user interface to suit your needs.
In ePublisher, you can move Document Manager, Output Explorer, and the Log
Window to different locations within the user interface or make them into floating
windows. When you dock a window, it becomes stationary within the user interface
and is always visible.

You can rearrange docked windows by moving the window to a new location within
the user interface. For example, you can move the Output Explorer into a new
window pane next to the Start page. However, the Start page cannot be moved.
The Start page serves as the central point from which all the windows are arranged.
To move a docked window within the user interface, click on the title bar of the
window and then drag the window to a new location. To undock a window, click on
the pin icon in the upper right corner of the window.

In addition to rearranging docked windows, you can add, remove, customize, or
create buttons on tool bars. You can also create your own custom toolbars. By
customizing your toolbars and buttons, you can create a workspace that fits your
preferences and work style.

Whenever you make changes to the user interface by moving windows, changing
window dock settings, or customizing toolbars, the changes take effect for each
subsequent project you create or open. For example, if you dock Document
Manager, Output Explorer, and the Log Window and add customized buttons to the
toolbar, these settings will become the default settings for each project you open.

Specifying General ePublisher
Preferences
You use the General tab of the Preferences window to specify ePublisher
preferences, such as the number of recent projects to display on the Start page,

74 | Specifying General ePublisher Preferences

whether to automatically scan source documents when you add them to Document
Manager, and where to store user-created formats. You can also reset the user
interface toolbar and window dock positions.

To specify general ePublisher preferences

1. On the Edit menu, click Preferences.

2. Specify preferences for each setting. For more information about settings and
options, click Help.

Specifying General ePublisher Preferences | 75

Miscellaneous ePublisher Windows
Add New Target Window
Conditions Window
Cross Reference Rules Window
Deployment Configuration (Name) Window
Deployment Editor Window
Documents Window
Edit Target Window
File Mapping Editor Window
Folder Deployment Editor Window
Target Settings Window
Job Info Window
License Information Window
Main ePublisher AutoMap Window
Main ePublisher Window
Manage Targets Window
Merge Settings Window
New ePublisher AutoMap Job Window
New Project Wizard
Preferences Window
Project Settings Window
Save As Stationery Window
Script Editor Window
Target Configuration Window
Target Selection Window
User Information Window
Variables Window
WebWorks ePublisher Preferences Window
WebWorks Licensing Info Window

The topics in this section identify the windows in ePublisher Express, ePublisher
Designer, and ePublisher AutoMap. Each topic provides information about a window
or tab and the related fields.

Add New Target Window
This window allows you to create a new target in your project. A target is based
on an output format, such as WebWorks Reverb 2.0, PDF - XSL-FO, Microsoft HTML
Help, or Sun JavaHelp. Each target also has target settings to customize that
target. A project can have multiple targets based on the same output format, such
as WebWorks Reverb 2.0. You may add multiple targets in projects that generate
multiple versions of the online content based on OEM partner agreements or
multiple versions of the product. Each target can have different variable values and
conditions set to generate unique output. The fields are defined as follows:

Target Name

Specifies the name for the target. You can specify a target name that is
different from the output format name. For example, you can name a target
OnlineHelp , to identify the purpose of the generated output. You can also

76 | Add New Target Window

name a target to match the output format name, such as WebWorks Help , as
long as you have only one target in the project using that output format.

Format Type

Specifies the output format for the target, such as WebWorks Reverb 2.0, PDF
- XSL-FO, or Sun JavaHelp 2.0.

Conditions Window
This window allows you to specify conditions to use when generating output.
Conditions allow you to show or hide information in your generated output.
Conditional text is any content that has a condition applied to it.

You apply conditions to the content in your source documents, and then you define
the visibility for those conditions in your output. Your project lists the conditions
in your source documents and allows you to specify whether to show or hide
each condition. You can also use the condition settings specified in your source
documents. By default, ePublisher uses the condition settings specified in your
source documents. You can modify the settings for the conditions for each target in
your project. This window provides the following tabs:

“Classic Tab”

“Expressions Tab (FrameMaker Only)”

Classic Tab
This tab allows you to specify the visibility of conditions in your output. The columns
are defined as follows:

Name

Specifies the name of the condition.

Visibility

Specifies whether the content with the condition applied to it is included in
your output. The values for this setting are defined as follows:

Classic Tab | 77

Value Description

Visible Displays the content in your output.

Hidden Excludes the content from your output.

Use document value Uses the state of the condition specified in your source
documents to determine whether the content is
displayed in your output.

Pass Through

Puts the content directly in your output without processing or transforming
the output. This setting allows you to put HTML code in your source
documents and have that code put directly in your output. The content with
this type of condition applied is not transformed, so the special characters in
HTML coding remain unchanged. For example, the < is not transformed to
< and the > is not transformed to > .

Expressions Tab (FrameMaker Only)
This window allows you to manage the expressions related to conditions in source
documents authored in FrameMaker version 8.0 or higher. In these later versions
of FrameMaker, FrameMaker allows you to define logical expressions to use when
applying visibility settings to conditional text in a FrameMaker source document.
Using FrameMaker conditional settings, you can create conditional tags and build
complex Boolean expressions for defining output filters when authoring in both
structured and unstructured modes. For more information about conditional
expressions in FrameMaker, refer to the FrameMaker documentation.

Note: The use of Expressions is limited to FrameMaker input.

The fields are defined as follows:

Use Document Value

Specifies whether to use the value specified in your source documents to
determine whether the content is included in your generated output.

Cross Reference Rules Window

78 | Cross Reference Rules Window

This window allows you to add, edit, and delete cross-reference formats for your
project. A cross-reference format is a combination of text and code that defines
how ePublisher displays cross-references in your generated output.

Cross-references help users navigate through your content. ePublisher
automatically converts cross-references to links in the online content. However, you
often want cross-references in your online content to use a different format from
your printed content. For example, you usually include page numbers only in your
printed content. ePublisher enables you to add, edit, and delete cross-reference
formats for your online output.

The columns are defined as follows:

Document Type

Specifies the content type of the source document that contains the cross-
reference formats to modify.

Name

Specifies the name of the cross-reference format. ePublisher obtains the
cross-reference formats displayed in this column from your source documents.
The Name column shows either the cross-references formats used or a set
of default cross-reference formats depending on the type of source document
you are converting. These formats are hidden building blocks or codes that
come directly from your source document. If you would like to find out how to
interpret them, see the Help documentation for the application that was used
to create the source document.

Use Document Value

Specifies whether to use the value specified in your source documents instead
of the specified value in the ePublisher project.

Value

Specifies the replacement content and building block code that ePublisher
uses when generating your output. For example, a FrameMaker cross
reference format may be <$paratext> to provide the text of the linked
heading paragraph as the cross reference. For more information about the
building block of text and code that defines your cross-reference format, see
the documentation for the authoring tool you used when you created your
source documents. For example, if you created your source documents in
Adobe FrameMaker, see the Adobe FrameMaker documentation.

To edit the cross-reference format, double-click the value to edit, and then
edit the cross-reference format in the Replacement field in the Edit Cross
Reference window. The Value column shows the corresponding online cross-
reference formats. The first time you open this window for a project, the

Cross Reference Rules Window | 79

formats in the Value column match the formats in the Name column so
that ePublisher matches the content of your generated output to your source
documents.

Deployment Configuration (Name)
Window
This window allows you to specify a name for an output destination when you
configure an output destination for a target.

The fields are defined as follows:

Name

Specifies the name for the output destination. Ensure you specify a descriptive
name for the output destination. When you work with output destination, you
can only see the name of the output destination. You will not be able to see
the actual path you specified to the output destination. Type a descriptive
name for the output destination that allows you to easily identify each output
destination you specify.

Deployment Editor Window
This window allows you to specify deployment locations for your generated output.
A deployment location is a folder where you deploy generated output files. A
deployment location can be a folder on your local computer or on a network share.

The columns are defined as follows:

Name

Specifies the name of the deployment location.

Deployment Type

Specifies the type of container to which the generated output files are
deployed. ePublisher currently supports only folders as deployment locations.

Documents Window
This window allows you to specify the source documents the ePublisher AutoMap
job uses when generating output create groups and to create groups for source
documents. This window also allows you to specify a script to use when obtaining
source documents for a group. For example, to obtain source documents from
a version control or content management system, you can specify a script that

80 | Documents Window

obtains and prepares source documents based on the parameters you define in the
script.

You must create a top-level group before you can add source documents to the
ePublisher AutoMap job. A top-level group is the primary container for source
documents, subgroups, and the entry-point file for the output. After you create a
top-level group, you can add source documents to the job, and you can also create
subgroups and add source documents to subgroups as needed.

The fields are defined as follows:

Script to retrieve documents

Specifies the script to run to retrieve source documents.Type or paste the
script to use to retrieve source documents into the text field or click Edit
Script to use the Script Editor window to write your script. The script you
specify runs before the ePublisher AutoMap job generates output, which
ensures that the ePublisher AutoMap job always uses the most current version
of the source documents.

Edit Target Window
This window allows you to edit the name of a target. A target is the specific type of
output you want to produce using your source files and project settings, and targets
are based on an output format, such as WebWorks Reverb 2.0, PDF - XSL-FO, or
JavaHelp. Targets include all of the project settings you specify for each output
format included in your project when you configure your project.

Target Name

Specifies the name of the target. You can specify a target name that is
different from the output format name. For example, you can name a target
based on the WebWorks Reverb 2.0 output format OnlineHelpFormat , or
you can name a target based on the WebWorks Reverb 2.0 output format
WebWorks Reverb 2.0 format .

Format Type

Displays the output format for the target. For example, the format type may
be WebWorks Reverb 2, PDF - XSL-FO, or WebWorks Help.

File Mapping Editor Window
This window allows you to create a file mapping. A file mapping is an association
between a file extension and an ePublisher adapter. An ePublisher adapter is
an ePublisher component that bridges the gap between the application in which
the source document was created and ePublisher. ePublisher currently provides
adapters for Helper (Markdown++), Microsoft Word, Adobe FrameMaker, and XML.

File Mapping Editor Window | 81

The columns are defined as follows:

File extension

Specifies the file extension to associate with an ePublisher adapter.

Adapter

Specifies the ePublisher adapter to use for the file extension.

Folder Deployment Editor Window
This window allows you to edit deployment locations. A deployment location is a
folder where ePublisher deploys output files from a project. A deployment location
can be a folder on your local computer or on a network share.

The fields are defined as follows:

Name

Specifies the name you of the deployment location.

Directory

Specifies the folder where to deploy your output files.

Target Settings Window
This window allows you to specify the settings to use for a selected output target.
You can reach this window by selecting the menu: Target > Target Settings.

The target settings are grouped according to function.

Generated output location
Specifies the location where ePublisher saves the generated output for the
selected target.

82 | Generated output locaon

Note: We do not recommend changing the generated output location as it
creates issues with maintaining project in the future.

Deploy to
Specifies the name of the deployment location where ePublisher deploys the
output generated for the target if you have created and selected a deployment
location. Specify a deployment location by selecting a deployment location you
created from the list.

List of Target Settings
The main component of the Target Settings Window is the list of available
target settings that can be configured for a given target in your project. See
“Target Settings Reference” for a complete list of available settings.

Job Info Window
This window allows you to specify information about an ePublisher AutoMap job. You
can also specify if any scripts run before or after the job runs and generates output.

The fields are defined as follows:

Job name

Specifies the name of the job.

Choose ePublisher project or stationery

Job Info Window | 83

Specifies the ePublisher project or Stationery for the job. You specified the
ePublisher Designer project or Stationery when you created the job. To
change the ePublisher project or Stationery specified for the job, type a path
to the new ePublisher project or Stationery for the job or click the Folder icon
to browse to and select the new ePublisher project or Stationery for the job.

Pre-build

Specifies the pre-build script to run before ePublisher AutoMap generates
output. Type or paste the pre-build script into the text field or click Edit
Script to use the Script Editor window to write your script.

Post-build

Specifies the post-build script to run before ePublisher AutoMap generates
output.Type or paste the post-build script into the text field or click Edit
Script to use the Script Editor window to write your script.

License Information Window
This window allows you to view the adapters for which you are licensed. Adapter
licensing information is specified in your Contract ID. ePublisher uses adapter
license keys, or activation codes, to enable ePublisher functionality, and ePublisher
automatically retrieves and enables these codes based on your Contract ID.
ePublisher licenses, or activation codes, do not display in the ePublisher user
interface. ePublisher components automatically communicate with the ePublisher
licensing server periodically to refresh and update ePublisher activation codes as
needed.

If you have a valid Contract ID for one version of the ePublisher product, when a
new version of ePublisher releases, you can continue to use your same Contract
ID when you upgrade to the new version of the product. You can also continue to
use your same Contract ID if you have to uninstall and then re-install a version of
ePublisher.

The fields are defined as follows:

Product

Specifies the name of the ePublisher adapters for which you are licensed. Your
Contract ID specifies the ePublisher adapters for which you are licensed.

Expires

Specifies the license expiration date for the licensed ePublisher adapters.
ePublisher components automatically communicate with the ePublisher
licensing server to renew activation codes as needed before they expire based
on the terms of your current contract.

84 | License Informaon Window

“Working with Contract IDs”

“Viewing Licensing and Contract ID Information”

“Obtaining Contract IDs”

“Entering Contract IDs”

“Managing Licensing in Environments without Internet Connectivity”

“Updating Licensing”

“Deactivating Licensing”

“Problems with FrameMaker or Microsoft Word”

Main ePublisher AutoMap Window
This window allows you to view information about ePublisher AutoMap jobs.

The columns are defined as follows:

Name

Specifies the name of the ePublisher AutoMap job.

Last Result

Specifies the results from the last time the job ran. You can see if the job
completed successfully, or if any errors occurred the last time the job ran.

Status

Specifies the current state of the job, such as whether the job is currently
running or ready to be run.

Last Run

Specifies the date and time the job last ran.

Next Run

Specifies the date and time the job is scheduled to run again.

Scheduled

Specifies whether the job is currently scheduled to run.

Main ePublisher AutoMap Window | 85

Main ePublisher Window
The WebWorks ePublisher Platform (ePublisher) is a powerful, comprehensive
solution that delivers cost-effective processes for efficiently publishing and
maintaining online and print information. ePublisher gives you the flexibility
to deliver content from multiple types of source documents, such as Adobe
FrameMaker, Microsoft Word, and DITA, in virtually any output format you need.
The open, standards-based architecture provides a powerful engine that does not
lock your content in a proprietary format that can become outdated as tools and
standards change.

The main ePublisher window connects you to the many powerful features found in
ePublisher. This window includes the following subwindows:

“Document Manager”

“Output Explorer”

“Start Page”

“Log Window”

“Style Designer”

“Document Designer”

Document Manager
This window allows you to view and organize source documents in your ePublisher
project. From the Document Manager window, you can add, remove, and rearrange
groups, subgroups, and source documents.

In Document Manager, you can create an organizational structure for your source
documents that includes groups and subgroups. A group is the highest level of
organization of generated material. The group indicates how ePublisher outputs
source documents. Each primary-level group created in Document Manager
generates a separate Help system output. Subgroups organize your help project
source documents into a logical and helpful system.

You can include multiple source documents of differing file types within Document
Manager. Each file type has a unique and identifiable icon in the Document Manager
window.

86 | Document Manager

File Type Icon File Type Description

ePublisher Project file

Adobe FrameMaker file

DITA 1.0 or DITA 1.1 file

Microsoft Word 98 to Microsoft Word 2007 file

“Understanding Document Manager”

Output Explorer
This window allows you to view and open generated output files from ePublisher
Designer. The Output Explorer window displays output files based on whether you
select a source document or the project file in the Document Manager window. If
you select the project file, Output Explorer displays the project file along with its
navigation information and any project reports. If you select a source document,
Output Explorer displays the individual files, images, and reports for the document.

Output Explorer | 87

File Type Icon File Type Description

ePublisher project directory

Output files directory

Images directory

Output file that has been deleted

Navigation directory

Reports directory

Single report

Printable report

“Understanding Output Explorer”

“Understanding Document Manager”

Reports
Once you have generated output or generated a report from ePublisher, you
can double click each of the types of report to bring up a tab to the right of the
Document Manager and Output Explorer that will list the various occurrences
of filename markers, topic alias markers, and other components of your source
document.

Note: If you do not have anything to report, the tab will be blank. For example, if
you do not have any topic aliases, there will be nothing in the topics report.

Reports - printable
Provides an xml list of the reports that are generated with the output.

88 | Reports - printable

Start Page
This window lists all recently opened ePublisher projects. Click any of the project
names listed to open the project file. Click New Project to create a new project
from this window. Click Open Project to navigate and open an existing project not
already listed on the Start Page.

To specify the maximum number of projects that ePublisher shows in Start Page or
clear the currently displayed projects, select Preferences on the Edit menu. Enter
the number of projects to display in the Recent projects to remember field. Click
Clear List to remove the current list of projects shown on Start Page.

Log Window
This window shows the status of project and report generation. The Log window
identifies where errors occur when generating output files or reports and displays a
detailed error message description. Links in this window are highlighted in blue and
if clicked they will open that URL in the default browser.

When you generate output, ePublisher converts a source document to a target
by breaking the process into a series of steps, also known as stages. Each stage
performs a specific action in the process. ePublisher groups these steps into
pipelines of related stages.

Each time you generate output or reports, ePublisher Designer creates an external
log file, generate.log in the Logs directory of the selected project file. Send this
log file to the ePublisher support team if you submit a support request. Click Save
As in the Log window to save the current log contents as a text file in another
directory.

The Log window automatically displays when you open the main ePublisher
Designer window. If you close the Log window and need to reopen it, select Log
Window on the View menu.

Preview Window
This window shows a preview of how a source document will display when you
generate output. You can modify output formatting in the Preview window from
Document Designer. Document Designer allows you to make modifications only at
the paragraph or table level, which means each modification you make applies only
to the selected paragraph or table.

Note: The Preview window gives you an idea of how your project settings affect
the appearance of generated output. However, this window does not display
some output features or shows them as inactive, such as popups, links, and
conditions.

Preview Window | 89

After you modify properties in Document Designer, click Refresh at the top of the
Preview window to view an updated preview. If you modify your original source
documents, you must scan the document again to see changes in the Preview
window

“Understanding the Preview Window”

“Customizing Your ePublisher Workspace”

Document Designer
This window allows you to override the appearance of a paragraph or table in
generated output. If there is an issue in the output and the designer does not
have time to make the change in the Stationery, or if you did not set all the styles
needed in the source documents and you do not have time to fix it, use Document
Designer to put style overrides in place for specific paragraphs or tables. Select the
Allow user style overrides project setting to allow style overrides.

Note: ePublisher does not keep changes made through Document Designer if you
save a project as Stationery.

Document Designer works in conjunction with the Preview window. To preview a
document, select a single document in the Document Manager, and then select
Generate Preview from the Project menu. Select a paragraph or table in the
Preview window and make modifications in Document Designer. Document Designer
fields appear inactive until you open the Preview window and select text in the
source document.

After modifying the selected content in Document Designer, click refresh in the
Preview window to see how modifications look in the generated output.

Note: Changes made using Document Designer override any others modifications
in ePublisher. For example, if you alter a paragraph in Document Designer
to have a red background, but you later decide to change the style the
paragraph uses in Style Designer to have a blue background, the Document
Designer modifications take precedence.

To clear changes made in Document Designer, select Clear Document Style
Overrides on the Edit menu.

Style type

Indicates what style was applied to the paragraph or table selected in the
Preview window. ePublisher populates this field with style name specified in
your source document.

Apply style

90 | Document Designer

Allows you to select a different style to apply to the paragraph or table
selected in the Preview window. ePublisher imports all styles in your original
source document when you generate project files.

Style Designer
This window allows you to specify the appearance and functionality of online
content, including paragraphs, characters, tables, page layouts, images, table of
contents levels, popups, and related topics. ePublisher Designer builds Stationery
based on the settings you specify in Style Designer.

Font Family Picker Window
This window allows you to assign a font or font family to a paragraph style in your
project. From Style Designer, select the paragraph style to assign a font or font
family and click the Ellipses button in the Family field. Select an installed font, a
font family, or a custom font and click the Arrow button to move the font or font
family to the Selected field. To remove a font or font family from the Selected
field, select the font in that field and click “X” at the top of the window.

Consider specifying a generic font family, such as sans-serif, rather than a specific
font. Many browsers and help systems use only fonts installed on the user’s
computer. If you indicate a specific font, a user who does not have that specified
font installed does not see the help output correctly. By selecting a generic font
family, the user does not have to have the exact font specified, only a font from
that family.

If you specify multiple fonts, separated by commas, the user’s browser displays
the first available font in the list. For example, if you specify Verdana, Arial,
Helvetica, sans-serif and the user does not have the Verdana font installed, the
browser displays in the Arial font for the help output instead.

Manage Targets Window
This window allows you to create and manage targets in your project. A target is
based on an output format, such as WebWorks Reverb 2.0, PDF - XSL-FO, or Sun
JavaHelp. Each target also has target settings to customize that target. A project
can have multiple targets based on the same output format, such as Microsoft HTML
Help. You may add multiple targets in projects that generate multiple versions
of the online content based on OEM partner agreements or multiple versions of
the product. Each target can have different variable values and conditions set to
generate unique output. The columns are defined as follows:

Target Name

Specifies the name for the target. You can specify a target name that is
different from the output format name. For example, you can name a target

Manage Targets Window | 91

OnlineHelp , to identify the purpose of the generated output. You can also
name a target to match the output format name, such as WebWorks Reverb
2.0 , as long as you have only one target in the project using that output
format.

Format Type

Specifies the output format for the target, such as WebWorks Reverb 2.0, PDF
- XSL-FO, or Sun JavaHelp 2.0.

Merge Settings Window
This window allows you to specify custom settings for merged, or multivolume help.
ePublisher only enables this window if you are working with an output format that
supports merged, or multivolume help systems. Not all output formats support
merged, or multivolume help. WebWorks Reverb 1 and 2, Eclipse Help, Microsoft
HTML Help, and WebWorks Help are the output formats that currently support
merged, or multivolume help systems. If you are working with an output format
that does not support merged, or multivolume help, this window is disabled.

The fields are defined as follows:

Merge Title

Specifies the name displayed in the title bar of the help.

Hierarchy

Lists all the top-level groups in your project. This group hierarchy is used to
define the hierarchy displayed in the table of contents for your multivolume
help system. To reposition any of your top-level groups in the table of
contents hierarchy, select the group to move and drag the group to a new
location in the hierarchy.

Table of contents title

Specifies the name displayed for the selected top-level group when that group
is displayed in the table of contents for your merged, or multivolume help
system. The group name specified in Document Manager defines the name
of the folder that contains the generated output files in that group. Change
the name displayed for the top-level group in your merged, or multivolume
help system by selecting a top-level group and then typing a new name in this
field. By default, the name displayed in the table of contents is the name of
the top-level group specified in Document Manager.

Group context

Specifies the help context to use when generating merged, or multivolume
help that includes context-sensitive help. In WebWorks Help, you need to

92 | Merge Sengs Window

include this context and the TopicAlias value in the help call to display the
correct help topic.

Note: The group context must be unique so that when topic IDs are duplicated in
different help sets, the context sensitive reference will refer to the correct
help location. For more information, see “Opening Context-Sensitive Help in
WebWorks Help using Standard URLs”.

New ePublisher AutoMap Job Window
This window allows you to create a new ePublisher AutoMap job. A job is a task
that ePublisher AutoMap schedules that generates output based on an existing
ePublisher project or existing ePublisher Stationery. Once you create an ePublisher
AutoMap job, you can run the job immediately, or schedule the job to run at a later
point in time.

The fields are defined as follows:

ePublisher project

Creates a new ePublisher AutoMap job based on an existing ePublisher
project.

ePublisher stationery

Creates a new ePublisher AutoMap job based on existing ePublisher
Stationery.

Choose ePublisher project or stationery

Specifies the location of the project or Stationery that ePublisher AutoMap
should use to generate output.

New Project Wizard
This wizard allows you to create a new ePublisher project in ePublisher Express or
ePublisher Designer. A project is all the necessary files and components needed to
generate output from source documents. This wizard provides several windows:

“New Project Window (New Project Wizard)”

“Browse For Folder Window (New Project Wizard)”

“Source Documents Window (New Project Wizard)”

New Project Window (New Project Wizard)

New Project Window (New Project Wizard) | 93

This window allows you to specify a name for a new project and where to save
the new project you are creating. If you are using ePublisher Express, this window
allows you to specify the Stationery to use when creating your new project. If you
are using ePublisher Designer, this window allows you to specify the output format
for your Stationery design project.

The fields are defined as follows:

Project name

Specifies the name to use for your project.

Location

Specifies the folder in which to save your new project. Click Browse to open
the Browse For Folder window where you can select the folder in which to
save your new project.

Format

Specifies the output format to use for your project. You must specify at
least one output format when you create the project. You can also specify
additional output formats for the project after you create the project.

Browse For Folder Window (New Project
Wizard)
This window allows you to specify the folder where you want to save the new
project. Navigate to and select the folder where you want to save the project, or
click Make New Folder to create a new folder in which to save the project.

Source Documents Window (New Project
Wizard)
This window allows you to specify the source documents to use in your project. To
add source documents to your project, click Add, select the files to add, and then
click Open. To remove a source document from the list, select the source document
and then click Remove. You can also add and remove source documents after you
have created the project.

When the Source Documents field lists all the source documents you want to
initially add to the project, click Finish.

Preferences Window

94 | Preferences Window

This window allows you to customize ePublisher AutoMap behavior for your specific
needs. These preferences affect the behavior of the application, such as the
language displayed in the console.

This window provides the following tabs:

“General Tab (Preferences Window)”

“File Mappings Tab (Preferences Window)”

“Notification Tab (Preferences Window)”

General Tab (Preferences Window)
This window allows you to specify a job folder, staging folder, and user formats
folder for ePublisher AutoMap jobs. You can also specify the user interface language
ePublisher AutoMap uses, whether you want ePublisher AutoMap jobs to always
scan for variables and conditions, and if you want ePublisher AutoMap jobs to delete
temporary files created in the staging folder after generating output.

The fields are defined as follows:

Job folder

Specifies the folder where ePublisher AutoMap stores job files and log files.

A job file is a file that uses a proprietary XML format. ePublisher AutoMap
stores all information that describes an ePublisher AutoMap job in the job
file. ePublisher AutoMap uses the name of the job as the job file name, and
ePublisher AutoMap uses WebWorks AutoMap Job (.waj) as the extension
for the job file. ePublisher AutoMap creates the job file based on information
you specify using the ePublisher AutoMap user interface. Do not edit the job
file directly. If you edit the job file outside of the ePublisher AutoMap user
interface, ePublisher AutoMap may no longer be able to read the job file.

A log file is a file that contains information about events that occurred the last
time the ePublisher AutoMap job generated output. The log file is a plain text
file that you can view using any text editor. Log files use the .txt extension.
ePublisher AutoMap does not create and store a log file in the job folder until
the job runs and generates output.

By default, ePublisher AutoMap creates the job folder in the following location:
\Documents and Settings\UserName\My Documents\WebWorks Automap

General Tab (Preferences Window) | 95

\Jobs , where UserName is the name of the user account under which the job
runs.

Staging folder

Specifies the folder where ePublisher AutoMap stores the job information an
ePublisher AutoMap job needs to generate output. The staging folder servers
as a working folder for the job. Information such as automatically generated
ePublisher projects, intermediate data files, and output files are stored in the
stating folder.

By default, ePublisher AutoMap creates the staging folder in the following
location: \Documents and Settings\UserName\My Documents\WebWorks
Automap\Staging , where UserName is the name of the user account under
which the job runs.

ePublisher AutoMap creates the staging folder contents based on information
you specify using the ePublisher AutoMap user interface and uses this
information to generate output. Do not edit files in the staging folder directly.
If you edit files in the staging folder directly, the ePublisher AutoMap job may
no longer be able to run.

Always scan for variables and conditions

Specifies whether ePublisher AutoMap always scans for new variables and
conditions when adding a document to the Document Manager.

Delete temporary files after generating

Specifies whether ePublisher AutoMap jobs delete the temporary files the job
created in the staging folder after generating output. This option is disabled
in ePublisher AutoMap by default so you can examine the actual project and
intermediate files created and stored in the staging folder when the ePublisher
AutoMap job generated output. Enable this option to reduce the amount
of computer disk space ePublisher AutoMap uses and if you do not want to
examine the actual project and intermediate files created and stored in the
staging folder when the ePublisher AutoMap job generated output.

User interface language

Specifies the language the ePublisher AutoMap user interface uses. ePublisher
is currently available in English, French, German and Japanese. If you change
the user interface language to use, you must close and then reopen the user
interface before the language change you specified takes effect.

File Mappings Tab (Preferences Window)
This window allows you to specify file mappings. A file mapping is an association
between a file extension and an ePublisher adapter. An ePublisher adapter is

96 | File Mappings Tab (Preferences Window)

an ePublisher component that bridges the gap between the application in which
the source document was created and ePublisher. ePublisher currently provides
adapters for Markdown++ (helper), Microsoft Word, Adobe FrameMaker, and XML.

The columns are defined as follows:

File Extension

Specifies the name of the file extension.

Adapter

Specifies the ePublisher adapter associated with the file extension.

Notification Tab (Preferences Window)
This window allows you to specify email notification options if you want ePublisher
AutoMap to send an email notification after an ePublisher AutoMap job completes.
You can configure ePublisher AutoMap to send an email notification that contains
information about if the job completed successfully or if the job generated errors.
You can also specify to include the log file generated by the ePublisher AutoMap job
as an email text file (.txt) attachment.

The fields are defined as follows:

Enable email notification

Specifies whether ePublisher AutoMap sends out an email notification when a
job completes.

To address

Specifies the email addresses to which ePublisher AutoMap sends email
notifications. Enter an email address for each person to send an ePublisher
AutoMap email notification to when a job completes. To enter multiple email
addresses, separate email addresses using a comma (,) character. You can
also send email notifications to group email aliases. To create a group email
alias to send ePublisher AutoMap email notification to, contact your system
administrator at your company. After your system administrator creates the
appropriate group email aliases you want to use, enter the group alias in the
field.

From address

Specifies the email address from which the email notification is sent. If
someone replies to an ePublisher AutoMap email notification, this is the email
address to which the reply will be sent.

SMTP server

Noficaon Tab (Preferences Window) | 97

Specifies the name of the SMTP server ePublisher AutoMap uses to send email
notifications. ePublisher AutoMap email notifications require an SMTP email
server in order to send emails. Contact your system administrator at your
company to obtain the name of an SMTP email server ePublisher AutoMap can
use to send email notifications.

Username

Specifies the name of a user account with permissions to send emails using
the SMTP server. Contact your system administrator at your company to
obtain the user name and password for a user with permissions to send
ePublisher AutoMap notifications using the SMTP server.

Password

Specifies the password for the user account with permissions to send email
using the SMTP server. Contact your system administrator at your company
to obtain the user name and password for a user with permissions to send
ePublisher AutoMap email notifications using the SMTP server. ePublisher
encrypts and stores the password you specify.

Always attach log to email

Specifies whether you want to include the log file generated by the job
as an email text file (.txt) attachment in the ePublisher AutoMap email
notification.

Project Settings Window
This window allows you to specify file mappings for your project. If you are using
ePublisher Designer, this window also allows you to specify if you want to allow
user style overrides in document previews for the project and input configurations.
Depending on which ePublisher component you are using, this window can provide
the following tabs:

“File Mappings Tab (Project Settings Window)”

“Input Configurations Tab (Project Settings Window)”

File Mappings Tab (Project Settings
Window)
This window allows you to specify file mappings for your project. A file mapping is
an association between a file extension and an ePublisher adapter. An ePublisher
adapter is an ePublisher component that bridges the gap between the application
in which the source document was created and ePublisher. ePublisher currently
provides adapters for Microsoft Word, Adobe FrameMaker, and XML.

98 | File Mappings Tab (Project Sengs Window)

The columns are defined as follows:

File Extension

Specifies the name of the file extension.

Adapter

Specifies the name of the ePublisher adapter associated with the file
extension.

General Tab (Project Settings Window)
If you are using ePublisher Designer, this window allows you to specify if the
project allows user style overrides in document previews by default. A style
override is a change made with Document Designer to the preview of a single
document. Overrides can be applied to a paragraph or a table, and an override
supersedes any values or properties set in either the source document or in Style
Designer. Overrides appear only in output. The do not display in or affect the source
document. Overrides cannot be saved to Stationery.

The fields are defined as follows:

Allow user style overrides in document previews (ePublisher Designer
only)

Specifies whether to allow user style overrides. When you add overrides to the
output in your project, ePublisher adds bookmarks to your source documents.
These bookmarks contain unique IDs that store override information and allow
ePublisher Designer to keep track of your overrides. These IDs are invisible
and do not affect the functionality of your source documents.

If you clear this option, you cannot add overrides to your output, and you
cannot use Document Designer. If you do not want ePublisher to add these
unique ID bookmarks to your source documents, clear the check box.

If all paragraphs in your Microsoft Word documents use a style other than
Normal and you do not plan on adding any overrides to your documents, you
may want to clear this option.

Compatibility Configuration

The Base format version determines which Format library will be used when
generating output. You can select any ePublisher version back to 9.2.2. This
option is available to ensure ease of use when upgrading should user contain
XSL overrides which may be incompatible with newer format libraries. Any
plugin used in the project will be updated to match format version.

General Tab (Project Sengs Window) | 99

Users will see a log message such as the following when a project is
configured to operate in compatibility mode:

[Warning] Project configured to use legacy format version '2009.2'.

Keep in mind that a project in running in compatiblity mode can only use
formats defined for that version. You will be able to use the latest format
versions once you have upgraded your customizations to be compatible with
the newer release.

Input Configurations Tab (Project Settings
Window)
This window allows you to specify settings for ePublisher input formats, also known
as ePublisher adapters.

The fields are defined as follows:

Preserve condition colors in PDF

Specifies whether you want to preserve any colors assigned to conditions in
your Adobe FrameMaker source documents when you generate output.

Preserve condition styles in PDF

Specifies whether you want to preserve any condition styles assigned to
conditions in your Adobe FrameMaker source documents when you generate
output.

Version used for generation

Specifies the version of Adobe FrameMaker to use when generating output.
Use this setting if you have more than one version of Adobe FrameMaker
installed on the computer used to generate output and you want ePublisher to
use a specific version of Adobe FrameMaker when generating output.

Preserve change bars in PDF

This allows the change bar feature in Microsoft Word to be added to the PDF
output.

Preserve Index

By default, ePublisher does not use the Index generated within Microsoft
Word. In cases (usually when generating PDFs) where you want to preserve
the Index generated by Microsoft Word, you can enable this feature.

Preserve Table of Contents

100 | Input Configuraons Tab (Project Sengs Window)

By default, ePublisher does not use the table of contents generated within
Microsoft Word. In cases (usually when generating PDFs) where you want to
preserve the table of contents generated by Microsoft Word, you can enable
this feature.

Preserve Table of Figures

By default, ePublisher does not use the table of figures generated within
Microsoft Word. In cases (usually when generating PDFs) where you want to
preserve the table of figures generated by Microsoft Word, you can enable this
feature.

RD field behavior

Specifies how you want Referenced Document (RD) field code behavior used
when you generate output using Microsoft Word source documents that
contain RD field codes that reference other source documents. The values for
this setting are defined as follows:

Input Configuraons Tab (Project Sengs Window) | 101

Value Description

Indicates Book
document

Processes source documents that contain RD field
codes as book files. ePublisher processes all the source
documents identified by RD field codes.

Ignore Ignores all the source documents identified by RD field
codes. ePublisher processes only the source documents
included directly in the project.

Auto-Detect Processes source documents that contain RD field
codes based on the contents of the source document.
ePublisher analyzes the contents of each source
document to determine if the file should be processed
as a book file, front matter, table of contents, or index.
This analysis is based on the presence of RD field codes
combined with the presence or absence of a TOC or
INDEX field code, which indicate whether the document
contains a table of contents, index, or table of figures..

All DITA topics must exist

Specifies whether or not to generate an error instead of a warning whenever a
missing topic is found during the processing of a ditamap.

Combine DITA character styles

Starting with version 2014.1, ePublisher will use combined character styles to
allow nested elements to be styled more precisely in the generated output.
For new projects this setting will default to enabled, otherwise it will be
disabled for backward compatibility.

Convert notes to tables

Enable this setting to convert DITA <note> elements into simple tables with
ePublisher paragraph styles for better control of the generated output.

DITA Abbreviated Form Scope

Specifies what scope to use when controlling when an abbreviation should
be used instead of the long form. The values for this setting are defined as
follows:

102 | Input Configuraons Tab (Project Sengs Window)

Value Description

Map Use the long form once for the entire ditamap. All other
instances after the first usage will use the abbreviated
form.

Part If you organize multiple chapters into a part, then only
the first instance will use the long form within the part.

Chapter Use the long form once per chapter.

Topic Use the long form once per topic.This is the default
configuration.

DITA Open Toolkit version

Specifies the version of the DITA Open Toolkit you want to use when
generating output using DITA source documents.

Emit draft comments

Enable this setting when working with DITA and you want to emit draft
comments.

Ignore print attribute

Disable this setting if you want ePublisher to process the print attribute
for DITA content. In the DITA 1.3 specification, the @print attribute
was deprecated and a new attribute that obeys DITA filtering rules,
@deliveryTarget , was introduced.

Save As Stationery Window
This window allows you to create Stationery from an ePublisher Designer Stationery
design project by creating and saving a Stationery file. Stationery contains all
project configurations, including style information, target settings, variables,
conditions, cross-reference definitions, target overrides, user files, merge settings,
and output format information.

The fields and columns are defined as follows:

Name

Save As Staonery Window | 103

Specifies the name of the Stationery file.

Directory

Specifies the location where ePublisher saves the Stationery.

Target Name

Specifies the names of the targets included in the Stationery.

Format Type

Specifies the output format of the each target.

Script Editor Window
This window allows you to write ePublisher AutoMap job scripts using a simple script
editor. The ePublisher AutoMap script editor provides a text area where you can
paste or write a script and a list of useful ePublisher AutoMap variables you can use
in your scripts or pass to other scripts and applications.

ePublisher AutoMap only recognizes text-based scripts. If you paste a script into
the script editor, any formatting or additional information available in a third-party
script editor is lost when you paste the script into the ePublisher AutoMap script
window.

The columns are defined as follows:

Name

Specifies the name of the ePublisher AutoMap variable.

Description

Specifies a description for the ePublisher AutoMap variable.

Target Configuration Window
This window allows you to specify output generation parameters for each output
target in ePublisher AutoMap. Depending on which output target you select in the
Target Name column, this window can provide the following tabs:

“Info Tab (Target Configuration Window)”

“Conditions Tab (Target Configuration Window)”

“Variables Tab (Target Configuration Window)”

104 | Target Configuraon Window

“Target Settings Tab (Target Configuration Window)”

“Merge Settings Tab (Target Configuration Window)”

For example, if you select an output target that uses the Dynamic HTML output
format, the Target Configuration window displays the Info, Conditions, Variables,
and Target Settings tabs, but does not display the Merge Settings tab, because
merge settings is not supported for the Dynamic HTML output format. However, if
you select an output target that uses the Microsoft HTML Help output format, the
Target Configuration window displays the Info, Conditions, Variables, Target
Settings, and Merge Settings tab.

Info Tab (Target Configuration Window)
This window allows you to specify output target settings for the selected output
target, such as where to deploy the output after generating the output, if you want
ePublisher AutoMap to delete any files in the output location before generating
output, and if you want to run a pre-build or post-build script before or after
generating output for each output target.

The fields are defined as follows:

Deploy to

Specifies the deployment location. The deployment locations listed are
deployment location configured in the ePublisher Stationery or ePublisher
project associated with the ePublisher AutoMap job. Click Add deploy target
to add an output deployment location to the list.

Delete files in output location before deployment

Specifies whether ePublisher AutoMap deletes any existing files in the
deployment location before ePublisher AutoMap places new files in the
deployment location.

Pre-build

Specifies the pre-build script to run before ePublisher AutoMap generates
output. Type or paste the pre-build script into the text field or click Edit
Script to use the Script Editor window to write your script.

Post-build

Specifies the post-build script to run before ePublisher AutoMap generates
output. Type or paste the pre-build script into the text field or click Edit
Script to use the Script Editor window to write your script.

Info Tab (Target Configuraon Window) | 105

Conditions Tab (Target Configuration
Window)
This window allows you to specify the visibility of conditions in your output. The
columns are defined as follows:

Name

Specifies the name of the condition.

Value

Specifies whether the content with the condition applied to it is included in
your output. The values for this setting are defined as follows:

106 | Condions Tab (Target Configuraon Window)

Value Description

Visible Displays the content in your output.

Hidden Excludes the content from your output.

Use document value Uses the state of the condition specified in your source
documents to determine whether the content is
displayed in your output.

Passthrough

Places the content directly in your output without processing or transforming
the output. This setting allows you to put HTML code in your source
documents and have that code put directly in your output. The content with
this type of condition applied is not transformed, so the special characters in
HTML coding remain unchanged. For example, the < is not transformed to
< and the > is not transformed to > .

Variables Tab (Target Configuration
Window)
This window allows you to specify the variables to use when generating output.

The columns are defined as follows:

Name

Specifies the name of the variable.

Use document value

Specifies whether you want to use the variable value specified in your source
documents when generating output.

Value

Specifies the value of the variable that will be used in your output. The default
ePublisher behavior is to use variable value specified in the source document
in your project. However, you can change the value of the variable in your
project by clicking in the Value field for the variable to change and then
typing in a new value for the variable.

Variables Tab (Target Configuraon Window) | 107

Target Settings Tab (Target Configuration
Window)
This window allows you to specify the settings to use for the selected output target.
The target settings displayed in ePublisher AutoMap are the target settings specified
in ePublisher projects and Stationery. Typically, the target settings are configured
and managed by the Stationery Designer in ePublisher Designer. However, you can
override the target settings specified in ePublisher projects and Stationery using
ePublisher AutoMap for each output target in an ePublisher AutoMap job if needed.

The columns are defined as follows:

Setting

Specifies the settings available for the selected target.

Value

Specifies the value of the setting.

Merge Settings Tab (Target Configuration
Window)
This window allows you to specify custom settings for merged, or multivolume help.
ePublisher only enables this window if you are working with an output format that
supports merged, or multivolume help systems. Not all output formats support
merged, or multivolume help. Eclipse Help, Microsoft HTML Help, and WebWorks
Help are the output formats that currently support merged, or multivolume help
systems. If you are working with an output format that does not support merged,
or multivolume help, this tab is not displayed.

The fields are defined as follows:

Merge Title

Specifies the name displayed in the title bar of the help system when the
multivolume help system opens.

108 | Merge Sengs Tab (Target Configuraon Window)

For example, if you have two or more groups, the Merge Title will reflect the
title bar of the meged helpset and the top-level group.

Hierarchy

Specifies all of the top-level groups in your project in a hierarchy. This group
hierarchy is used to define the hierarchy displayed in the table of contents for
your multivolume help system. To reposition any of your top-level groups in
the table of contents hierarchy, select the group to move and drag the group
to a new location in the hierarchy.

Table of contents title

Specifies the name displayed for the top-level group when the top-level group
is displayed in the table of contents for your merged, or multivolume help
system. Change the name displayed for the top-level group in your merged,
or multivolume help system by selecting a top-level group and then typing a
new name in the field. By default, the name displayed is the name of the top-
level group in your project.

Group context

Specifies the name to use as the topic context when you generate merged, or
multivolume help that includes context-sensitive help.

Target Selection Window

Target Selecon Window | 109

This window allows you to specify the targets the ePublisher AutoMap job
generates. A target is based on an output format, such as WebWorks Help,
Microsoft HTML Help, or Sun JavaHelp, but targets also contain project-specific
settings. Targets define how your output looks, and are based on output formats
and settings specified in the ePublisher Stationery or ePublisher project associated
with the ePublisher AutoMap job. An ePublisher AutoMap job can generate output
for one or multiple targets.

The columns are defined as follows:

Target Name

Specifies the list of targets in the ePublisher Stationery or ePublisher project
associated with the ePublisher AutoMap job.

Format

Specifies the type of output format associated with the target.

Build

Specifies whether the target will be included in the ePublisher AutoMap job.
Select this check box for the target to include the target in the ePublisher
AutoMap job. Clear this check box if you do not want to include the target in
the ePublisher AutoMap job.

User Information Window
This window allows you to specify authentication information to schedule an
ePublisher AutoMap job using Windows Task Scheduler. Windows Task Scheduler is
a free tool that is included in Microsoft Windows operating systems.

With ePublisher AutoMap, you can specify when ePublisher AutoMap jobs run using
Windows Task Scheduler. When you configure an ePublisher AutoMap job to run
on a schedule, you must specify a user account and password for Windows Task
Scheduler to use when running the job. When the ePublisher AutoMap job you
scheduled using Windows Task Scheduler runs, Windows Task Scheduler executes
the job using the security context of the credentials you specified when you created
the job.

For more information about Windows Task Scheduler, refer to the Microsoft
Windows operating system help.

The fields are defined as follows:

User name

110 | User Informaon Window

Specifies the user account name for Windows Task Scheduler to use when
running the job. Enter your Windows user account name. Include the name of
the domain to which the user account belongs to use the credentials of a user
account that is a member of a Windows domain to run the job.

For example, type DomainName\UserAccountName, where DomainName
is the name of the domain to which the user account belongs, and
UserAccountName is the name of the Windows user account.

Password

Specifies the password for the user account name. Type the password for the
Windows user account you specified in the User name field.

Variables Window
This window allows you to specify the values to use for variables when generating
output. The columns are defined as follows:

Name

Specifies the name of the variable.

Use document value

Specifies whether you want to use the variable value specified in your source
documents when generating output.

Value

Specifies the value of the variable that will be used in your output. The default
ePublisher behavior is to use variable value specified in the source document
in your project. However, you can change the value of the variable in your
project by clicking in the Value field for the variable to change and then
typing in a new value for the variable.

WebWorks ePublisher Preferences
Window
This window allows you to customize ePublisher Designer and ePublisher Express
behavior for your specific needs. These preferences affect the behavior of the
application, such as the language displayed in the console.

This window provides the following tabs:

“General Tab (WebWorks ePublisher Preferences Window)”

WebWorks ePublisher Preferences Window | 111

“File Mappings Tab (WebWorks ePublisher Preferences Window)”

General Tab (WebWorks ePublisher
Preferences Window)
This window allows you to specify the number of projects listed on the Start Page,
the user interface language ePublisher Express or ePublisher Designer uses, and
source document scan options. You can also use this window to reset the toolbar,
reset dock positions, and clear the Do not ask again option.

The fields are defined as follows:

Scan added documents

Specifies when to scan source documents you add to a project. The scanning
option you select will become the default selection for all existing projects,
as well as all new projects you create. The default scan option is Always.
When ePublisher scans source documents, it reads the style and formatting
information, conditions, variables, and markers in your source documents.
The values for this setting are defined as follows:

112 | General Tab (WebWorks ePublisher Preferences Window)

Value Description

Ask Specifies that ePublisher prompt you to scan source
documents when you add them to a project.

Always Specifies that ePublisher always scans source
documents when you add them to a project. When you
select this option, ePublisher automatically scans your
source documents for style and formatting information
when you add new source documents to your project.

Never Specifies that ePublisher does not scan source
documents when you add them to a project. If you
select this option, ePublisher will never scan your
source documents unless you manually scan your
source documents using one of the scanning commands
on the Project menu.

Preview Options (ePublisher Designer)

Specifies when to create preview tabs of source documents added to the
project or selected in the Document Manager.

Automatically display preview for newly imported documents

Checking this option causes ePublisher Designer to generate a new preview
tab whenever a source document or file is added to the Document Manager.

Display preview on document double-click

Checking this option causes ePublisher Designer to generate a new preview
tab whenever a source document or file in the Document Manager is double-
clicked.

Recent projects to remember

Specifies the number of projects to list on the Start Page. Click Clear List to
clear the list of projects displayed on the Start Page.

Language

Specifies the language the ePublisher Express or ePublisher Designer user
interface uses from the drop-down list. If you change the user interface

General Tab (WebWorks ePublisher Preferences Window) | 113

language ePublisher Express or ePublisher Designer uses, you must close and
then reopen the user interface before the language change you specified takes
effect. The values for this setting are defined as follows:

114 | General Tab (WebWorks ePublisher Preferences Window)

Value Description

English Specifies English as the user interface language.

Deutsch Specifies German as the user interface language.

Francais Specifies French as the user interface language.

Miscellaneous

Reset Toolbar

Reset toolbar interface to default position.

Reset Dock Positions

Reset user interface dock positions to default.

Clear “Do not ask again”

Reset automatic prompt settings to their default.

Reset Evaluation Materials

Reset the trial projects and sample materials to their original state.

File Mappings Tab (WebWorks ePublisher
Preferences Window)
This window allows you to specify file mappings. A file mapping is an association
between a file extension and an ePublisher adapter. An ePublisher adapter is
an ePublisher component that bridges the gap between the application in which
the source document was created and ePublisher. ePublisher currently provides
adapters for Microsoft Word, Adobe FrameMaker, and XML.

The columns are defined as follows:

File Extension

Specifies the name of the file extension.

Adapter

File Mappings Tab (WebWorks ePublisher Preferences Window) | 115

Specifies the name of the ePublisher adapter associated with the file
extension.

Editor Preferences Tab (WebWorks
ePublisher Preferences Window)
This window allows you to specify both a Text Editor as well as an Image Editor for
use when modifying overridden files. The overridden files can be viewed and easily
accessed from the Advanced menu.

Diff Preferences Tab (WebWorks
ePublisher Preferences Window)
This window allows you to specify the path to your preferred Diff Program. A Diff
program allows you to manage your custom changes to overridden files. Overridden
files can be easily accessed from the Advanced menu.

Log Window Tab (WebWorks ePublisher
Preferences Window)
This window allows you to edit the Log Window display settings. You can change the
foreground, background, warning message, and error message colors. You can also
set the font, and enable word wrap.

WebWorks Licensing Info Window
This window allows you to specify your Contract ID. A Contract ID is a unique
identifier that identifies the number of users and type of functionality enabled for
your ePublisher installation. WebWorks generates an appropriate Contract ID for
your ePublisher installation when you purchase ePublisher or request an evaluation
copy of ePublisher.

You must enter your Contract ID, email address, and computer name before you
can use ePublisher components. The Contract ID enables the ePublisher product
components and ePublisher input formats for which you are licensed.

The fields are defined as follows:

Contract

116 | WebWorks Licensing Info Window

Specifies your Contract ID. Enter the Contract ID you received from
WebWorks when you purchased ePublisher or requested an evaluation copy of
ePublisher.

Email

Specifies your email address. If you have an email address that you use as
your WebWorks support login, enter that email address.

Computer

Specifies the name of the computer where ePublisher is installed.

“Working with Contract IDs”

“Viewing Licensing and Contract ID Information”

“Obtaining Contract IDs”

“Entering Contract IDs”

“Managing Licensing in Environments without Internet Connectivity”

“Updating Licensing”

“Deactivating Licensing”

“Problems with FrameMaker or Microsoft Word”

WebWorks Licensing Info Window | 117

Producing Output from Stationery
What Makes an ePublisher Project
Source Documents
Targets
Stationery
Creating Projects Based on Stationery
Working with Source Documents
Working with Targets
Working with Projects
Generating and Regenerating Output
Viewing Output
Validating Output Using Reports
Merging Top-level Groups (Multivolume Help)
Deploying Output
Working with Target Settings
Setting Variables in Projects
Setting Conditions in Projects
Setting Cross-References in Projects
File Mappings for Source Documents

This section explains how writers can use their source documents and ePublisher
projects and Stationery to produce output.

What Makes an ePublisher Project
This section explains what a project is and the folder structure projects use.

ePublisher Projects
An ePublisher project consists of all the necessary pieces needed to convert your
source documents into online output. It contains your source documents, images,
project Stationery, and any settings or preferences you specify. After you create a
project, you can modify your project settings and preferences, generate reports,
and produce output.

ePublisher provides powerful single-sourcing capabilities that allow you to generate
online output in multiple formats using a single project and a single set of source
documents. For example, you can generate WebWorks Help, Microsoft HTML Help,
Oracle Help, Dynamic HTML Help, and Sun JavaHelp using one project and one set
of source files.

Project Folder Structure
The following figure shows a sample project folder.

118 | Project Folder Structure

To view all of the files for your project, on the View menu, click Project Directory.

The project folder contains the following subfolders:

Files

Contains any custom files you want your project to use. Typically, the Files
folder contains logo images, custom.css files, custom bullet images, and
custom background images. To view the files in the Files folder for your
project, on the View menu, click User Files.

You can also place a Files directory in a target’s override folder or within the
target’s format override folder.

Formats\<format name>\Files

Targets\<target name>\Files

These files will be copied for each target’s sub-directory but will not be visible
in the user interface to select, e.g. the company logo image in the Target
Settings dialog.

Formats

Contains output format overrides and all of the files required to generate
output for an output format. Any time you want to override an output format
file, place the override in the Formats folder. For example, if you want to
override the standard table of contents icons for topics in WebWorks Help by
specifying custom table of contents icons, place the custom table of contents
icons you want to use in an images folder in the Formats folder. For more
information about format overrides, see “Creating Format Overrides”. To view
the files in the Formats folder for your project, on the View menu, click
Format Override Directory.

Logs

Contains the generate.log file. The generate.log file contains information
about the actions ePublisher performed when generating output, along with
any warning or errors that occurred during output generation.

Output

Project Folder Structure | 119

Contains the files ePublisher creates when generating output and provides a
structure for generated output files. ePublisher creates a folder for each target
in the project in the Output folder, and each target folder contains all topic
pages, generated images, entry-point files, and merged help files generated
for the target. The entry-point file is the file that opens the help system.

By default, ePublisher creates the Output folder in the following location:

If you use ePublisher Express, by default ePublisher creates the
Output folder in the My Documents\ePublisher Express Projects
\ProjectName folder, where ProjectName is the name of the project.

If you use ePublisher Designer, by default ePublisher creates the
Output folder in the My Documents\ePublisher Designer Projects
\ProjectName folder, where ProjectName is the name of the project.

You can view output files in the Output folder using Output Explorer or by
clicking on and opening output files in the Output folder. To view the files
in the Output folder for your project, on the View menu, click Output
Directory. For more information about viewing output, see “Viewing Output
in Output Explorer” and “Viewing Output in the Output Folder”.

Reports

Contains all of your configured reports in an XML format that ePublisher can
display.

Targets

Contains target overrides. Any time you want to override a file in a target,
place the override in the Targets folder. ePublisher looks for overrides
in the Targets folder before it looks for overrides in the Formats folder.
The Targets folder only appears in your project folder if your Stationery
is configured to use target overrides. For more information about target
overrides, see “Creating Target Overrides”. To view the files in the Targets
folder for the selected target in your project, on the View menu, click Target
Override Directory.

Your project also uses a Data folder. The Data folder contains information about
how files in your project have been processed. The .wif files, which are located in
the Data folder, contain style and content information from your source documents.
ePublisher creates the Data folder in the following temporary folder location:

Documents and Settings\UserName\Local Settings\Temp\WebWorks
\ePublisherComponent\Data

where UserName is the name of the ePublisher user, and ePublisherComponent is
the name of the ePublisher component used to generate output, such as ePublisher
Express or ePublisher Designer.

120 | Project Folder Structure

To view the files in the Data folder for your project, on the View menu, click Data
Directory.

Source Documents
Source documents are documents you create your content in using a content
authoring tool such as Notepad++, Microsoft Word, Adobe FrameMaker, or an
authoring environment that supports DITA authoring. After you prepare your source
documents, you use your source documents to generate output.

Targets
A target is the specific type of output you want to produce using your source files
and project settings. Targets are based the output formats you specify for your
project, and include all of the project settings you specify for each output format
included in your project when you configure your project.

For example, assume that you are a writer working at CompanyA, and you have the
requirement to create a web-based help system using your source documents. In
this scenario, you create a project using stationery that supports WebWorks Help
output and then create a target called CompanyA WebWorks Help.

Next, assume that your documentation requirements change, and in addition to
creating WebWorks Help for CompanyA, you must now also produce Microsoft
HTML Help and PDF files for CompanyA using your same source documents. In this
scenario, you update your project to now include the following targets:

CompanyA WebWorks Help

CompanyA Microsoft HTML Help

CompanyA PDF Files

Finally, assume your documentation requirements change again, and now, based
on an Original Equipment Manufacturer (OEM) agreement your company signed,
in addition to creating WebWorks Help, Microsoft HTML Help, and PDF files for
CompanyA, you must use your same set of source documents to create WebWorks
Help, Microsoft HTML Help, and PDF files for CompanyB, using company information
and variables and conditions specific to CompanyB. In this scenario, you update
your project to now include the following targets:

CompanyA WebWorks Help

CompanyA Microsoft HTML Help

CompanyA PDF Files

Targets | 121

CompanyB WebWorks Help

CompanyB Microsoft HTML Help

CompanyB PDF Files

When you have multiple targets included in a project, you choose an active target
and then specify project settings for the active target. The active target is the
target currently selected in your project. When you want to modify project settings
for an target, if you have multiple targets included in your project, ensure you have
the correct target selected in the project when you modify project settings. For
more information about specifying an active target, see “Specifying Active Targets”.

Stationery
The Stationery designer creates Stationery with ePublisher Designer using a
Stationery design project. Stationery specifies the settings ePublisher uses to
generate output. Stationery designers create Stationery by creating a Stationery
design project in ePublisher Designer and then saving the processing rules, styles,
and other information specified in the Stationery design project as Stationery.
ePublisher Express and ePublisher AutoMap can then use the Stationery to generate
output.

When the Stationery designer creates a project in ePublisher Designer and then
saves a project using the Save As Stationery option, ePublisher Designer creates
a Stationery file. A Stationery file is a file with the .wxsp file extension that
contains formatting, project settings, project overrides, and style information.
Source documents and document-specific information, such as Document Manager
groups, are not saved in Stationery. After the Stationery designer creates the
Stationery, writers use the Stationery provided by the Stationery designer when
they create an ePublisher Express project. Writers use their ePublisher Express
project and Stationery to generate output.

When the Stationery designer saves the Stationery, ePublisher creates the following
folders:

StationeryName\Formats\OutputFormat

StationeryName\Formats\OutputFormat.base

where StationeryName is the name the Stationery designer specified for the
Stationery, and OutputFormat is the type of output format the Stationery Designer
specified for a target in the Stationery.

The StationeryName\Formats\OutputFormat folder contains any customizations
or overrides the Stationery designer specified when designing the Stationery.
ePublisher Express synchronizes with the files in the OutputFormat folder and

122 | Staonery

uses the information about customizations and overrides contained in files in the
OutputFormat folder to generate output.

Note: The Stationery may have one or more OutputFormat folders, based on the
settings the Stationery designer specified.

The StationeryName\Formats\OutputFormat.base folder contains copies of all
the files located in the \Program Files\WebWorks\ePublisher\2024.1\Formats
\OutputFormat folder. These files define the default output format and transforms
and are installed by default when you install ePublisher.

Stationery designers can do a compare, or diff, between the files located in these
folders to quickly see any customizations or overrides specified for the Stationery.
Stationery designers can use this information to help them reapply customizations
and overrides as needed when designing a newer version of the Stationery in
ePublisher Designer.

When the styles or features used in the generated output need to change, the
Stationery designer uses the ePublisher Designer Stationery design project
to update the styles and features specified in the Stationery, and then the
Stationery designer saves the changes, creates updated Stationery, and deploys
the Stationery. Once the new Stationery is available, writers synchronize their
ePublisher Express project with the updated Stationery file and use the updated
Stationery the next time they generate output.

Note: When you synchronize your project with Stationery, the synchronization
process overwrites any target setting customizations you configured for the
project.

For more information about synchronizing Stationery, see “Synchronizing Projects
with Stationery”.

Creating Projects Based on Stationery
Writers use ePublisher Express and Stationery created by a Stationery designer to
generate output. When you use ePublisher Express to create a project based on
Stationery, you specify the Stationery you want the project to use and the source
documents you want to include in the project. The Stationery file uses a .wxsp
file extension and contains information and settings for the project to use, such
as style or format information, variable values, condition settings, cross-reference
definitions, and more. The source documents contain the content for which you
want to generate output. The project uses the settings specified in the Stationery
file and the content and formatting in the source documents to generate output. A
project file created with ePublisher Express uses the .wrp file extension.

Note: You cannot create a project based on Stationery using ePublisher Designer.
You can only create projects based on Stationery using ePublisher Express.
Stationery designers use ePublisher Designer to create Stationery using
Stationery design projects.

Creang Projects Based on Staonery | 123

To create a project based on Stationery

1. In ePublisher Express, on the File menu, click New Project.

2. In the Project Name field, type a name for your project.

3. In the Location field, specify the location where you want to save your
ePublisher project by clicking on the folder icon and browsing to the location
where you want to save your project.

Note: Ensure you consider the length of the full path you specify for the
project name and location. If you specify long names and paths for
project, Windows may not be able to support the length of the full path.

By default, ePublisher stores projects in the My Documents\ePublisher
Express Projects folder.

4. In the Standalone stationery field, specify the Stationery you want to use to
create your project by clicking on the folder icon and browsing to the location
of the Stationery file.

5. Select a Stationery file (.wxsp file), and then click Open.

6. Click Next.

7. Click Add.

8. Browse to the location of the source documents you want to include in your
project, select the source documents, and then click Open.

Note: You can add source documents when you create your project or you
can add source documents after you create your project. For more
information about adding source documents to projects, see “Adding
Source Documents to Projects”.

9. Click Finish to create the project. ePublisher creates the project and gathers
information about the structure of your source documents.

After you create your project, add targets to your projects as needed and then
generate output. For more information, see “Adding Targets to Projects Based on
Stationery” and “Generating Output”.

Working with Source Documents
This section explains how to work with source documents in Document Manger.

Adding Source Documents to Projects

124 | Adding Source Documents to Projects

You can add source documents to your project when you create a project. You can
also add source documents to your project after you create a project. When you
add source documents to your project, ePublisher automatically adds the source
documents to your project and creates a top-level group in Document Manager that
contains your source document. For more information about top-level groups, see
“Source Documents Groups”.

To add a source document to your project

1. On the Project menu, click Add Document.

2. Browse to the folder that contains the source document you want to add to
your project.

3. Select the source document you want to add to your project, and then click
Open.

4. If you configured ePublisher to scan source documents when you add
source documents to projects, ePublisher adds the source documents to
Document Manager and scans the source documents. For more information
about scanning source documents and setting scanning options, see
“Scanning Source Documents” and “Setting Scanning Options”.

5. If you did not configure ePublisher to scan source documents when
you add source documents to projects, ePublisher adds the source
documents to Document Manager but does not scan your documents. After
ePublisher adds your source documents to Document Manager, scan your
source documents. For more information about scanning source documents
and setting scanning options, see “Scanning Source Documents” and “Setting
Scanning Options”.

6. If you are adding a FrameMaker book file to your project, ePublisher
adds the FrameMaker book file (.bk or .book files) and the source
documents the FrameMaker book file contains (.fm files) to your project.
Consider the following points when you add a FrameMaker book file to your
project:

When you add a FrameMaker book to your project, by default ePublisher
creates a group for the FrameMaker book in Document Manager, and
any FrameMaker source documents contained within the FrameMaker
book are always contained within the group in your project.

When you make changes to a FrameMaker book, such as adding or
removing source documents from a FrameMaker book file, when you
scan the FrameMaker book, ePublisher updates the project with the
changes you made to the FrameMaker book file. If you add or remove
FrameMaker source documents in a FrameMaker book, ensure you scan
the FrameMaker book before you generate output. For more information

Adding Source Documents to Projects | 125

about scanning source documents and setting scanning options, see
“Scanning Source Documents” and “Setting Scanning Options”.

If your FrameMaker book contains front matter files, table of
contents files, or index files, consider the following points:

If you are generating output for a target that uses any
output format other than PDF, by default ePublisher generates
output for source document front matter files included in a book,
but does not generate output using the table of contents files and
index files included in the FrameMaker book. ePublisher instead
uses the headings and index entries in the source documents to
generate a table of contents and an index for your online output.

If you are generating output for a target that uses PDF as
the output format, by default ePublisher generates the PDF using
the front matter, index, and table of contents files included in the
FrameMaker book.

The Stationery designer may modify these default file processing
settings when designing Stationery. If you have target setting
modification permissions, you can also customize these settings as
needed. For more information about target setting customization
permissions and customizing file processing settings, see “Working
with Target Settings” and “Specifying File Processing Behavior for
Front Matter, Index, and Table of Contents Files”. If you do not have
target setting customization permissions, instead of adding an Adobe
FrameMaker .book file that contains front matter, table of contents,
and index files, you can instead add the individual Adobe FrameMaker
chapter .fm files, and then use the individual chapter files to generate
output.

After you add source documents to your ePublisher project, ePublisher displays your
source documents in Document Manager. You can organize your source documents
in Document Manager and perform the following tasks:

Open and edit source documents from within Document Manager. For more
information, see “Opening Source Documents from Document Manager”.

Relink source documents. For more information, see “Relinking Source
Documents”

Remove source documents from your project. For more information, see
“Removing Source Documents from Projects”.

Create an organizational structure for your online output using groups. For
more information, see “Source Documents Groups” and “Organizing Source
Documents Using Groups”.

126 | Adding Source Documents to Projects

Rearrange the source document order in Document Manager. For more
information, see “Rearranging Source Documents in Groups”.

Opening Source Documents from Document
Manager
If you want to edit the content of your source documents while working with a
project, you can open the source documents from Document Manager.

To open a source document from Document Manager

1. In Document Manager, double-click the source document you want to open.
ePublisher opens the source document using the content authoring tool you
used to create the source document.

2. If you want to edit the content in your source document, edit the
content using the content authoring tool you used to create the source
document.

3. Save the source document.

Scanning Source Documents
This section explains how scanning works, how to scan source documents, and
source document scanning options.

Scanning and Scanning Options
When ePublisher scans your source documents, it reads the style and formatting
information, variables, conditions, and marker types in your source documents
and then imports this information into your ePublisher project. Once ePublisher
imports this information into your project, you can generate output. You can also
modify target settings if you have permissions to modify target settings. For more
information, see “Generating and Regenerating Output” and “Working with Target
Settings”.

The scanning process can be time-consuming. You can reduce the amount of time
it takes ePublisher to scan your documents by scanning only the source documents
you select. Scan your source documents when you have made any of the following
changes to your source documents:

Added new content

Added new style information

Modified any existing styles

Scanning and Scanning Opons | 127

Added new markers, variables, or conditions

Modified existing markers, variables, or conditions

ePublisher provides the following options for scanning source documents in
Document Manager:

Scan Selected

Scans only the selected source document in Document Manager.

Scan All Documents

Scans all of the source documents that you added to your project and that are
displayed in Document Manager.

Setting Scanning Options
By default, ePublisher will automatically scan your documents, thus making sure
any new styles, conditions, variables, etc. are added to your project.

If you set this option to Ask, then adding a source document a dialog box will
appear:

This indicates that files such as FrameMaker .book files will scan for additional .fm
files linked from this source. Clicking Yes will scan the individual documents so that
the document set styles, for example can be added to the Style Designer (the same
goes for most of the document set customizations.)

However, you can specify that you want ePublisher to scan source documents when
you add them to your project. For example, you can choose to have ePublisher
prompt you to scan the source documents when you add source documents to your
project, or you can choose to always have ePublisher scan source documents when
you add them to a project. The scanning option you specify will become the default
selection for all existing and subsequent projects.

128 | Seng Scanning Opons

If you choose to never have ePublisher scan source documents, when you add
them to a project, you must remember to scan your source documents before you
generate output.

To set scanning options

1. On the Edit menu, click Preferences.

2. On the General tab, in the Scan options area, select the scan setting you
want to specify. For more information about scanning options, click Help.

3. Click OK.

Scanning Selected Documents
Sometimes you may make a change to content in a single source document. You
can scan only the source document you changed. Scanning the selected document
updates your project with the new information you specified in the selected source
document.

To scan a selected source document

1. In Document Manager, select the source document you want to scan.

2. On the Project menu, click Scan Selected. ePublisher scans the document
you selected in Document Manager.

Scanning All Documents
If you have made multiple changes to content in your source documents, you can
scan all of the source documents included in your project at once. Scanning all
source documents ensures that ePublisher includes any changes you made to any of
the source documents in your project.

To scan all source documents in a project

On the Project menu, click Scan All Documents. ePublisher scans all of the
source documents displayed in Document Manager.

Relinking Source Documents
Sometimes the link between Document Manager and the source document may
become broken. For example, moving the source document to another folder
location or deleting the source document from a folder may break the link between
Document Manager and the source document. When ePublisher detects a broken
link between Document Manager and the source document, ePublisher displays a
Broken Link icon, or red question mark, next to the source document in Document
Manager.

Relinking Source Documents | 129

To relink a source document

1. In Document Manager, double-click the Broken Link icon next to the name of
the source document.

2. Browse to the location of the source document.

3. Select the source document, and then click Open. ePublisher recreates the
link between the source document and Document Manager.

Removing Source Documents from Projects
You can remove source documents from an ePublisher project. Remove source
documents from your project when you no longer want to include the content in the
source document in your project or in your generated output.

If you are a Stationery designer using ePublisher Designer to design
Stationery, when you remove source documents from an ePublisher project, any
styles or formats associated with the source document remain in Style Designer.
For example, assume that the UserManualTitle style is a style that is specific to
only one source document in your project. If you remove the source document
that contains the UserManualTitle style from your project, ePublisher retains the
UserManualTitle style name and style information in Style Designer. If you want to
remove this style from Style Designer, you must manually delete it.

To remove a source document from a project

1. In Document Manager, click the source document you want to remove from
your project.

2. On the Edit menu, click Remove.

3. If you want to remove an Adobe FrameMaker source document (.fm
file) that is a part of an Adobe FrameMaker book (.book or .bk file)
you have added to a project, you cannot remove the Adobe FrameMaker
source document from the project using ePublisher. You must remove the
Adobe FrameMaker source document from the Adobe FrameMaker book
file and then scan the Adobe FrameMaker book file to remove the Adobe
FrameMaker source document from your project. For more information about
scanning source documents, see “Scanning Source Documents”.

4. Click Yes to confirm that you want to remove the source document from your
project.

Source Documents Groups
Groups are containers in Document Manager that hold your source documents and
allow you to create an organizational structure for your output. When you first

130 | Source Documents Groups

create a new project, ePublisher automatically creates a new group in Document
Manager using the project name. You can use ePublisher to create the following
types of groups in Document Manager:

Top-level groups

Contains source documents and subgroups. ePublisher creates an entry-point
file for each top-level group in Document Manager. The entry-point file is
the file that opens the generated output. All projects must contain at least
one top-level group. You can create additional top-level groups to further
organize your source documents in Document Manager or if you want to
create merged, or multivolume, help. For more information about merged help
systems, see “Merging Top-level Groups (Multivolume Help)”.

Subgroups

Used to organize source documents within top-level groups. Subgroups do not
create entry-point files and do not represent an actual volume in a merged
help system.

The following figure shows top-level groups and subgroups in Document Manager.

Organizing Source Documents Using
Groups
You can perform the following actions with source documents and groups in
ePublisher:

Create top-level groups. For more information, see “Creating Top-Level
Groups”.

Create subgroups. For more information, see “Creating Subgroups”.

Rename groups. For more information, see “Renaming Groups”.

Rearrange source documents in groups. For more information, see
“Rearranging Source Documents in Groups”.

Organizing Source Documents Using Groups | 131

Remove groups. For more information, see “Removing Groups”.

Creating Top-Level Groups
By default, ePublisher creates a top-level group based on the name of the project
when you add your first source document to your project. There must always be at
least one top-level group in Document Manager in order to add source documents
to a project. You can create additional top-level groups if you want to further
organize your source documents or create merged help systems, or multivolume
help. For more information about creating merged help systems, see “Merging Top-
level Groups (Multivolume Help)”.

To create a top-level group

1. On the Project menu, click New Group. ePublisher creates and displays a
new top-level group in Document Manager.

2. Type a name for the new group.

3. Drag the new top-level group to its appropriate position above, below, or
between an existing top-level group in Document Manager.

Creating Subgroups
You can create subgroups in Document Manager to organize the source documents
in a group. By organizing your source documents into subgroups, you can organize
how you want to display your source documents in Document Manager and how you
want content to display in your generated output.

To create a subgroup

1. In Document Manager, select the group to which you want to add a subgroup.
You can add a subgroup to a top-level group or to an existing subgroup.

2. On the Project menu, click New Group. ePublisher displays the new group in
Document Manager.

3. Type a name for the new group.

Renaming Groups
You can rename existing top-level groups and subgroups in Document Manager.
For example, when you create a new project, by default ePublisher creates a new
group based on the project name. However, you can change the default name of
the group in Document Manager.

To rename a group in Document Manager

1. In Document Manager, click twice on the group you want to rename.

132 | Renaming Groups

2. Type a new name for the group.

3. Press ENTER or click outside of the typing area to change the name.

Rearranging Source Documents in Groups
Once you have added source documents to your project and placed your source
documents into groups within Document Manager, you can rearrange source
documents by moving the source documents within the same group or by moving
source documents to a new location in a new group.

If you have a FrameMaker book (.bk or .book file) in a group, you can move
the FrameMaker book to a different group, but you cannot move an individual
FrameMaker document (.fm file) to a group if it is included in the .book file. .fm
files that belong to a .book file must remain in the same group as the .book file.
If you want to move a .fm file to a different group than the .book file is in, first
remove the .fm file from the book, scan the book, and add the .fm file, which is
no longer part of the book, to the appropriate book.

To rearrange source documents in groups

1. If you want to change the order of source documents within a group,
complete the following steps:

a. In Document Manager, click the source document you want to move.

b. Drag the source document to the desired location within the group.

2. If you want to move a source document to a different group, complete
the following steps:

a. In Document Manager, click the document you want to move.

b. Drag the source document to the desired location within the new group.

Removing Groups
If you no longer want to use a group, you can remove the group from Document
Manager. When you remove a group from Document Manager, ePublisher removes
any source documents associated with the group from your project.

Note: ePublisher does not delete the source documents from your computer.
ePublisher only removes the source documents from the project.

To remove a group

1. In Document Manager, select the group you want to remove.

2. On the Edit menu, click Remove.

Removing Groups | 133

Working with Targets
This section explains how to work with targets. For more information about what
targets are, see “Targets”.

Specifying Active Targets
Within a project, you can have multiple targets. The active target is the target
currently selected in the project. ePublisher uses the active target when you make
modifications to your target settings or generate output.

To specify the active target

On the Project menu, select the target next to Active Target.

Adding Targets to Projects Based on
Stationery
Every project must contain at least one target. Add targets to projects when you
need to produce different kinds of output using the same source documents.
Each target is associated with one output format, such as WebWorks Help,
Microsoft HTML Help, or PDF. If you are generating output based on Stationery
using ePublisher Express, the Stationery you use for your project defines the
type of output formats you can specify for a target when you add a target to
your project. You can only use output formats defined in the Stationery by the
Stationery designer when you create targets. If you need to create a target for an
output format not included in the Stationery, talk to the Stationery designer about
updating the Stationery to include the output format.

For example, assume that you are a writer working at CompanyA, and you need to
create web-based help. You have Stationery from a Stationery designer configured
to support WebWorks Help, Microsoft HTML Help, and PDF output. In this scenario,
you create an ePublisher project based on Stationery from the Stationery designer,
and then you create a target called CompanyA WebWorks Help that specifies
WebWorks Help as the output format for the target.

Next, assume that your documentation requirements change, and in addition to
creating WebWorks Help for CompanyA, you must now also produce Microsoft
HTML Help and PDF files for CompanyA using your same source documents. In
this scenario, you update your project by adding Microsoft HTML Help and PDF as
targets, and you project now contains the following targets:

CompanyA WebWorks Help

CompanyA Microsoft HTML Help

134 | Adding Targets to Projects Based on Staonery

CompanyA PDF Files

To add a target to a project based on Stationery

1. On the Project menu, click Manage Targets.

2. Click Add.

3. In the Format Type field, select the output format you want to use for the
format target.

4. In the Target Name field, type a name for the format target.

5. Click OK.

Renaming Targets
You can rename targets. By default, the target name is the same as the output
format in ePublisher. However, in some situations, you may want specify a different
name for the target. For example, assume that you are a writer working at
CompanyA, and you have the requirement to create a web-based help system using
your documentation source files. In this scenario, you create an ePublisher project
that specifies WebWorks help as your help system and you configure your project
settings to use information and branding for CompanyA to create an target called
WebWorks Help.

Next, assume that your requirements change, and now, based on an OEM
agreement your company signed, in addition to creating WebWorks Help for
CompanyA, you must use your source files to create WebWorks Help for CompanyB.
In this scenario you create a new target in your project called CompanyB WebWorks
Help and configure settings for this target. However, after configuring settings for
the CompanyB WebWorks Help target, you now want to go back and rename your
original WebWorks Help output format, and change the name of this output format
to CompanyA WebWorks Help.

To rename a target

1. On the Project menu, click Manage Targets.

2. In the Target Name field, click the name of the output format you want to
rename.

3. Click Edit.

4. In the Target Name field, type the new name you want to specify.

5. Click OK.

Renaming Targets | 135

Deleting Targets
You can delete targets from a project if you no longer need to produce output for
the target.

To delete a target

1. On the Project menu, click Manage Targets.

2. In the Target Name field, click the name of the output format you want to
delete.

3. Click Delete.

4. Click OK.

Working with Projects
This section explains how to work with projects.

Saving Projects
You should periodically save your project to ensure that you do not lose any
changes you have made. By saving your project, you ensure that ePublisher stores
the information in your project in the project files and all of your project information
will be available the next time you open your project.

To save a project

On the File menu, click Save. ePublisher automatically saves your ePublisher
project in a file in the location you specified when you first created the project.

If you are saving an ePublisher Express project, by default ePublisher
saves the project file in the My Documents\ePublisher Express Projects
\ ProjectName folder, where ProjectName is the name of the project.

If you are saving an ePublisher Designer project, by default ePublisher
saves the project file in the My Documents\ePublisher Designer Projects
\ProjectName folder, where ProjectName is the name of the project.

Opening Existing Projects
You can open an existing project using one of the following methods:

Open the project from within the ePublisher Express or ePublisher Designer
user interface.

136 | Opening Exisng Projects

Open the project from Windows Explorer by double-clicking the project file in
the folder where you saved the project.

By default ePublisher saves project files in the following locations:

ePublisher saves ePublisher Express project files in the My Documents
\ePublisher Express Projects\ ProjectName folder, where ProjectName
is the name of the project. ePublisher Express project files use the .wrp file
extension.

ePublisher saves ePublisher Designer project files in the My Documents
\ePublisher Designer Projects\ProjectName folder, where UserName is
the name of the user account running ePublisher Express and ProjectName
is the name of the project. ePublisher Designer project files use the .wep file
extension.

When you open an existing project, ePublisher opens a separate instance of the
ePublisher for each project, and each project has its own window. For example,
if you have ProjectA open, and then you decide to open a project called ProjectB,
ePublisher opens up a new instance of ePublisher for the new project and you have
two ePublisher instances with ProjectA and ProjectB open concurrently on your
computer.

To open an existing project

1. If you want to open an existing project from within ePublisher
Express or ePublisher Designer, complete the following actions:

a. In ePublisher, on the File menu, click Open.

b. Browse to the location of the project file you want to open.

c. Select the project file you want to open, and then click Open.

2. If you want to open an existing project using Windows Explorer,
complete the following steps:

a. In Windows Explorer, browse to the location of the ePublisher project file
you want to open.

b. Double-click the ePublisher project file.

Closing Projects
When you finish working with a project, you can close it. When you close the
project, ePublisher prompts you to save any changes to your project that you have
not already saved.

Closing Projects | 137

To close a project

On the File menu, click Exit.

Synchronizing Projects with Stationery
ePublisher Express projects use Stationery designed in ePublisher Designer by the
Stationery designer. From time to time, the Stationery designer may update the
Stationery used by your ePublisher Express project. When the Stationery designer
updates the Stationery, you must synchronize your ePublisher Express project with
the Stationery associated with the project in order to obtain the updates made by
the Stationery designer. For more information about Stationery, see “Stationery”.

When the Stationery designer updates the Stationery an ePublisher Express project
uses, ePublisher detects the change the next time you open a project that uses
the Stationery, notifies you that the Stationery used by the project has been
modified, and prompts you to synchronize your project with the updated Stationery.
ePublisher Express prompts you to synchronize your project with its Stationery file
under the following conditions:

ePublisher detects differences between the project manifest file and the
Stationery manifest file.

ePublisher detects modifications to the Stationery file used by the project.

When you synchronize your project with Stationery, you update your project file so
that the information in your project file matches the information in the Stationery
file and in the Stationery manifest file. Synchronizing the project file with the
Stationery file and the manifest file ensures all of the settings and information in
the project file match all of the settings and information in the Stationery file. For
more information about the Stationery file and the Stationery manifest file, see
“Manifest Files” and “Stationery Files”.

Based on your ePublisher implementation, after you create an ePublisher Express
project using Stationery, you can customize target settings for the targets available
in your project if you have appropriate permissions. You can only customize target
settings in your ePublisher Express project if you have target setting modification
permissions. Any customizations you make to target settings will be overwritten
the next time you synchronize your ePublisher Express project with Stationery. For
more information, see “Working with Target Settings”.

ePublisher Express allows you to synchronize your project with its associated
Stationery using one of the following methods:

Automatically synchronize projects with Stationery. For more information, see
“Automatically Synchronizing ePublisher Express Projects with Stationery”.

138 | Synchronizing Projects with Staonery

Manually synchronize projects with Stationery. For more information, see
“Manually Synchronizing ePublisher Express Projects with Stationery”.

Manifest Files
When you create a project based on Stationery in ePublisher Express, ePublisher
copies the manifest file used by the Stationery you specify for the project and
places a copy of the Stationery manifest file in the project folder for the new
ePublisher Express project. The manifest file is a record of all of the files associated
with the Stationery file, including all of the files listed in the following project
folders:

Formats folder

Targets folder

Files folder

For more information about project folders, see “Project Folder Structure”.

Any time the Stationery designer performs one of the following actions in the
Stationery Formats , Targets , or Files folder, ePublisher updates the Stationery
manifest file:

Modifies a file in a folder

Adds a file to a folder

Removes a file from a folder

When you open an existing ePublisher Express project, ePublisher compares the
ePublisher Express project manifest file to manifest file of the Stationery associated
with the ePublisher Express project and determines if there are differences between
the manifest file.

If the Stationery designer has updated, removed, or added any files to the
Formats , Targets , and Files folder in the Stationery since the last time you
opened your ePublisher Express project, ePublisher detects these differences and
prompts you to synchronize your ePublisher Express project with the Stationery
file. When you synchronize your ePublisher Express project with the Stationery file,
ePublisher copies the Stationery’s updated manifest file over to your ePublisher
Express project file and adds, removes, and updates files in the Formats , Targets ,
and Files folders for your project as appropriate.

For example, assume that the Stationery designer updated the Stationery you
use for one of your projects by adding a new Page.asp file. When the Stationery
designer makes this change, ePublisher updates the Stationery manifest file
with the change. After the Stationery designer makes this change, the next time
you open up your ePublisher Express project that uses the changed Stationery,

Manifest Files | 139

ePublisher Express recognizes that the ePublisher Express project manifest file
is different than the Stationery project file and prompts you to synchronize your
project to your Stationery file. When you synchronize your project, ePublisher adds
the new Page.asp file to your project folders.

Stationery Files
When you open an existing ePublisher Express project, ePublisher Express
determines if the Stationery used by the project has been modified by examining
the checksum of the Stationery file. A checksum is a value that depends on the
contents of a file. ePublisher uses the checksum to determine if a Stationery the file
has changed. If the checksum of the Stationery file is different than the checksum
of the project file, ePublisher Express prompts you to synchronize your project
with the Stationery file associated with your project. Any changes to the following
settings within the Stationery file will affect the checksum:

Style and format information

Conditions

Variables

Cross-reference definitions

Target settings

When to Synchronize
All ePublisher Express projects should be synchronized with Stationery any time
the Stationery designer modifies the Stationery. ePublisher Express projects must
be synchronized with the Stationery in order for ePublisher to include the changes
made by the Stationery designer to the Stationery file in an ePublisher Express
project. When you synchronize an ePublisher Express project (.wrp file) with
Stationery (.wxsp file), ePublisher updates the information in the ePublisher
Express project to match the information in the Stationery file. If you choose
not to synchronize, your project will retain its old settings and the information
in the project file will not match the information in the Stationery file until you
synchronize.

Automatically Synchronizing ePublisher Express
Projects with Stationery
When you open an existing project, ePublisher Express automatically detects
whether any modifications have been made to the Stationery file. If any changes
have been made to the Stationery, ePublisher Express displays a window notifying
you that the Stationery has been modified. When this window displays, you can
choose to synchronize your project to the modified Stationery file. You can also
choose to synchronize your project to new Stationery.

140 | Automacally Synchronizing ePublisher Express Projects with Staonery

To automatically synchronize an ePublisher Express project with Stationery

1. Open ePublisher Express. If the Stationery designer has modified the
Stationery linked to your ePublisher Express project, ePublisher Express
displays a window that tells you that the Stationery the ePublisher Express
project is linked to has been modified. The window ePublisher displays should
be similar to the following window.

2. If you want to synchronize your ePublisher Express project with the
specified Stationery, click Yes.

3. If you want to synchronize your ePublisher Express project with
different Stationery, complete the following steps:

a. Click the folder icon, and then browse to the location of the Stationery
with which you want to synchronize your ePublisher Express project.

b. Select the Stationery (.wxsp file), and then click Open.

c. Click OK again.

4. If you do not want to synchronize your ePublisher Express project
with Stationery, click Cancel.

Manually Synchronizing ePublisher Express
Projects with Stationery
You can manually synchronize your project file with Stationery at any time. When
you manually synchronize your project file with Stationery, ePublisher Express
prompts you to specify the Stationery with which you want to synchronize your
ePublisher Express project. You can synchronize your ePublisher Express project
with the Stationery currently associated with your ePublisher Express project, or
you can specify that you want your ePublisher Express project to synchronize with
different Stationery.

Manually Synchronizing ePublisher Express Projects with Staonery | 141

To manually synchronize an ePublisher Express project with Stationery

1. In ePublisher Express, on the File menu, click Synchronize with
Stationery.

Note: You can only synchronize ePublisher Express projects with Stationery.
You cannot synchronize ePublisher Designer projects with Stationery,
because ePublisher Designer projects are not based on Stationery.
ePublisher Designer projects are used to design Stationery.

2. Browse to the location of the Stationery to which you want to synchronize
your ePublisher Express project. By default, ePublisher saves Stationery to the
following folder:

My Documents\ePublisher Stationery\ProjectName, where ProjectName
is the name of the project used to create the Stationery.

3. Select the Stationery (.wxsp file), and then click Open. ePublisher
synchronizes the ePublisher Express project with the specified Stationery.

Project Information that is not Synchronized
Most items are synchronized with Stationary but the following are not:

Merge Settings

All settings in the Document Manager Pane

Preferences

Deleting Projects
Delete a project when you no longer want to use the project to generate output.

To delete a project

1. Open Windows Explorer.

2. Browse to the location of the project folder for the project you want to delete.

By default ePublisher saves ePublisher Express project files in the My
Documents\ePublisher Express Projects\ ProjectName folder, where
ProjectName is the name of the project. ePublisher Express project files
use the .wrp file extension

By default ePublisher saves the ePublisher Designer project files in the
My Documents\ePublisher Designer Projects\ProjectName folder,
where ProjectName is the name of the project. ePublisher Designer
project files use the .wep file extension.

142 | Deleng Projects

3. Delete the project folder.

When you delete a project, ePublisher continues to display the project on the Start
Page until you close and then reopen the ePublisher user interface.

Generating and Regenerating Output
When you generate output in ePublisher, ePublisher creates all of the files specified
for the target. ePublisher uses the information in the project source documents and
project settings to generate output files. Output files include the following types of
files:

Individual topic page .html files

Image files, such as .jpg , .gif , and .png files

The entry-point file, which is used to open the generated output

All files required by the help system if you are generating output for a help
system

Output Generation and Regeneration
In ePublisher, you generate output using either the generate or regenerate option.
The generate and regenerate option both create output from your project. However,
there are some important differences between the options.

As you make changes to your source documents and your project settings, you
need to generate output files in order to see any changes made to the following
items:

Content changes in your source documents

Changes to project settings

Changes in the Stationery associated with your ePublisher project

When you generate output for a target for the first time, ePublisher creates the
output files for the first time. After you generate output files for a target the first
time, if you generate output for your target again, you update your output files
with the changes you made in your source documents and the changes you made
to your project settings. Generating, or updating, your output creates output files
more quickly than regenerating your output files.

Use the generate option when you have made changes to the following project
settings:

Condition settings

Output Generaon and Regeneraon | 143

Variable values

Cross-reference definitions

Merge settings

Target settings

Project preferences

When you regenerate output, ePublisher deletes the Data folder from the
project folder, creates a new Data folder, and creates new output files each
time. Regenerate your output any time you add new information to your source
documents that is not content. Non-content modifications to source documents
include adding, removing, or modifying following items:

Paragraph, character and table styles and formats

Marker types

Cross-reference definitions

Variable values in the source documents

Condition settings in the source documents

Generating Output
In ePublisher, you can generate output for the following items:

The entire project, which generates output for all the groups and source
documents in your project

A single group within your project

An individual source document within your project

Generate output for all of the groups in your project when you are generating
the final, completed output or help system, when you are merging output or help
systems, or when you are deploying your output.

Generate output for a single group if you have already generated output for the
other groups in your project, but you have made some slight modifications to one
of the groups. Using ePublisher to generate output for a single group reduces the
amount of time it takes ePublisher to generate output for your project. When you
generate output for a single group, ePublisher generates output for all of the source
documents within the group. If you select a top-level group or a group that contains
subgroups, ePublisher generates output for all of the source documents in the group
and its subgroups.

144 | Generang Output

Generate output for an individual source document if you have made some slight
modifications to a source document and want to preview what your generated
output will look like. Selecting an individual source document instead of generating
output for the entire group or project reduces the amount of time it takes
ePublisher to generate output.

To generate output

1. On the Project menu, select the target next to Active Target for which you
want to generate output.

2. If you want to generate output for an entire project, on the Project
menu, click Generate All.

3. If you want to generate output for a group in your project, complete
the following steps:

a. In Document Manager, select the group for which you want to
generate output.

b. On the Project menu, click Generate Selected.

4. If you want to generate output for an individual source document in
your project, complete the following steps:

a. In Document Manager, select the document for which you want to
generate output.

b. On the Project menu, click Generate Selected.

Note: Some formats, such as WebWorks Reverb (1 &2), must be deployed to a
server for observing full functionality. WebWorks Reverb (1 & 2) does provide
a convenience web server that can be used for quick, non-production preview
purposes. Refer to Deploying Output to Output Destinations for further
information.

Regenerating Output
When you regenerate output, ePublisher deletes the Data folder from the project
folder, creates a new Data folder, and generates new output files.

Regenerate your source document any time you have added new information to
your source document that is not content, including adding, removing, or modifying
the following items:

Character styles

Paragraph styles

Regenerang Output | 145

Table styles

Cross-reference definitions

Variable values within source documents

Conditions settings within source documents

To regenerate output

1. On the Project menu, select the target next to Active Target for which you
want to regenerate output.

2. On the Project menu, click Regenerate All.

Generating Output from FrameMaker or
Microsoft Word
ePublisher provides the ability to generate output and reports from both
FrameMaker and Word using a custom menu, often referred to as WebWorks
Transit or WebWorks Menu. Output and reports generated via this menu are
short-lived. They disappear once the project window is closed. Long lived projects
should be created with the classic Express interface.

In your Source Document

1. Go to the WebWorks menu

2. Select ePublisher Express -> Generate Output

3. Select the Stationery file on which you want the project to be based

4. Click OK once you have selected the Stationery and the Target you want to
use. Now click Finish to generate output. ePublisher provides you a window
to view the Output Explorer as well as the generated output

Modifying Help System Title Bars
The title bar in your generated help system displays the title you assigned to your
project. If you want to specify a different title in the title bar for your generated
help system, you can do this in the Merge Settings window if you are generating
output for the following help systems:

Dynamic HTML

Eclipse Help

146 | Modifying Help System Title Bars

Microsoft HTML Help

WebWorks Help

WebWorks Reverb

You cannot use merge settings to modify help system title bars for other output
formats.

To modify the title bar of a help system

1. On the Project menu, select the target next to Active Target for which you
want to modify the title bar of a help system.

2. On the Target menu, click Merge Settings.

3. In the Merge Title field, type the title you want to display in the title bar for
your generated help system, and then click OK.

4. On the File menu, click Save.

5. Regenerate your output. For more information, see “Regenerating Output”

Viewing Output
After you specify project and target settings, generate output for your target to
review your changes and verify that the generated output displays and functions

Viewing Output | 147

properly. You can generate output for all of the source documents and groups in
your project, or you can generate output for a single group or source document.
You can view your generated output files in one of the following ways:

View output by automatically opening the generated output. For more
information, see “Viewing Output by Automatically Opening Generated
Output”.

View output in Output Explorer. For more information, see “Viewing Output in
Output Explorer”.

View output in the Output folder. For more information, see “Viewing Output
in the Output Folder”.

Viewing Output by Automatically Opening
Generated Output
When you generate or regenerate output for a target, after ePublisher generates
output, ePublisher prompts you to view the generated output by displaying the
following window:

To view output by automatically opening the output

1. Generate or regenerate output. For more information, see “Generating
Output” or “Regenerating Output”.

2. When ePublisher displays a window asking if you would like to view the
generated output, perform one of the following actions:

If you want to view the generated output, click Yes.

If you do not want to view the generated output, click No.

If you want ePublisher to automatically open the output each
time you generate output and you do not want ePublisher to ask
you each time if you want to view the generated output, select
the Don’t ask me about this again check box, and then click Yes.

148 | Viewing Output by Automacally Opening Generated Output

If you do not want ePublisher to automatically open the output
each time you generate output and you do not want ePublisher
to ask you each time if you want to view the generated output,
select the Don’t ask me about this again check box, and then click
No.

If you select the Don’t ask me about this again check box and specify that you
always want ePublisher to display the generated output or that you never want
ePublisher to display the generated output, ePublisher uses the options you specify
as the default behavior for automatically displaying output when you generate or
regenerate output. If you later want to change the default behavior, you can clear
your preferences in the WebWorks ePublisher Preferences window, and then set
new preferences the next time you generate or regenerate output.

Viewing Output in Output Explorer
Output Explorer allows you to view output files from within the ePublisher user
interface. Each time you generate output for a group of source documents or for
an individual source document, ePublisher displays the generated output files in
Output Explorer. The list of files ePublisher displays in Output Explorer is based on if
you have a group of source documents selected or if you have an individual source
document selected.

If you select a top-level group in Document Manager, ePublisher displays a
group folder with the same name as the top-level group in Output Explorer that
contains the following items:

Navigation group. The Navigation group displays the generated entry-point file
and printable reports. The entry-point file is the file that opens the generated
output.

Reports group. The Reports group displays any reports associated with the
target that ePublisher generated.

If you select a source document in Document Manager, ePublisher displays
the source document group with the same name as the source document selected
in Document Manager that contains the following items:

Files group. The Files group contains all of the generated content files and
printable reports.

Images group. The Images group contains images associated with the source
document.

Reports group. The Reports group displays any reports associated with the
generated output for the target.

Viewing Output in Output Explorer | 149

If you select a subgroup in Document Manager, ePublisher does not display
any information in the Navigation and Reports groups in Output Explorer, because
subgroups do not create a generated entry-point file and do not represent an actual
table of contents group in generated output. The entry-point file is the file that
opens the generated output.

If you have two or more top-level groups in Document Manager and your
output format supports merged help systems, ePublisher creates a Merge
Output group in Output Explorer. The Merge Output group contains the entry-point
file for the merged help system. For more information about merged help systems,
see“Merging Top-level Groups (Multivolume Help)”.

To view output in Output Explorer

1. If Output Explorer is not displayed in the ePublisher user interface, on
the View menu, click Output Explorer.

2. On the Project menu, select the target next to Active Target for which you
want to view output.

3. If you want to view output by opening the entry-point file, complete
the following steps:

a. In Output Explorer, select a top-level group.

b. Click on the plus sign next to the top-level group to expand the group.

c. Click on the plus sign next to the Navigation group to expand the
group.

d. Double-click on the entry-point file to open the generated output.

150 | Viewing Output in Output Explorer

Output Type
Generated

Default Entry-Point File to Double-Click to Open

WebWorks Reverb index.html

Dynamic HTML toc.html

WebWorks Help index.html

Eclipse Help View Eclipse Help

Microsoft HTML Help name.chm

Oracle Help name.jar

Sun JavaHelp name.jar

4. If you generated output for an HTML-based output format and you
want to view the individual HTML files generated for a specific
document, complete the following steps:

Note: By default, ePublisher produces individual HTML files for HTML-based
output formats based on the page breaks settings you specify for your
project. For more information about specifying page break settings, see
“Specifying Page Breaks Settings”.

a. In Document Manager, select a source document.

b. In the Output Explorer, click on the plus sign next to the document to
expand the group.

c. Click on the plus sign next to the Files group to expand the group.

d. Double-click on the generated output file to open the file.

5. If your output format supports merged help systems and you want
to view the entry-point file for a merged help system, complete the
following steps:

a. In Output Explorer, click on the plus sign next to the Merged Output
group in the Output Explorer to expand the group.

Viewing Output in Output Explorer | 151

b. Double-click on the entry-point file to open the generated output.

Viewing Output in the Output Folder
ePublisher stores generated output pages and images in the Output folder. By
default, ePublisher creates an Output folder in the following location:

If you are creating a project using ePublisher Express, by default
ePublisher creates the Output folder in the My Documents\ePublisher
Express Projects\ProjectName folder, where ProjectName is the name of
the project.

If you are creating a project using ePublisher Designer, by default
ePublisher creates the Output folder in the My Documents\ePublisher
Designer Projects\ProjectName folder, where ProjectName is the name of
the project.

The Output folder contains individual output folders for each one of your targets.
For example, if your project contains targets for WebWorks Help, Microsoft HTML
Help, and Dynamic HTML, then there will be three folders, one for each of these
targets, in the Output folder.

You can view output files for all output formats by opening them directly from the
Output folder.

You can also view output files for all output formats by opening them from the
ePublisher user interface. When you open output files from the ePublisher user
interface, ePublisher opens the Output folder for the active target you are currently
working with in ePublisher. For more information about specifying an active target
and working with targets, see “Specifying Active Targets” and “Working with
Targets”.

To view output in the Output Folder

1. On the Project menu, select the target next to Active Target for which you
want to view output.

Note: You must generate output before you can view output in the Output
folder. For more information about generating output, see “Generating
Output”.

2. On the View menu, click Output Directory. ePublisher opens Windows
Explorer and displays a folder based on the name of your target. This Output
folder contains the output files ePublisher generated for the active target.

Changing the Location of the Output Folder

152 | Changing the Locaon of the Output Folder

When you generate output, ePublisher places the output files into the Output folder.
You can modify the location where ePublisher stores your output files.

Note: We do not recommend doing this, it makes the project non-portable

To change the default location of the Output folder

1. On the Project menu, select the target next to Active Target for which you
want to view output.

2. On the Target menu, click Target Settings.

3. In the Generated output location field, type the path to the folder where
you want ePublisher to place the generated output, or click the folder icon to
browse to and select a folder.

4. Click OK.

Working with Output Log Files
Each time you generate output for a target,ePublisher creates a log file named
generate.log and writes the following information to the log file:

Time when output generation began

Actions and commands ePublisher performed, such as processing, creating
and copying files

Pipelines processed by ePublisher

Any messages, warnings, or errors generated by ePublisher when ePublisher
generated output for the target

Time when output generation ended

Total amount of time it took ePublisher to generate the output

To work with output log files for a target

1. If you want to view the log file for a target from within the ePublisher user
interface, complete the following steps:

a. On the Project menu, select the target next to Active Target for which
you want to view log files.

b. On the View menu, click Log Window.

2. If you want to save the log file as a .txt file, complete the following steps:

Working with Output Log Files | 153

a. Click the Save button, located in the upper-right corner of the Log
Window.

b. Specify a name for the log file and the location where you want to save
the log file, and then click Save.

3. If you want to view the log file for a target using Windows Explorer, in
Windows Explorer browse to one of the following locations:

If you are using ePublisher Express, browse to the
ProjectName\Logs\TargetName folder, where ProjectName is the name
of the project and TargetName is the name of the target for which you
generated output. By default ePublisher saves project files for ePublisher
Express projects in the My Documents\ePublisher Express Projects
\ ProjectName folder, where ProjectName is the name of the project.

If you are using ePublisher Designer, browse to the
ProjectName\Logs\TargetName folder, where ProjectName is the
name of the project and TargetName is the name of the target for
which you generated output. By default ePublisher saves project files
for ePublisher Designer projects in the My Documents\ePublisher
Designer Projects\ ProjectName folder, where ProjectName is the
name of the project.

Validating Output Using Reports
After you generate output, you can validate your output using ePublisher reports.
ePublisher reports contain information about how ePublisher processed items in
your source documents when ePublisher generated output. Reports also allow
you to identify any problems that occurred when ePublisher generated output. If
reports display notifications, such as messages, warnings, or errors, you can correct
the items in your source documents that caused the error. You can then generate
output again and then review the reports again to verify that any issues have been
addressed as needed.

ePublisher provides the following types of reports:

Accessibility reports. For more information, see “Accessibility Reports”.

Baggage Files reports. For more informations, see “Baggage Files Reports”.

Conditions reports. For more information, see “Conditions Reports”.

Filenames reports. For more information, see “Filenames Reports”.

Links reports. For more information, see “Links Reports”.

Styles reports. For more information, see “Styles Reports”.

154 | Validang Output Using Reports

Topics reports. For more information, see “Topics Reports”.

Images reports. For more information, see “Images Reports”.

Printable reports. For more information, see “Printable Reports”.

For more information about configuring and generating reports, see “Configuring
Reports” and “Generating Reports”.

Accessibility Reports
You can use markers in your source documents to create accessible online content.

You can use Accessibility reports to validate that the online content you generate
using ePublisher meets your accessibility requirements. Accessibility reports provide
notifications on the following items when ePublisher generates output:

Images without alternative text

Image maps without alternative text

Images without long descriptions

Tables without summaries

Configure the notifications you want ePublisher to generate for Accessibility report
settings before you generate Accessibility reports. For more information about
configuring Accessibility report settings, see “Configuring Reports”. For more
information about generating Accessibility reports, see “Generating Reports”.

Baggage Files Reports
You can generate baggage files by adding links to HTML or PDF files in your file
system, in your source documents. For more information about baggage files, see
“Targets” and “Specifying Baggage Files Settings”.

You can use Baggage Files reports to obtain information about how the baggage
files are going to be shown in your Search Results. Baggage Files reports provide
notifications on the following items when ePublisher generates output:

Baggage files without summary

Baggage files without title

Configure the notifications you want ePublisher to generate for Baggage Files report
settings before you generate Baggage Files reports. For more information about
configuring Baggage Files report settings, see “Configuring Reports”. For more
information about generating Baggage Files reports, see “Generating Reports”.

Baggage Files Reports | 155

Conditions Reports
If you add new conditions after ePublisher already scanned the document, those
new conditions won’t be picked up by ePublisher. To warn you about that, ePublisher
has a Conditions Report where you can see all those details, and re-scan the
document so the new conditions can be picked up or add it manually yourself using
the UI:

Filenames Reports
You can specify names for output files using Filename markers.

You can use Filenames reports to validate that ePublisher named your output files
correctly using the Filename markers you inserted in your source documents. The
Filenames report displays the name of the Filename marker you inserted into your
source document and the name of the output file ePublisher generated based on the
Filename marker. The Filenames report also provides notifications on the following
items when ePublisher generates output:

The files ePublisher created that correspond to the Filename markers you
inserted into your source documents

If ePublisher ignored a Filename marker when generating output

156 | Filenames Reports

If duplicate Filename markers exist in the source documents used by your
project to generate output

Configure the notifications you want ePublisher to generate for Filenames report
settings before you generate Filenames reports. For more information about
configuring Filename report settings, see “Configuring Reports”. For more
information about generating Filename reports, see “Generating Reports”.

Links Reports
You can use Links reports to verify that the links you specify to items in your source
documents resolve and that ePublisher processed links in your source documents to
the item referenced by the link correctly. Links reports provide notifications on the
following items:

Baggage files

External URLs

Unresolved links to items in other documents

Unresolved links to missing source document

Unresolved links to missing files

Unresolved link within source documents document

Unsupported baggage files

Unsupported external URLs

Unsupported group to group links

For the definition of a baggage file see “Targets”.

Configure the notification you want ePublisher to generate for Links report settings
before you generate Links reports. For more information about configuring Links
report settings, see “Configuring Reports”. For more information about generating
Links reports, see “Generating Reports”.

Styles Reports
Styles reports allow you to verify that your source documents conform to the styles
and formatting defined in the Stationery by the Stationery designer. The Styles
report notifies you about the following items when ePublisher generates reports:

Any non-standard styles used in your source documents

Styles Reports | 157

Any style overrides used in your source documents

A non-standard style is any style that exists in your source document but is not
defined in the stationery file used by your project. For example, if you add a new
style to your source document called BodyIndent 4 , but your stationery designer
has not updated the stationery file to include the BodyIndent 4 style, the Styles
report notifies you that there is a non-standard style used in the source document.

A style override is any modification you made to the original style definition for a
particular instance of a style. For example, if you have applied the Body paragraph
style to a paragraph in your source document, and you then apply the Bold
character style to the paragraph, the Body paragraph style has a style override.

If your source document contains any non-standard styles or style overrides,
ePublisher will process your source documents when you generate output using the
non-standard styles and style overrides you applied in your source documents.

Configure the notifications you want ePublisher to generate for Styles report
settings before you generate Styles reports. For more information about configuring
Styles report settings, see “Configuring Reports”. For more information about
generating Styles reports, see “Generating Reports”.

Topics Reports
Context-sensitive help topics require that you have TopicAlias markers inserted in
your source documents. ePublisher generates context-sensitive help topics based
on the topic IDs you specify for each TopicAlias marker you insert in your source
documents. Each time ePublisher detects a TopicAlias marker in a source document,
ePublisher generates a context-sensitive help topic based on the topic ID.

You can use the Topics Report to verify that context-sensitive help topics have been
created for each topic ID specified in your source document. The Topics Report lists
the topic ID and the topic file created for each topic ID.

Configure the notifications you want ePublisher to generate for Topics report
settings before you generate Topics reports. For more information about configuring
Topics report settings, see “Configuring Reports”. For more information about
generating Topics reports, see “Generating Reports”.

Images Reports
Image reports enable you to verify the integrity and appearance of ePublisher
manage images. Users are notified any time a source image is missing or when an
image occurs in a problematic structure, such a images within tables in the ePUB
format.

Printable Reports

158 | Printable Reports

With the new ePublisher you can see your reports in two different ways: from the
UI and in your browser (Printable Reports). You can find them right after your usual
reports.

Configuring Reports
When you use reports to validate your output, you must specify the type of
notification that you want to display when ePublisher detects issues or performs
actions while generating output using your source documents. When ePublisher
generates output, ePublisher generates notifications under the following conditions:

When ePublisher cannot properly process elements

When ePublisher encounters missing information

For example, ePublisher can generate a notification when it detects a potential
error in your source documents when you generate output, such as an unresolved
cross reference. ePublisher can also generate a notification when it performs a
specific action using elements contained in your source documents, such as when
ePublisher generates an output file using a filename you specified using a Filename
marker.

You can specify the following values for report options when you generate output:

Ignore

Specify this value if you do not want ePublisher to report any issues it
identifies in the report. For example, specify this value you do not want the
Styles report to report any style overrides.

Configuring Reports | 159

Message

Specify this value if you want to receive a message when ePublisher
completes or fails to complete an action. For example, if you are not
concerned if your source document uses non-standard styles, but you would
like to see where non-standard styles are used in your source documents,
specify this value.

Warning

Specify this value if you want to receive a warning when ePublisher completes
or files to complete an action. For example, if you want to be warned when
ePublisher detects non-standard styles in your source documents, specify this
value.

Error

Specify this value if you want the report to display an error when ePublisher
completes or files to complete an action. For example, if you want to receive
an error notification when ePublisher detects unresolved cross-references in
your source documents, specify this value.

To configure report notification settings

1. On the Project menu, select the target next to Active Target for which you
want to configure report notification settings.

2. On the Target menu, click Target Settings.

3. If you want to specify Accessibility report notification settings, in
the Accessibility Report area, specify a value for each Accessibility report
notification setting you want to configure. For more information about each
setting, click Help.

4. If you want to specify Baggage Files report notification settings, in
the Baggage Files Report area, specify a value for each Baggage File report
notification setting you want to configure. For more information about each
setting, click Help.

5. If you want to specify Conditions report notification settings, in the
Conditions Report area, specify a value for each Condition report notification
setting you want to configure. For more information about each setting, click
Help.

6. If you want to specify Filenames report notification settings, in the
Filenames Report area, specify a value for each Filename report notification
setting you want to configure. For more information about each setting, click
Help.

160 | Configuring Reports

7. If you want to specify Links report notification settings, in the Links
Report area, specify a value for each Link report notification setting you want
to configure. For more information about each setting, click Help.

8. If you want to specify Styles report notification settings, in the Styles
Report area, specify a value for each Style report notification setting you
want to configure. For more information about each setting, click Help.

9. If you want to specify Topics report notification settings, in the Topics
Report area, specify a value for each Topic report notification setting you
want to configure. For more information about each setting, click Help.

10. If you want to specify Images report notification settings, in the
Images Report area, specify a value for each Image report notification
setting you want to configure. For more information about each setting, click
Help.

Generating Reports
You can generate reports for source documents and baggage files by selecting
the group or source document that you want to generate reports for in Document
Manager. Before you generate reports, configure notification settings for each report
you want to generate. For more information about configuring report notification
settings, see “Configuring Reports”.

To generate a report

1. In Document Manager, select the group or source document for which you
want to generate a report.

1. If you want to generate all reports for the selected item, on the
Project menu, click Generate Reports > All.

2. If you want to generate Accessibility reports for the selected item, on
the Project menu, click Generate Reports > Accessibility Report.

3. If you want to generate Baggage Files reports for the selected item,
on the Project menu, click Generate Reports > Baggage Files Report.

4. If you want to generate Conditions reports for the selected item, on
the Project menu, click Generate Reports > Conditions Report.

5. If you want to generate Filename reports for the selected item, on the
Project menu, click Generate Reports > Filenames Report.

6. If you want to generate Links reports for the selected item, on the
Project menu, click Generate Reports > Links Report.

Generang Reports | 161

7. If you want to generate Styles reports for the selected item, on the
Project menu, click Generate Reports > Styles Report.

8. If you want to generate Topics reports for the selected item, on the
Project menu, click Generate Reports > Topics Report.

9. If you want to generate Images reports for the selected item, on the
Project menu, click Generate Reports > Images Report.

Report Messages
The following tables provide descriptions for report messages.

Accessibility Report Messages
The following table lists messages in Accessibility reports.

162 | Accessibility Report Messages

Message Definition

Table is missing a table
summary.

The table does not contain a table summary. Insert a
table summary marker within the table.

Image link '{0}' is
missing alternate text.

The hotspot does not have alternate text. Insert an
image area alternate text marker in a text frame within
the image.

Image is missing
alternate text.

The image does not have alternate text. Insert an
image alternate text marker in a text frame within the
image.

Image is missing a long
description

The image does not have a long description. Insert an
image long description marker in a text frame within
the image.

Baggage Files Report Messages
The following table lists messages in Baggage Files reports.

Baggage Files Report Messages | 163

Message Definition

Title missing for '{0}'. The baggage file doesn’t have a title defined.

If it’s an HTML baggage file insert a <title> tag in the
<head> tag of the HTML . Or add the @title attribute
to that file entry in your baggage list info file.

If it’s a PDF baggage file add the @title attribute to
that file entry in your baggage list info file.

Summary missing for
'{0}'.

The baggage file doesn’t have a summary defined.

If it’s an HTML baggage file you can do one of these:

insert a <meta> tag in the <head> tag of the HTML
with @name=’summary’ and @content with the
summary you want to define,

create any kind of tag inside the <body>
tag that accepts the attribute @class with
@class=’summary’ and then place your summary
as the content of the element,

insert a <meta> tag in the <head> tag of the HTML
with @name=’description’ and @content with the
summary you want to define.

Or add the @summary attribute to that file entry in your
baggage list info file.

If it’s a PDF baggage file add the @summary attribute to
that file entry in your baggage list info file.

Filename Report Messages
The following table lists messages in Filename reports.

164 | Filename Report Messages

Message Definition

File '[NAME]' has been
processed as a baggage
file.

Any files not contained within your project are
processed as baggage files.

Filename marker
'[NAME]' has been used
for generated file '[FILE
PATH]'.

A file has been generated using a filename marker. This
alerts you that the name of the file has been changed.

Filename marker
'[NAME]' has been
ignored.

The filename marker has been ignored because it is
either uses a duplicate name or it has not been inserted
at a heading that splits.

Filename marker
'[NAME]' has been
processed as '[NAME]' for
generated file '[NAME]'.

The filename marker has not been used; instead, the
file has been renamed to the filename indicated.

Links Report Messages
The following table list messages in Links reports.

Links Report Messages | 165

Message Definition

Unresolved link to target
‘[NAME]’ in document
‘[NAME]’.

There is an unresolved cross-reference in the
document. The destination target either does not exist
or cannot be found.

Unresolved link from
document ‘[NAME]’
to target ‘[NAME]’ in
document ‘[NAME]’.

There is an unresolved cross-reference from a
document to a location in another document. The
destination target cannot be found.

Unresolved link from
document '[NAME]' to
document '[NAME]'.

There is an unresolved link from one document to
another document. It cannot find the referenced
document.

Unresolved link from
document '[NAME]' to
missing file '[NAME]'.

There is an unresolved link from a document
to an external file. A file refers to any file that
is not part of the ePublisher project or is not of
the same type as your source document (for
example, .jpeg, .gif, .tif)

Unresolved link from
document '[NAME]' to
document '[NAME]'.
Output format does not
support group to group
linking.

There is an unresolved cross-reference from one
document to another document because the output
format your project is using does not support linking
from one top-level group to another.

Unresolved link from
document '[NAME]' to
file '[NAME]'. Output
format does not support
baggage files.

There is an unresolved cross-reference from the
document to a file because the output format your
project is using does not support baggage files. Files
refer to any file that is not part of the project.

External URL link
'[NAME]' is not
supported.

The output format does not support external links.

Styles Report Messages

166 | Links Report Messages

The following table lists messages in Styles reports.

Links Report Messages | 167

Message Definition

Encountered [STYLE
TYPE] style name
'[NAME]' in your source
file that is not defined in
ePublisher.

The style name is not defined in ePublisher.

Encountered text with
[STYLE TYPE] style
name '[NAME]' that has
modified style properties
in your source file.

There is a style override. Style overrides refer to
attributes that are defined within the style.

Encountered style
properties not associated
with a named style in
your source file.

There is a style override. For example, the character
style bold has been modified in one instance of its use.

Topics Report Messages
The following table lists messages in Topics reports.

168 | Topics Report Messages

Message Definition

Topic '[NAME]' resolves
to the file '[FILE PATH]'.

A topic page has been created for the topic alias
marker.

Topic ‘[NAME]’ is
duplicated in the file
‘[FILENAME]’

A duplicate topic alias has been created in that file.

Images Report Messages
The following table lists messages in Images reports.

Images Report Messages | 169

Message Definition

Missing by-reference
source files

An image referenced by the source document is
missing.

Images in table cells Image occurs inside a table cell (problematic for certain
ePUB readers)

Merging Top-level Groups (Multivolume
Help)
Merged help, which is sometimes also referred to as multivolume help, is a help
system with a single set of files created from output from multiple top-level groups
from within a project. Merged help takes the table of contents, index, and search
data from each top-level group entry-point file and combines this information to
create a single, consolidated help system. You can use ePublisher to create merged
help systems for the following output formats:

WebWorks Reverb (1.0 and 2.0)

WebWorks Help

Eclipse Help

Microsoft HTML Help

If you have created several top-level groups in Document Manager for your project,
by default ePublisher generates its own help system with its own entry-point file
when you generate output for your project. The entry-point file is the file that opens
the help system. ePublisher places the merged help system in the Merged Output
group in Output Explorer.

You must have at least two top-level groups in Document Manager to create
merged help. By default, ePublisher uses the organizational structure specified in
Document Manager to create the merged, or multivolume help system. If you want
to organize and group your top-level groups using a different name than the group
name specified in the Document Manager, or if you want to use a different hierarchy
in your merged help system than the hierarchy you currently have specified for your
project in Document Manager, you can do this using merge settings. The following
figure shows the Merge Settings window.

170 | Merging Top-level Groups (Mulvolume Help)

ePublisher names the merged help system based on the name of your target. For
example, if you generate output for a target named CompanyA WebWorks Help,
ePublisher creates an entry-point file for the merged help system named CompanyA
WebWorks Help and displays this name in the title bar when users open the merged
help system.

ePublisher also creates individual help systems for each top-level group in
Document Manager and names these individual help systems based on the names
of the top-level groups in Document Manager. For example, if you have three top-
level groups in Document Manager named FeatureA, FeatureB, and FeatureC and
you are generating output for a target called CompanyA WebWorks Help, ePublisher
creates FeatureA, FeatureB, and FeatureC help systems as well as a merged help
system named CompanyA WebWorks Help that merges the table of contents, index,
and search data from each top-level group into a single, consolidated help system.
These top-level groups also display in the table of contents in your merged help
system.

You can use ePublisher merge settings to perform the following actions:

Specify a different name than the target name for the title displayed in the
title bar of the merged help system

Specify a different name for subgroups in your generated output than the
names used in Document Manager

Organize and group your top-level groups in a merged help system into a
different hierarchy than the hierarchy used in Document Manager.

To merge help systems

Merging Top-level Groups (Mulvolume Help) | 171

1. Create the top-level groups you want to use in your merged help system in
Document Manager. For more information about creating top-level groups, see
“Creating Top-Level Groups”.

2. On the Project menu, select the target next to Active Target for which you
want to create a merged help system.

3. On the Target menu, click Merge Settings.

4. If you want to specify a name other than your target name for the
merged help system, in the Merge Title field, type in the name you would
like to display in the title bar of your merged help system.

5. If you want to specify a different name for each top-level group in the
table of contents for your generated output, complete the following steps
for each top-level group you want to rename in your generated output:

a. In the Hierarchy area, select the name of the top-level group for which
you want to specify a different name in the generated output.

b. In the Table of contents title field, type the name you want to display
for the group in the generated output.

6. If you want to reorganize the table of contents in your merged help
system, select and then drag and drop any of the top-level groups to a new
position.

7. If you want to create a new custom group for your merged help
system that includes some of your existing top-level groups from
Document Manager, complete the following steps:

a. Click the Add button. The Add button in the Merge Settings window is
an icon of a blue page with a plus (+) character ePublisher adds a new
group called Untitled Topic to your table of contents hierarchy.

b. Click on the Untitled Topic group in the Merge Settings window and
rename it.

c. Select and then drag and drop the top-level groups you want to include
in the new group into the new group.

8. If you want to delete a custom group you previously created that
contains top-level groups, complete the following steps:

Note: You can only remove groups that you have manually added to your
merged help system hierarchy. You cannot remove groups ePublisher
creates by default based on the top-level groups in Document Manager.

a. Select the group you want to remove.

172 | Merging Top-level Groups (Mulvolume Help)

b. Click the Delete button.

9. If you are generating merged, or multivolume WebWorks Help or
WebWorks Reverb that includes context-sensitive help, in the Group
context field, specify the help context for each top-level group to use.

Note: In WebWorks Reverb, you can optionally include the context as
a parameter when you have more than one instance of the same
TopicAlias value in a multivolume help set.

10. Click OK.

11. Generate you output. For more information, see “Generating Output”.

12. Open the merged help system by completing one of the following steps:

Note: ePublisher creates the entry-point file using the name of the selected
target. If you want to change the name of the entry-point file for the
merged help system, rename your target. For more information about
renaming your target, see “Renaming Targets”.

a. On the View menu, click Output Explorer.

b. Under the Merge Output group in the Output Explorer, double-click on
the entry-point file for the merged help system to open the merged help
system.

Note: Ensure you click under the Merge Output group in Output Explorer.
You must click under the Merge Output group in Output Explorer
in order to view the merged output. If you click under one of
the other groups, you will only see the output generated for the
specific group selected.

13. Review the merged help system you created based on the merge settings you
specified and confirm that your merged help system displays using the help
system name and table of contents group hierarchy that you want.

Deploying Output
This section explains how you can use ePublisher to deploy output to multiple
locations, such as to folders on a network, or to a Web server.

Output Deployment
By default ePublisher places output files in the following location on your local
computer:

Output Deployment | 173

If you are creating a project using ePublisher Express, by default
ePublisher creates the Output folder in the My Documents\ePublisher
Express Projects\ProjectName folder, where ProjectName is the name of
the project.

If you are creating a project using ePublisher Designer, by default
ePublisher creates the Output folder in the My Documents\ePublisher
Designer Projects\ProjectName folder, where ProjectName is the name of
the project.

If you would like to deploy your output files to another location in addition to this
default location after ePublisher generates output, such as a folder on a network,
you can deploy your output to one or more output destinations using ePublisher.
The output destination is the location where you would like to deploy your
generated output files. In ePublisher, the output destination consists of the following
components:

Output name

Output destination location

To deploy your output, you must perform the following steps:

1. Create one or more output destinations. For more information, see “Creating
Output Destinations”.

2. Specify an output destination for each target. For more information, see
“Specifying Output Destinations for Targets”.

3. Deploy output to output destinations. For more information, see “Deploying
Output to Output Destinations”.

Creating Output Destinations
Before you can deploy your output, you must create output destinations. You can
specify one output destination or multiple output destinations. Specify multiple
output destinations when you want to deploy your output to multiple locations.
For example, assume that you place your generated output to a web server
computer, and you use both a staging server and a production server. You can
create one output destination in ePublisher for the staging server, and another
output destination in ePublisher for the production server.

Output destinations are not project or target specific. When you define output
destinations in ePublisher, ePublisher saves the output destinations you define and
allows you to use the output destinations you specify across multiple ePublisher
projects and targets.

174 | Creang Output Desnaons

When you deploy output to an output destination, ensure you specify a descriptive
name for the output destination. When you work with output destination, you can
only see the name of the output destination. You will not be able to see the actual
path you specified to the output destination. Type a descriptive name for the output
destination that allows you to easily identify each output destination you specify.

For example, if you are deploying WebWorks Help output for a product to both
a staging server and a production server, type Production Server ProductA
WebWorks Help for the first output destination. When you create your second
output destination, type Staging Server ProductA WebWorks Help for the
second output destination.

To create an output destination

1. On the Target menu, click Target Settings.

2. Click Add deploy target.

3. Complete the following steps:

a. Click Add > Folder.

b. In the Name field, type a descriptive name for the output destination.

c. In the Directory field, type the path to the folder you want to specify as
the output destination, or click the folder icon and then browse to and
select the folder where you would like to deploy your output.

d. Click OK.

After you create an output destination, you must specify which target is associated
with the output destination before you can deploy output. For more information,
see “Specifying Output Destinations for Targets” and “Deploying Output to Output
Destinations”.

Specifying Output Destinations for Targets
After you create an output destination, you must associate the output destination
with an target before you can deploy output.

To specify an output destination for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify an output destination.

2. On the Target menu, click Target Settings.

3. In the Deploy to field, select an output destination.

Specifying Output Desnaons for Targets | 175

Note: You must create an output destination before you can specify an output
destination for a target. For more information about creating output
destinations, see “Creating Output Destinations”.

4. Click OK.

After you specify an output destination for a target, you can generate output and
deploy the output to the output destination.

Deploying Output to Output Destinations
After you create output destinations, specify output destinations for targets and
generate output, you can use the Deploy command in ePublisher to copy your
output files and place them into the locations you specified as output destinations.
When you deploy output, ePublisher copies the target output files and places
the output files in the location you specified as the output destination. For more
information about creating output destinations and specifying output destinations
for targets, see “Creating Output Destinations” and “Specifying Output Destinations
for Targets”.

To deploy output to an output destination

1. On the Project menu, select the target next to Active Target for which you
want to deploy output.

2. On the Target menu, click Deploy. ePublisher deploys the output files to the
specified output location.

Working with Target Settings
Based on your ePublisher implementation, after you create a project using
Stationery, you can customize target settings for the targets available in your
project if you have appropriate permissions. You can only customize target settings
in a project if you have target setting modification permissions.

If you are using ePublisher Designer, you have target setting modification
permissions. If you are using ePublisher Express, you may or may not have target
setting modification permissions. When you install ePublisher Express, you must
select the Allow users to modify Target Settings and Properties check box
in order to have permissions to modify the target settings for the targets available
in your project. If you do not select this check box during installation, you will not
be able to customize target settings in projects. However, you can enable target
setting modification permissions after you install ePublisher Express if needed. For
more information, see “Working with Contract IDs”.

If you have permissions to modify the target settings in projects, you can
customize the following target settings for most output formats:

176 | Working with Target Sengs

Note: If you are using ePublisher Express, any customizations you make to target
settings will be overwritten the next time you synchronize your ePublisher
Express project with Stationery. For more information, see “Synchronizing
Projects with Stationery”.

Accessibility settings. For more information, see “Specifying Accessibility
Settings”.

Baggage Files settings. For more information, see “Specifying Baggage Files
Settings”

Company information. For more information, see “Specifying Company
Information”.

File processing behavior for front matter, index files, and table of contents
files. For more information, see “Specifying File Processing Behavior for Front
Matter, Index, and Table of Contents Files”.

When to create new pages. For more information, see “Specifying Page Breaks
Settings”.

How you want to name your page files and image files when generating
output. For more information, see “Specifying Page, Image, and Table File
Naming Patterns”.

Index settings. For more information, see “Specifying Index Settings”.

How links to files or external URLs display in browser windows. For more
information, see “Specifying How Links to Files or External URLs Display in
Browser Windows”.

Character encoding settings for targets. For more information, see “Specifying
Character Encoding for Targets”.

Language used by targets. For more information, see “Specifying the
Language Used by Targets”.

PDF generation settings. For more information, see “Specifying PDF
Generation Settings”

Table of contents settings. For more information, see “Specifying Table of
Contents Settings”.

Report settings. For more information, see “Specifying Report Settings”.

Output format-specific settings, such as settings specific to the WebWorks
Help output format or the Microsoft HTML Help output format. For more
information, see “Specifying Output Format-Specific Settings”.

Working with Target Sengs | 177

Variable settings. For more information, see “Setting Variables in Projects”.

Condition settings. For more information, see “Setting Conditions in Projects”.

Cross-reference settings. For more information, see “Setting Cross-References
in Projects”.

After you make any customizations to the target settings for the targets available in
your project, generate output so that you can review your changes and verify that
the generated output displays and functions properly. You can generate output for
all the source documents and groups in your project, or you can generate output for
a single group or source document. For more information about generating output,
see “Generating Output”.

Specifying Accessibility Settings
In ePublisher, accessibility refers to how users with disabilities access electronic
information and how writers and producers of online content produce accessible
output that can function with assistive devices used by individuals with disabilities.
Creators of online content, such as writers who product online content and help
systems and others who are responsible for producing accessible help, or Section
508 compliant content, must follow certain guidelines established by the W3C and
the U.S. government. If you are responsible for producing accessible online content,
you must provide alternate text and descriptions for all images and image maps
and summaries for all tables included in the online content. Ensure you specify this
information when you prepare your source documents for output generation. For
more information, see “Creating Accessible Online Content in FrameMaker” and
“Creating Accessible Online Content in Word”.

To specify accessibility settings for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under Accessibility, specify the appropriate values for the Accessibility
settings. For more information about Accessibility settings and values, click
Help.

4. Click OK.

Specifying Baggage Files Settings
In addition to your source files content inside HTML and PDF files can be indexed
by enabling Baggage File settings. In ePublisher you can access to the Baggage File

178 | Specifying Baggage Files Sengs

settings only if your target is WebWorks Reverb (Reverb 1 and 2). There are several
settings that allows you to customize the way Reverb handles the baggage files.

You can specify the following settings:

Baggage files info list

Copy baggage file dependents

Index baggage files

Index external links

We will explain each setting briefly below.

Baggage files info list
The baggage files info list allows you to control index behavior and assign
titles and descriptions to external files and URLs linked to in source documents.
This is useful if the automatically-assigned titles and descriptions that display in the
output search results are not relevant or are missing.

If your baggage files or external URLs do not have adequate title and summary
values defined, then you can also use the baggage files info list to provide
these values. These values are used for displaying search results.

If you have external URL links or baggage files in your source content that you do
not want included in the search index, then use the attribute @noindex .

When specifying the path for baggage files, you can either use an absolute path or
a path relative to the baggage files info list file.

You can specify the location and filename of the baggage files info list using
the Target Settings dialog (explained below). By default the filename is called:
baggage_list.xml and is available to override in the Advanced > Manage
Format/Target Customizations menu. In addition to renaming this file, you
can also specify an absolute path or a relative path from the project file directory.
Furthermore, you can use a variable for getting the directory location of the first
document in the project. Using this variable called: $FirstDocDir; , you can locate
the baggage files info list file in this directory. This is a useful way to use
your stationary with multiple projects.

To use this variable you need to specify it first in the Target Setting value like this:

$FirstDocDir;/baggage_list.xml .

Note: If you change the path of the baggage files info list target setting,
then even if you have overridden this file, the overridden file will be ignored
and the file specified will be used instead. However, if you just change the
base filename, then ePublisher will look for this file as if it were an override.

Baggage files info list | 179

To get the path of the Baggage Files info list file we follow these steps

1. If you change the default value or just change the name (without
specifying a path) Reverb tries to get the file from the Targets folder first
and then from the Formats folder. The file will be located in the Transforms
folder, so you can easily do an override of it if you want to keep the default
name, otherwise you can add the new file there with the name you defined in
the Target Settings.

2. If you define an Absolute or Relative path Reverb will calculate the
relative path relative to the project file and will take the absolute path as is.

If you don’t specify a title and/or a summary for a baggage file we will try to do it
for you.

In case of an HTML file for getting a title (if you didn’t define one in a baggage list
file) we will search for:

1. A <title> tag defined in the <head> section of the HTML.

2. The base name without the extension of the HTML file.

In case of a PDF file for getting a title (if you didn’t define one in a baggage list file)
we will get the base name without the extension of the PDF file.

In case of an HTML file for getting a summary (if you didn’t define one in a baggage
list file) we will search for:

1. The attribute @content in the <meta> tag defined in the <head> section of
the HTML with attribute @name=”summary” .

2. All the text inside the first tag, contained in the <body> tag, with attribute
@class=”summary” .

3. The attribute @content in the <meta> tag defined in the <head> section of
the HTML with attribute @name=”description” .

4. All the text inside the first <p> tag, contained in the <body> tag.

In case of a PDF file for getting a summary (if you didn’t define one in a baggage
list file) we will get the first 300 letters from the content of the PDF file.

The attribute @noindex accepts 2 values: true |false , or you can even not
define this attribute at all, and it will take the value false by default. If you define
@noindex="true" it means Reverb won’t index that file.

The attribute @path is for specifying the path to the file (relative or absolute) or the
external URL. It should be an existing path to an HTML page or PDF, either local or
in the web.

180 | Baggage files info list

Note: Any text you write in this file, if it contains a reserved character you’ll have
to change it to use the entity corresponding. For example, instead of “&” use
“&”.

The following code will show you how to structure a baggage list file, as well as
some examples for the entries:

<?xml version="1.0" encoding="UTF-8" ?>

<Files version="1.0" xmlns="urn:WebWorks-Baggage-List-Schema">

<File path="http://example.com/" noindex="true"/>

<File path="https://example.com/myfavoritepage" title="My favorite
page" summary="Favorite pages can make your day better"/>

<File path="Source-Docs\some_pdf.pdf" title="Some PDF title"
summary="Some PDF summary"/>

<File path="C:\Documents\another_pdf.pdf" title="Another PDF title"
summary="Another PDF summary"/>

...

</Files>

Copy baggage file dependents
If you have this setting Enabled in your Target Settings, all the dependents
of your HTML baggage files will be copied to the baggage folder inside the
corresponding group in the output folder. These mean the final user will be able to
open the HTML baggage file and it will look pretty similar to the original one. Right
now we support the dependences corresponding to these tags:

<link> tag inside the <head> tag that it’s not an external URL or starts with
“javascript:”

<script> tag that it’s not an external URL or starts with “javascript:”

 tag that it’s not an external URL or starts with “javascript:”

<input> tag that it’s not an external URL or starts with “javascript:”

<iframe> tag that it’s not an external URL or starts with “javascript:”

<video> tag that it’s not an external URL or starts with “javascript:”

<audio> tag that it’s not an external URL or starts with “javascript:”

Copy baggage file dependents | 181

<object> tag inside the <body> tag that it’s not an external URL or starts
with “javascript:”

Index baggage files
If you have this setting Enabled in your Target Settings, Reverb will index all the
baggage files allowing them to show up in Search Results. You can override this
behavior on a file by file basis by specifying the attribute @noindex="true" in your
Baggage files info list.

In order to handle most any type of HTML file Reverb uses Tidy (tool for cleaning up
HTML files) for creating a well-formed XHTML temporary copy of the files, which are
valid XML files that ePublisher can read.

Index external links
If you have this setting Enabled in your Target Settings, Reverb will index all the
external links you have in your source documents and in your Baggage files info list.
That means you’ll have in your Search Results links to your external URLs if they
match with the searched phrase.

The Reverb format downloads the file to the Data directory and then uses Tidy (tool
for cleaning up HTML files) for creating an XHTML copy of the files, which are valid
XML files that ePublisher can read.

Note: If your URL needs to execute some JavaScript code to get the content of
the page, Reverb won’t be able to index the dynamic content of the page.
To simulate the actual content that Reverb will index at a particular URL,
temporarily disable JavaScript in your browser and visit that link.

To specify baggage files settings for a target (only for Reverb targets):

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under Baggage Files, specify the appropriate values for the Baggage Files
settings. For more information about Accessibility settings and values, click
Help.

4. Click OK.

Specifying Company Information

182 | Specifying Company Informaon

You can add your company’s contact information to each generated output page.
ePublisher can display the company contact information on the bottom and/or top
of your output pages. Where the company information displays depends on what
the Stationery designer specified in the Stationery file.

To display the company information in the header area, see “Header Settings”.

To display the company information in the footer area, see “Footer Settings”.

You can specify the following company information:

Company email address

Company fax number

Company logo image

Company name

Company phone number

Company web page

To specify company information for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under Company Information, specify the appropriate values for the
company information settings. For more information about the company
information settings and values, click Help.

4. Click OK.

Specifying File Processing Behavior for
Front Matter, Index, and Table of Contents
Files
You can specify file processing behavior for front matter, index files, and table of
contents files. For example, you can specify whether or not you want to generate
output for front matter included in your source documents.

To specify file processing behavior for a target

Specifying File Processing Behavior for Front Maer, Index, and Table of Contents Files | 183

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under File Processing, specify the appropriate values for file processing
settings. For more information about the file processing settings and values,
click Help.

4. Click OK.

Specifying Page Breaks Settings
When ePublisher processes source documents, it creates new topic pages based on
settings specified by the Stationery designer in the Stationery. However, you can
modify how you would like ePublisher to handle the page breaks.

To specify page break settings for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under Files, in the Page break handling field, select the value you want to
specify. For more information about the values, click Help.

4. Click OK.

Specifying Page, Image, and Table File
Naming Patterns
You can specify page, image, and table file naming patterns that you want
ePublisher to use when generating output.

For example, you can specify if you would like to include the following items in
page, image, and table file names when generating output:

Target name

Name of the group in Document Manager that contains the topic

Page heading text or title

184 | Specifying Page, Image, and Table File Naming Paerns

You can use image naming patterns to specify names for embedded image output
files. However, if you insert your images by reference in Adobe FrameMaker or
use the Link to File or Insert and Link option in the Insert Picture window in
Microsoft Word, ePublisher preserves the original file names.

Note: You can also use Filename markers to specify page and image output file
names.

To specify page, image, and table file naming patterns for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under Files, specify the appropriate values for the page, image, and file
naming patterns you want to use. For more information about file settings and
values, click Help.

4. Click OK.

Specifying Index Settings
In ePublisher, you can specify if you want to generate an index for your help
system. If you choose to generate an index for your help system, you must have
index markers in your source documents.

To specify index settings for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under Index, specify the appropriate value for each index setting. For more
information about the index settings and values, click Help.

4. Click OK.

Specifying How Links to Files or External
URLs Display in Browser Windows

Specifying How Links to Files or External URLs Display in Browser Windows | 185

ePublisher allows you to specify how you want links that open baggage files or links
that open external URLs displayed in your output. For the definition of a baggage
file see “Targets”.

To specify link settings for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under Links, specify the appropriate value for each links setting. For more
information about the links settings and values, click Help.

4. Click OK.

Specifying Unknown File Links Behavior in
Reverb
In the output format, WebWorks Reverb 2.0, relative file links that do not resolve to
an actual file (i.e. baggage file) are not active when loaded in the browser. In this
situation, Reverb assumes that this link is not available in the current session and
thus prevents the user from activating them and getting an unknown file error.

If you wish to preserve these types of links in your output (there are circumstances
where preserving this behavior can be useful), then you will need to enable the
target setting called: Preserve Unknown File Links .

To enable preservation of unknown file links

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings.

3. Under Links, enable the setting: Preserve Unknown File Links .

Specifying Character Encoding for Targets
In ePublisher, encoding refers to the character encoding method used to convert
bytes into characters. Programs use encoding when they display HTML documents.
Documents in English and most other Western European languages typically use the
widely supported character encoding UTF-8. If you are producing output localized
for other languages, such as Japanese, Korean, Simplified Chinese, Traditional

186 | Specifying Character Encoding for Targets

Chinese, Greek, Turkish, or Eastern European, Cyrillic, or Baltic languages, you
must specify the correct encoding for each target for which you generate output.

Ensure the encoding you specify when you generate your output matches the
encoding used in the environment where your output will be posted. For example,
if your output will be posted on a web server, the encoding you specify when you
generate your output should match the encoding used on the web server. If your
output and the computer or web server hosting your output do not use the same
character encoding method, some characters may not display correctly when users
view your output.

To specify character encoding for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under Locale, specify the appropriate value for the Encoding setting. For
more information about the encoding setting values, click Help.

4. Click OK.

Specifying the Language Used by Targets
In ePublisher, locale refers to the language used when displaying output for a
target. If you produce localized output, specify the correct language for each target
in your ePublisher project.

To specify the language to use for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under Locale, specify the appropriate value for the Locale setting. For more
information about the locale setting values, click Help.

4. Click OK.

Specifying PDF Generation Settings
ePublisher can generate PDFs for each source document, for each top-level group in
your project, or for each source document and each top-level group in your project.

Specifying PDF Generaon Sengs | 187

To specify PDF generation settings for a target

1. On the Project menu, select the output format next to Active Target for
which you want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under PDF, specify the appropriate values for the PDF settings. For more
information about PDF settings and values, click Help.

4. Click OK.

Specifying Table of Contents Settings
ePublisher allows you to specify whether you want to generate a table of contents,
the file name you want to specify for your table of contents file, and how you want
your table of contents to display in your generated output.

ePublisher provides table of contents settings to help you address how you want
your table of contents to display. By default, ePublisher uses the table of contents
levels specified in the project or in the Stationery file to create a table of contents
for your help system based on the heading levels in your source documents.
However, if you have source documents where writers skipped heading levels, you
can specify how you want ePublisher to display skipped headings in the table of
contents.

For example, assume that you have an ePublisher project that uses a Stationery file
that specifies Heading 1, Heading 2, and Heading 3 as levels in the output table of
contents. Then assume that in the source document, you skipped several Heading 2
levels. ePublisher displays an empty table of contents icon, similar to the following
figure, in the location of the skipped Heading 2 levels unless you specify how you
want to manage skipped heading levels in the generated table of contents.

You can specify the following behavior for table of contents where writers skipped
headings:

If you want ePublisher to automatically insert empty table of contents
entries for skipped heading levels, select the Don’t collapse value. The
following figure shows a table of contents with this option selected.

188 | Specifying Table of Contents Sengs

If you want ePublisher to automatically insert labeled entries for
skipped heading levels, select the Re-label value. ePublisher displays the
heading text from the table of contents entry below the current entry as the
table of contents label. The following figure shows a table of contents with this
option selected.

If you want ePublisher to automatically remove empty table of
contents entries and move the heading that follows an empty table
of contents entry up a level to replace the skipped table of contents
level, select the Smart collapse value. The following figure shows a table of
content with this option selected.

If you want ePublisher to remove all skipped heading levels and table
of contents entries and place all table of contents headings at the
same level, regardless of the table of contents level specified in the

Specifying Table of Contents Sengs | 189

Stationery, select the Fully collapse value. The following figure shows a
table of contents with this option selected.

To specify table of contents settings for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under Table of contents, specify the appropriate values for the table of
contents settings. For more information about table of contents settings and
values, click Help.

4. Click OK.

Specifying Report Settings
You can use reports to identify problems in your source documents. If an ePublisher
report detects problems in your source document, ePublisher displays a notification
alert in the report. You can specify which types of settings you want to use to
validate your generated output and the type of notification you want to receive
if ePublisher detects an issue when validating your output. For more information
about using reports to validate your output and the different types of notifications
you can receive, see “Validating Output Using Reports”.

Specifying Output Format-Specific Settings
You can specify output format-specific settings for the following output formats:

WebWorks Reverb

PDF - XSL-FO

eBook - ePUB 2.0

Eclipse Help

190 | Specifying Output Format-Specific Sengs

Microsoft HTML Help

Oracle Help

PDF

Sun JavaHelp

WebWorks Help

You must have the target that uses the output format selected in your project
before you can see the output format-specific settings in the window. For example,
to see WebWorks Help output format-specific settings in the window, you must have
a target that uses the WebWorks Help output format selected as your active target.
If you have a target that uses the Microsoft HTML Help output format selected as
your active target, you will not be able to see WebWorks Help output format-specific
settings in the window. You will only be able to see Microsoft HTML Help output
format-specific settings.

To specify output format-specific settings for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify output format-specific settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under the name of the output format, specify the appropriate values for each
output format-specific setting. For more information about output format-
specific settings and values, click Help.

4. Click OK.

Setting Variables in Projects
In a project, you can use the variable values defined in your source document. You
can also change the value of any variable in your source document in a project.
Changing the value of a variable in a project does not change or affect the value
of the variable in your source document. You can use the value of the variable
you defined in your project when you generate output. Before you can work with
variables in projects, you must insert variables in your source documents.

To set a variable in a project

1. On the Project menu, select the target next to Active Target for which you
want to customize variable settings.

Seng Variables in Projects | 191

2. On the Target menu, click Variables. You must have target modification
permissions to modify variable settings for a target. For more information, see
“Working with Target Settings”.

Note: For Microsoft Word documents only, if you use variables that are built-
in DocProperty types such as Author or Company , then you will need
to manually add these variables into the project or stationery as they
are not detected when scanned by ePublisher Designer. However, once
added into either the stationery or project then they will be available for
customization from that point forward.

3. In the Name column, find the variable you want to modify.

4. If you want the your ePublisher project to use the variable value
defined in your source document, click in the Value field for the variable,
and then select Use document value from the drop-down list.

5. If you want to change the variable value ePublisher uses when
generating output, click in the Value field for the variable, and then type in
a new value for the variable.

6. Click OK.

7. Generate your output. For more information, see “Generating Output”.

8. Review your output and confirm that variables display appropriately in your
generated output. For more information, see “Viewing Output”.

Setting Conditions in Projects

192 | Seng Condions in Projects

In a project, you can use the conditions defined in your source document to
control the visibility of content to which you have applied conditions. You can also
change the visibility specified for any condition in a project. Changing the visibility
specified for any condition in a project does not change the visibility specified for
the condition in your source documents. Before you can work with conditions in
projects, you must apply conditions to content in your source documents.

To customize a condition in a project

1. On the Project menu, select the target next to Active Target for which you
want to customize condition settings.

2. On the Target menu, click Conditions. You must have target modification
permissions to modify condition settings for a target. For more information,
see “Working with Target Settings”.

3. In the Name column, find the condition for which you want condition to set
the value.

4. Specify the appropriate value for the condition. For more information about
condition values, click Help.

5. Click OK.

6. Generate your output. For more information, see “Generating Output”.

7. Review your output and confirm that conditionalized content displays
appropriately in your generated output. For more information, see “Viewing
Output”.

Setting Cross-References in Projects
Cross-references help users access related information quickly in printed and online
content. When you convert your source documents to online help, if you have cross-
references in your source documents, ePublisher automatically converts all cross-
references to hypertext links. Typically, cross-references used for printed materials
have a different format than cross-references used for online help. For example,
cross-references in printed content typically include page numbers, while cross-
references in online help typically do not include page numbers, because page
numbers are out of context in online help.

In ePublisher, you use the Cross-Reference Rules window to add, edit, or delete
cross-reference formats for your project. A cross-reference format is a combination
of text and code that defines how you want your cross-reference to display. For
example, your source documents may display the following cross-reference format:
“Modifying Cross-Reference Formats on page xxx”, where xxx is the page number
where the topic “Modifying Cross-Reference Formats” begins. However, you may
modify the cross-reference format in ePublisher so that when you generate online

Seng Cross-References in Projects | 193

content, the “Modifying Cross-Reference Formats” topic displays as a hyperlink
without a page number, such as Modifying Cross-Reference Formats in Projects.

ePublisher obtains the cross-reference formats and values in the Cross-Reference
Rules window from your source documents. You can modify cross-reference formats
in ePublisher. For more information about cross-reference building blocks or codes,
see your content authoring tool documentation.

The following figure shows the Cross-Reference Rules window in ePublisher.

Modifying Cross-Reference Formats in
Projects
Modify cross-reference formats when you want cross-references in your online
content to use a different format than your printed content.

To modify a cross-reference format in a project

1. On the Project menu, select the target next to Active Target for which you
want to modify cross-reference formats.

2. On the Target menu, click Cross Reference Rules. You must have target
modification permissions to modify a cross-reference format for a target. For
more information, see “Working with Target Settings”.

3. Specify the appropriate value for each cross reference. For more information
about cross reference values, click Help.

4. Click OK.

194 | Modifying Cross-Reference Formats in Projects

5. Generate your output. For more information, see “Generating Output”.

6. Review your output and confirm that cross-references display appropriately in
your generated output. For more information, see “Viewing Output”.

Adding Cross-Reference Formats to Projects
If you are using Adobe FrameMaker or Microsoft Word documents as your source
documents for ePublisher, then you can take advantage of the Cross-Reference
Formats capability in ePublisher to modify cross references when generating output.

ePublisher obtains the cross-reference formats and values in the Cross-Reference
Rules window from your source documents. You can also add cross-reference
formats in ePublisher.

For example, if you started to use a new cross-reference format in your source
document and the Stationery designer has not yet added this new cross-reference
format to the Stationery associated with your project, you can add the new cross-
reference format to your project and specify the cross-reference format you want
to use for your new cross-reference format. After you add a new cross reference
format ePublisher recognizes the new cross reference formats and applies the
cross-reference format you specify.

To add a cross-reference format to a project

1. On the Project menu, select the target next to Active Target for which you
want to add a cross-reference format.

2. On the Target menu, click Cross Reference Rules. You must have target
modification permissions to add a cross-reference format for a target. For
more information, see “Working with Target Settings”.

3. In the Document type field, select the content authoring tool for the cross-
reference format you want to add.

4. Click the Add New Cross Reference icon.

5. In the Name field, type a name for the new cross-reference format you want
to add to the project.

6. In the Replacement field, type a combination of text and code or building
blocks that define how you want your new cross-reference to display. For
more information about cross-reference building blocks or codes, see your
content authoring tool Help.

7. Click OK.

8. Click OK again to close the window.

Adding Cross-Reference Formats to Projects | 195

9. Generate your output. For more information, see “Generating Output”.

10. Review your output and confirm that cross-references display appropriately in
your generated output. For more information, see “Viewing Output”.

Deleting Cross-Reference Formats from Projects
ePublisher obtains the cross-reference formats and values in the Cross-Reference
Rules window from your source documents. You can delete cross-reference formats
in ePublisher. Delete cross-reference formats when you no longer want to use the
cross-reference format in your source documents.

If you delete the cross-reference format in your ePublisher project, but your source
documents continue to use the cross-reference format, ePublisher will detect the
deleted cross-reference format in your source documents and add it to your project
again the next time you scan your source documents or generate output.

To delete a cross-reference format from a project

1. On the Project menu, select the target next to Active Target for which you
want to delete a cross-reference format.

2. On the Target menu, click Cross Reference Rules. You must have target
modification permissions to delete a cross-reference format for a target. For
more information, see “Working with Target Settings”.

3. In the Document type field, select the content authoring tool associated with
the cross-reference format you want to delete.

4. In the Name column, select the cross-reference format you want to delete.

5. Click the Delete Cross Reference icon.

6. Click OK.

File Mappings for Source Documents
This section explains how to configure file mappings for source document types in a
project.

File Mappings
In ePublisher, a file mapping is an association between a file extension and an
ePublisher adapter. An ePublisher adapter is an ePublisher component that links
the content authoring tool that you used to develop your content with ePublisher.
ePublisher currently provides adapters for the following content authoring tools:

Markdown++ (helper)

196 | File Mappings

Adobe FrameMaker

Microsoft Word

XML

In ePublisher, you can add any source documents that can be opened with Adobe
FrameMaker, Microsoft Word, DITA-XML to your ePublisher project through the use
of file mappings. By default, ePublisher provides a list of file extensions that are
preset to use either Microsoft Word, Adobe FrameMaker, or the built-in XML adapter.
For example, you can add .txt files to your ePublisher project by specifying the
adapter ePublisher should use in order to open the .txt file. You can specify
whether you want the Adobe FrameMaker, Microsoft Word, or XML adapter to open
the .txt files you add to your project.

Certain file extensions, such as .book , .fm , and .bk files, are unique to a specific
adapter. For example,.book , .fm , and .bk file can only be opened by Adobe
FrameMaker. .rtf , .xml , and .doc are specific to Microsoft Word. If you try to
generate output or an output preview using a file type associated with an ePublisher
adapter and the file type cannot normally be opened with the content authoring tool
associated with the ePublisher adapter, ePublisher displays an error message. The
built-in XML adapter ePublisher provides is configured out-of-the-box to support
DITA-XML. You can also configure ePublisher Stationery to support other XML types.
However, XML input formats other than DITA-XML may not be supported by the
WebWorks Technical Support team.

If you have an ePublisher Contract ID that enables only the Microsoft Word, the
Adobe FrameMaker, or the built-in XML adapter, then you can use only that adapter
when you use ePublisher. Although the option to choose another adapter may be
available in the ePublisher user interface, you will not be able to generate output or
preview output using the other adapters. You can only use the adapters enabled by
your Contract ID.

Modifying File Mappings
ePublisher provides a default list of file mappings in which file extensions have
been preset to use a specific adapter. However, in some cases you may need to
modify file mappings for a project. For file extensions that can either be opened
with Microsoft Word or Adobe FrameMaker, such as .txt files, you can specify
the adapter you want ePublisher to use for the file extension. You can modify file
mappings for a specific project or for all of your ePublisher projects.

To modify a file mapping

1. If you want to modify a file mapping for a specific project, complete the
following steps:

a. On the Project menu, click Project Settings.

Modifying File Mappings | 197

b. In the File Extension column, click the file extension for which you
want to modify the file mapping.

2. If you want to modify a file mapping for all of your ePublisher
projects, complete the following steps:

a. On the Edit menu, click Preferences.

b. On the File Mappings tab, in the File Extension column, click the file
extension for which you want to modify the file mapping.

3. In the Adapter column, select the ePublisher adapter you want to associate
with the file extension. The ePublisher adapter you associate with the file
extension will be the ePublisher adapter that opens files with the specified file
extension.

4. Click OK.

5. Click OK again. Each new ePublisher project you create after you modify
the file mapping will use the ePublisher adapter you associated with the file
extension.

Creating New File Mappings
If there is a file extension that you would like to use but the file extension is not
available in ePublisher in the default list of file extensions, you can create a new file
mapping. To create a new file mapping, add a new file extension and associate, or
map, the file extension to an ePublisher adapter. You can use the new, or custom,
file mapping to specify that ePublisher open files using the new file extension with
Adobe FrameMaker, Microsoft Word, or the built-in XML adapter. When you create
a new file mapping, ePublisher saves information about the new file mapping you
created, and you can apply the new file mapping to all of the subsequent projects
that you open.

When you create a file mapping and specify an ePublisher adapter for the file
extension, ensure the file extension can be opened using the content authoring
tool associated with the adapter outside of ePublisher before you create the new
file mapping. If the file extension cannot be normally opened using the content
authoring tool, then ePublisher will also not be able to generate output from the
source document using the ePublisher adapter.

For example, assume your Contract ID enables licensing for ePublisher Express
for FrameMaker. Next assume that you add HTML as a file mapping and associate
the .html file extension with the Microsoft Word adapter. When you create the file
mapping for the .html file extension with the Microsoft Word adapter, ePublisher
allows you to add the HTML file to your project. However, since you do not have a
valid license key for the ePublisher Express for Microsoft Word, ePublisher displays
the following error message.

198 | Creang New File Mappings

To create a new file mapping

1. If you want to create a new file mapping for a specific project,
complete the following steps:

a. On the Project menu, click Project Settings.

b. Click the Add icon.

2. If you want to create a new file mapping for all of your ePublisher
projects, complete the following steps:

a. On the Edit menu, click Preferences.

b. On the File Mappings tab, click the Add icon.

3. In the File extension field, type the file extension you want to use for the file
mapping. For example, you can add .html as a file extension.

4. In the Adapter field, select the ePublisher adapter you want to associate with
the file extension. The ePublisher adapter you associate with the file extension
will be the ePublisher adapter that opens files with the specified file extension.
For example, you can select Microsoft Word as the adapter for the .html file
extension.

5. Click OK.

6. Click OK again. Each new ePublisher project you create after you modify
the file mapping will use the ePublisher adapter you associated with the file
extension.

Deleting File Mappings
Delete a file mapping when you no longer want to use the file mapping in your
ePublisher project.

To delete a file mapping

1. If you want to delete a file mapping for a specific project, complete the
following steps:

Deleng File Mappings | 199

a. On the Project menu, click Project Settings.

b. In the File extension field, select the file extension for the file mapping
you want to delete.

2. If you want to delete a file mapping for all of your ePublisher
projects, complete the following steps:

a. On the Edit menu, click Preferences.

b. On the File Mappings tab, in the File extension field, select the file
extension for the file mapping you want to delete.

3. Click the Delete icon.

4. Click OK.

5. Click OK again. Each new ePublisher project you create after you delete the
file mapping will not use the ePublisher adapter you deleted.

200 | Deleng File Mappings

Scheduling and Integrating
Processes with AutoMap

How ePublisher Supports Automation
Preparing Projects, Stationery, and Source Files
Working with Jobs
Using Scripts for Additional Custom Processing
Using the Command-Line Interface

This section describes how to automate output generation and integrate this task
with your other processes. For example, you can have the build process for a
software product automatically build all the targets you define in your project using
the latest version of source documents checked into your version control system or
content management system.

How ePublisher Supports Automation
ePublisher provides several components to help you process source documents
and publish the generated output. The ePublisher AutoMap component helps you
schedule and perform all your processing tasks, and it also provides automated
pre- and post-processing capabilities to complete your production and publication
processes.

What Is ePublisher AutoMap?
ePublisher AutoMap is the automation tool that enables you to automate the
content transformation process, batch processing, and integration with content
management or version control systems. This component lets you schedule
ePublisher projects. For example, you can schedule the output generation to occur
overnight. Then, when you arrive the next morning, your transformed content is
ready for you. You can also automatically generate and deploy deliverables to meet
your specific needs, such as updating Web site content based on updated source
documents. You can automatically create ePublisher projects and generate output
without manually opening ePublisher or your source documents.

Benefits of Using ePublisher AutoMap
ePublisher AutoMap automates the process of transforming your source documents
to your output formats. This component lets you transform content at scheduled
times and work seamlessly with your content management and version control
systems. The following list highlights several ePublisher AutoMap features that save
you time and effort:

Automates the output generation using existing projects, including
synchronizing with the Stationery

Benefits of Using ePublisher AutoMap | 201

Creates projects using the specified Stationery and applies it to your content

Creates merged output from multiple books

Allows you to customize conditions, variables, and cross references on a per-
job and per-target basis

Redirects and deploys output automatically

Provides a full-featured command-line interface for performing batch
transformations from other systems or scripts

Integrates with content management and version control systems

Offers flexible scheduling options

Notifies relevant people when a job succeeds or fails

Automatically updates your online content, help, or Web-based information

Version Control System (VCS) Integration
ePublisher AutoMap allows you to specify scripts for retrieving files from version
control systems such as:

CVS

ClearCase

Visual Source Safe

Subversion

Mercurial

Documentum

Perforce

Git

ePublisher AutoMap can work with any version control system that is scriptable
from the command line. For more information, see “CVS Version Control Checkout
Example”. To see more version control integration scripting examples see
wiki.webworks.com/HelpCenter/Tips/VersionControl

Content Management System (CMS)
Integration

202 | Content Management System (CMS) Integraon

Using the same scripting integration as used for version control system integration,
ePublisher AutoMap can also work with many industry standard content
management systems such as: Vasont CMS and SDL LiveContent.

Preparing Projects, Stationery, and
Source Files
ePublisher AutoMap can transform your source documents with no special
modifications. Prepare your project, Stationery, and source documents just like you
do when you generate output with the other ePublisher components. In ePublisher
AutoMap, you use a job to define the output generation and the applicable options.
After you create your job, ePublisher AutoMap performs one of the following tasks:

If you created the job based on a project, ePublisher AutoMap synchronizes
the project with the Stationery, and then it generates the output defined by
the project.

If you created the job based on a Stationery, ePublisher AutoMap creates a
new project based on the Stationery, adds all the source documents defined
by the job, and then it generates the output defined by the project.

Starting ePublisher AutoMap
ePublisher AutoMap features an easy-to-use console that allows you to schedule
output generation using your source documents to run either immediately or at a
specified time.

To start ePublisher AutoMap

In the WebWorks program group, click ePublisher AutoMap > WebWorks
ePublisher AutoMap.

Starng ePublisher AutoMap | 203

To start ePublisher AutoMap without administrative privileges

If are running in a restrictive environment that does not allow elevation of user
permissions to Administrator rights, then you will need to run ePublisher AutoMap
from the following batch file. This file lives in the installation directory underneath
WebWorks\ePublisher\<version>\ePublisher AutoMap\ . The file is called
WebWorks.Automap.Administrator.restricted.bat .

Note: You will not be able to launch or schedule jobs when starting ePublisher
AutoMap this way. However you will be able to create and configure jobs.

Setting ePublisher AutoMap Preferences
The Preferences window lets you specify default options and preferences that affect
the behavior of ePublisher AutoMap. These preferences allow you to customize the
console for your specific needs.

Specifying the Job, Staging, and User Formats
Folder Locations
ePublisher AutoMap has several folders where it stores job-related information,
such as job files and log files. You can customize the location of these folders.

Job Folder

ePublisher AutoMap stores the following types of job-related files in the job folder:

log file

A text file that contains information about the last transformation process.
ePublisher AutoMap creates the log file when you run the job. You can view
the log file with any text editor.

job file

A proprietary XML formatted file that contains information describing the job.
When you create a job, ePublisher AutoMap creates the job file and stores the
information you specify in the console. The job file name is the name of the
job with a .waj (WebWorks AutoMap Job) file extension.

Note: ePublisher AutoMap maintains the job files. Do not edit these files.

The default job folder is the My Documents\ePublisher AutoMap\Jobs folder.

Staging Folder

ePublisher AutoMap stores information needed for transforming the source
documents in the staging folder. This information includes the automatically

204 | Staging Folder

generated ePublisher project, intermediate data files, and the output files. The
staging folder provides a working folder for processing each job. ePublisher
AutoMap then writes the final output files to the target output destination specified
when the project was created.

Note: ePublisher AutoMap creates the files in the staging folder. Do not edit these
files.

The default staging folder is the My Documents\ePublisher AutoMap\Staging
folder.

User Formats Folder

When ePublisher AutoMap processes a job, it searches the user formats folder
for custom user formats. The default user formats folder is the My Documents
\ePublisher Designer User Formats folder.

To specify the job, staging, and user formats folder locations

1. Start ePublisher AutoMap.

2. On the Edit menu, click Preferences.

3. Click the General tab.

4. In the Job Folder field, type the path to the folder or network share where
you want ePublisher AutoMap to store the job and log files. You can click
Browse and navigate to the folder or network share.

5. In the Staging Folder field, type the path to the folder or network share
where you want ePublisher AutoMap to store the job projects and output
created during your transformations. You can click Browse and navigate to
the folder or network share.

6. In the User Formats Folder field, type the path to the folder or network
share where ePublisher AutoMap checks for the custom user formats to use
for creating jobs. You can click Browse and navigate to the folder or network
share.

7. Click OK to save your preferences.

Automatic Scanning for Conditions and Variables
When ePublisher AutoMap displays windows that list conditions and variables, you
can specify whether ePublisher AutoMap automatically scans the source documents
for updated conditions and variables. Since your source documents may not have
new conditions or variables, ePublisher AutoMap attempts to save time by default
and it does not automatically scan for new conditions and variables. You can click
Scan Documents on a window to have ePublisher AutoMap scan your source
documents and update the window contents.

Automac Scanning for Condions and Variables | 205

If you want ePublisher AutoMap to always display updated condition and variable
values, select the Always scan for variables and conditions option. Depending
on the number and size of files included in the job, each scan may require several
minutes before ePublisher AutoMap can display the conditions and variables
windows.

To enable automatic scanning

1. Start ePublisher AutoMap.

2. On the Edit menu, click Preferences.

3. On the General tab, select Always scan for variables and conditions.

4. Click OK to save your preferences.

Keeping or Deleting Temporary Files
You can choose whether ePublisher AutoMap keeps or deletes the temporary files
created in the staging folder when it runs a job. By default, ePublisher AutoMap
does not delete these files. You need these files only if you want to examine the
actual project and intermediate files created and used during the transformation
process. If you do not want to examine these files, you can disable allow ePublisher
AutoMap to delete the files and reduce the amount of disk space used.

To delete temporary files

1. Start ePublisher AutoMap.

2. On the Edit menu, click Preferences.

3. On the General tab, select Delete temporary files after generating.

4. Click OK to save your settings.

Defining File Mappings
ePublisher allows you to map files based on their file extension to a source
document adapter that processes that input format. This capability provides the
flexibility you need:

You can define which source application processes a file that can be handled
by multiple source applications. For example, both Adobe FrameMaker and
Microsoft Word can open text files with a .txt extension. The File Mappings
tab allows you to choose which application to use for each file based on the
file extension.

You can define custom file extensions. For example, you may choose to use
a non-standard file extension for your Microsoft Word source documents,

206 | Defining File Mappings

such as .word instead of .doc . The File Mappings tab allows you to add
your custom file extension and map it to the appropriate source application
adapter.

You can add new input formats as they become available. ePublisher provides
a powerful framework in which Quadralay and their partners can develop new
input formats, such as custom XML formats. Since XML is a common format,
the source files are usually given unique and descriptive file extensions. The
File Mappings window ensures that your projects are ready to handle any
input sources.

Note: ePublisher AutoMap lists only the source application adapters installed
with the product. Your Contract ID specifies the adapters for which you are
licensed. adapter you want to use.

To modify your file mappings

1. Start ePublisher AutoMap.

2. On the Edit menu, click Preferences.

3. Click the File Mappings tab.

4. If you want to add a new file mapping, complete the following steps:

a. Click Add.

b. In File extension, type a file extension to be mapped.

c. In Adapter, select one of the installed source adapters, and then click
OK.

5. If you want to modify an existing file mapping, in the Adapter column
next to the file extension you want to modify, select the installed source
adapter you want to use for files with that file extension.

6. If you want to delete an existing file mapping, complete the following
steps:

a. In the File Extension column, select the file extension you want to
delete.

b. Click Delete.

7. Click OK to save your preferences.

Defining Output Destinations
ePublisher AutoMap allows you to create and manage output locations independent
of your jobs. This flexibility allows you to define your output locations and then

Defining Output Desnaons | 207

select the one you want to use when you create a new job. You can also create
a new output location as the final part of the job creation process. ePublisher
AutoMap allows you to deploy the final output files to a folder on a local or shared
file system, such as C:\helpdocs or \\server\share .

To define output destinations:

1. If you use the ePublisher AutoMap user interface to schedule an
ePublisher Express project, you must set the deployment destination in
the ePublisher Express project. For more information, see “Creating Output
Destinations”.

2. If you use the ePublisher AutoMap CLI to run an ePublisher
Express project, you can set the deployment destination in the ePublisher
Express project or in the CLI. For more information, see “Creating Output
Destinations” and “Using the Command-Line Interface”.

3. If you use ePublisher AutoMap to schedule a Stationery project, you
must set the deployment destination in the job settings, and you must set the
deployment destination independently for each target. Specify the deployment
destination in the job settings by completing the following steps:

a. Start ePublisher AutoMap.

b. Select the job to edit in the ePublisher AutoMap main window.

c. On the Job menu, click Edit.

d. Select the Target Configuration tab.

e. In the left pane, select the target for which you want to set the output
destination.

f. On the Info tab, in the Deployment area, specify the deployment
destination information.

g. Click OK.

4. If you use the CLI to run a Stationery project, you can set the
deployment destination in the ePublisher AutoMap job settings or in the CLI.
Set the deployment destination in the job settings by completing the following
steps:

a. Start ePublisher AutoMap.

b. Select the job to edit in the ePublisher AutoMap main window.

c. On the Job menu, click Edit.

d. Select the Target Configuration tab.

208 | Defining Output Desnaons

e. In the left pane, select the target for which you want to set the
deployment destination.

f. On the Info tab, in the Deployment area, specify the deployment
destination information.

g. Click OK.

For more information about setting the deployment destination in the CLI, see
“Using the Command-Line Interface”.

Defining Email Notifications
ePublisher AutoMap can send an email notification after running a job. The
notification provides information about whether the job ran successfully or
encountered any errors. You can also specify whether to include the log file as a
text file attachment to the email.

To configure email notification

1. Start ePublisher AutoMap.

2. On the Edit menu, click Preferences.

3. Click the Notification tab.

4. Select Enable Email Notification.

5. Specify the email addresses and email server information. For more
information about a field, click Help.

6. Click OK to save your preferences.

Note: You can quickly enable or disable email notification without modifying the
other preferences by toggling the Enable email notification check box.

Selecting Console Language (English, German,
French, and Japanese)
In addition to the English language, the ePublisher consoles have been translated
into German, French, and Japanese languages. When ePublisher starts, it detects
the operating system locale and displays the corresponding ePublisher console. You
can display the console for a locale that is not the operating system default. For
example, you can display the German console on an English version of Windows.

To select the language for the console

1. Start your ePublisher console.

Selecng Console Language (English, German, French, and Japanese) | 209

2. On the Edit menu, click Preferences.

3. In the User interface language field on the General tab, select the
language you want the console to display.

4. Click OK to save your preferences.

5. Close and restart the console to view the console in the selected language.

Working with Jobs
This section describes how to create and manage ePublisher AutoMap jobs. A job
is a set of tasks that ePublisher AutoMap can perform based on a Stationery or a
project. You can immediately run a job, or you can schedule a job to run at a later
time. By default, job files are stored in the following folder:
My Documents\WebWorks ePublisher AutoMap\Jobs

You can change the default location in the ePublisher AutoMap preferences. Job files
have a .waj file extension. Job files depend on other files located in the job folder
and should not be moved or copied independently.

ePublisher AutoMap displays a unique icon to help you identify project-based jobs
and Stationery-based jobs. Each job name is preceded by the corresponding icon.

After you schedule a job in the ePublisher AutoMap user interface, you can close the
ePublisher AutoMapuser interface, and the job will still run based on the schedule
you specified.

When ePublisher AutoMap runs a job either from a schedule or from a command
prompt, Windows opens a command prompt that displays the log as it is generated.
When the job finishes, the command prompt closes. After the job runs, you can
view the log file using one of the following methods:

210 | Working with Jobs

If you use ePublisher AutoMap to schedule an Express or Stationery
project, the log is stored in the Job folder. You can view the log by clicking
View log on the Job menu in the ePublisher AutoMap user interface.

If you use the CLI to run an Express project, there is no entry in the
ePublisher AutoMap user interface. You can find the log in the Express project
directory and view it in Notepad.

If you use the CLI to run a stationery project, the log is stored in the
Job folder. You can view the log by clicking View log on the Job menu in the
ePublisher AutoMap user interface.

Note: The ePublisher AutoMap user interface displays the last time that the
Windows Scheduler ran the stationery project. It does not display the
time the CLI ran.

Creating a Project-Based Job
Project-based jobs allow you to schedule ePublisher AutoMap to generate the output
defined by an existing ePublisher project. You first create the ePublisher project as
needed, or you can use an existing project. Then, you create a project-based job
so ePublisher AutoMap can use the project to generate the output defined by the
project.

To create a project-based job

1. Start ePublisher AutoMap.

2. On the File menu, click New Job.

3. Click ePublisher project on the New Job window.

4. Type the path or click the Browse Folder icon to select the ePublisher project
you want to schedule, and then click OK.

5. In the Job Name field, type the desired job name.

Note: The Choose ePublisher project field displays the previously selected
ePublisher project. You can change the selected project.

6. If you want to run a pre- or post-build script before or after the job
runs, complete the following steps:

a. Click the Edit Script button for the Pre-build or Post-build script field.

b. Type or paste your script into the editor, and then click OK. For more
information about scripts, see “Using Scripts for Additional Custom
Processing”.

Creang a Project-Based Job | 211

7. Click Next.

ePublisher displays the Target Selection window. This window lets you select
which targets to generate as part of this ePublisher AutoMap job. Depending
on your project, there may be multiple targets listed in the Target Selection
window.

8. Select the check box in the Build column next to each target you want to
generate, and then click Finish.

9. Schedule the job as needed, and then click OK. You can also schedule the
job at a later time. For more information, see “Scheduling Jobs with Windows
Scheduler”.

Project-based jobs deploy output only if a deployment target is set in the project
itself. This deployment information is specified in the target settings in ePublisher.
ePublisher AutoMap reads only the deployment target name from the project.
Therefore, you must make sure an output destination with the same name and is
defined in ePublisher AutoMap or you may receive a deployment error. For more
information, see “Defining Output Destinations”.

Creating a Stationery-Based Job
Stationery-based jobs provide a powerful solution that can save your time and
increase productivity. These jobs can also reduce errors when generating online and
print content. Stationery-based jobs allow you to associate your source documents
with your ePublisher Stationery. This combination lets you apply a single Stationery
to many different source documents, reusing the transformation defined by the
Stationery. This method ensures accuracy and consistency across many different
projects and output files for your organization.

To create a Stationery-based job

1. Start ePublisher AutoMap.

2. On the File menu, click New Job.

3. Select ePublisher Stationery on the New Job window.

4. Type the path or click the Browse Folder icon to select the Stationery upon
which you want to base this job, and then click OK.

5. In the Job Name field, type the desired job name.

Note: The Choose ePublisher Stationery field displays the previously
selected Stationery. You can change the selected Stationery.

212 | Creang a Staonery-Based Job

6. If you want to run a pre- or post-build script before or after the job
runs, complete the following steps:

a. Click the Edit Script button for the Pre-build or Post-build script field.

b. Type or paste your script into the editor, and then click OK. For more
information about scripts, see “Using Scripts for Additional Custom
Processing”.

7. Click Next.

ePublisher displays the Documents window. This window lets you configure
the groups and documents you want to generate output for in this job. You
can either manually add the documents or you can run a script to retrieve
documents within a group.

For example, you may want to retrieve documents from a version control or
content management system. You can provide a script to retrieve and prepare
your documents as needed. This script runs before the transformation, which
ensures that you always have the most current version of your content
without having to perform a manual update before each transformation.

8. If you want to manually add groups of documents to the job, complete
the following steps:

a. Click New Group.

b. Specify a name for the group.

c. Click Add Document, and then browse and select your source
documents.

d. Repeat this process to add more groups and source documents, and
then click Next.

9. If you want to use a script to add a group of documents, complete the
following steps:

a. Click New Group.

b. Specify a name for the group.

c. Click Edit Script.

d. Type or paste your script into the editor, and then click OK.

10. Click Next.

Creang a Staonery-Based Job | 213

ePublisher displays the Target Selection window. This window lets you select
which targets to generate output for as part of this ePublisher AutoMap job.

11. Select the check box in the Build column next to each target you want to
generate, and then click Next.

ePublisher displays the Target Configuration window. The Stationery defines
the configuration options for each target. You can override these configuration
options for each target in a Stationery-based job. Depending on the output
format of the selected target, the Target Configuration window provides tabs
for adjusting various options, such as conditions and variables.

The information presented on each tab is relative to the target selected in the
Target Name column. You can adjust values for each target independent of
the other targets. For example, you can have two WebWorks Help 5.0 targets
where the conditions are set differently depending on the target audience.

12. If you want to override the configuration settings defined in the
Stationery for a target, complete the following steps:

a. Select the target you want to modify in the Target Name column.

b. Specify the appropriate values for the configuration options on each
tab for that target. For more information about the fields on a tab, click
Help.

13. Click Finish.

14. Schedule the job as needed, and then click OK. You can also schedule the
job at a later time. For more information, see “Scheduling Jobs with Windows
Scheduler”.

Duplicating an Existing Job
Sometimes it is more convenient to make a copy of an existing job and adjust its
options instead of creating a new job. ePublisher AutoMap allows you to duplicate
an existing job. Then, you can modify the options as needed for your new job.

To duplicate an existing job

1. Start ePublisher AutoMap.

2. Select the job you want to copy in the ePublisher AutoMap main window.

3. On the Job menu, click Duplicate.

4. Specify the new job name, and then click OK.

214 | Duplicang an Exisng Job

5. Specify the scheduling options as needed, and then click OK. For more
information, see “Scheduling Jobs with Windows Scheduler”.

Once the new job exists, you can modify the job for your specific needs. For more
information, see “Editing an Existing Job”.

Editing an Existing Job
When you edit an existing job, ePublisher AutoMap presents the windows used
to create the job as tabs of the Edit Job window. Select the appropriate tab that
contains the information you want to modify.

To edit an existing job

1. Start ePublisher AutoMap.

2. Select the job to edit in the ePublisher AutoMap main window.

3. On the Job menu, click Edit.

4. Select the appropriate tab and modify the values as needed. For more
information about a field, click Help.

5. Click OK.

Scheduling Jobs with Windows Scheduler
Immediately after creating a new job, ePublisher AutoMap starts the Windows
Scheduler to allow you to schedule your job. ePublisher AutoMap uses the Windows
Scheduler built into the Microsoft Windows operating system. The Windows
Scheduler allows you to schedule a job to run at pre-determined times and
repeating intervals. If you do not want to schedule the job, click Cancel. You can
schedule the job at a later time, and you can modify an existing schedule.

When you schedule a job and then click OK, Windows prompts you for your
Windows user name and password. For more information about using the Windows
Scheduler, see the Windows operating system online help. To open the Windows
online help, click Help and Support on the Start menu.

To schedule a job or change the schedule for an existing job

1. Start ePublisher AutoMap.

2. Select the job to schedule or reschedule in the ePublisher AutoMap main
window.

3. On the Job menu, click Schedule Job.

Scheduling Jobs with Windows Scheduler | 215

4. Specify the appropriate values, and be sure to add a Trigger that designates
what schedule the Job will run, and then click OK.

5. If you select the Run whether user is logged on or not option, you will need to
specify your Windows user name and password, and then click OK. Since you
are scheduling a task in Windows Scheduler, you must provide your Windows
user name and password to add the task. If you are part of a Windows
domain, include the domain name, such as domain\user.

Deleting an Existing Schedule for a Job
You can create multiple schedules for a job. These schedules are known as Triggers
and can be modified in the Triggers tab in the Windows Scheduler interface. You can
also delete one or more of these existing schedules. The only way to fully delete a
task for a Job is to do so via the Windows Task Scheduler interface or to delete the
Job itself.

To delete an existing job

1. Start ePublisher AutoMap.

2. Select the job to delete the schedule for in the ePublisher AutoMap main
window.

3. On the Job menu, click Delete.

Running an Existing Job
You can run a job at any time whether it is scheduled or not. This feature allows
you to test the job while you are configuring it. You can also run a job to quickly
generate output based on a set of predefined settings.

To run an existing job

1. Start ePublisher AutoMap.

2. Select the job you want to run in the ePublisher AutoMap main window.

3. On the Job menu, click Run.

Viewing a Job Log File
When a job runs, ePublisher AutoMap creates a log file that documents the steps
performed for that job. You can view this log file when one exists. ePublisher
AutoMap keeps the log file only for the last time the job ran. Previous log files are
not kept.

216 | Viewing a Job Log File

To view a log file

1. Start ePublisher AutoMap.

2. Select the job to view the log for in the ePublisher AutoMap main window.

3. On the Job menu, click View Log.

Canceling a Job
When you cancel a running job, ePublisher AutoMap, Microsoft Windows, Adobe
FrameMaker, and Microsoft Word must do some clean-up work. During this process,
Windows may display the standard Microsoft Windows End Program window. Do not
click the End Now or Cancel buttons. The window will close usually in less than 15
seconds once everything has finished properly.

To cancel a running job

1. Start ePublisher AutoMap.

2. Select the running job you want to cancel in the ePublisher AutoMap main
window.

3. On the Job menu, click Stop.

Deleting an Existing Job
If you no longer need a job, you can delete it from the ePublisher AutoMap main
window.

To delete an existing job

1. Start ePublisher AutoMap.

2. Select the job to delete in the ePublisher AutoMap main window.

3. On the Job menu, click Delete.

4. Click Yes to confirm that you want to delete the selected job.

Using Scripts for Additional Custom
Processing
You do not need to write scripts to use ePublisher AutoMap. However, scripts allow
you to extend ePublisher AutoMap and integrate it with other products and custom
workflows. You can define scripts to run before and after a job generates content,

Using Scripts for Addional Custom Processing | 217

to run before and after each target generates content, and to retrieve source
documents on a per group basis.

Writing Scripts
You can write scripts directly in the ePublisher AutoMap script editor window, or you
can cut and paste scripts from another text editor. The ePublisher AutoMap script
editor supports only text-based scripts. Any formatting or additional information
available in a third-party script editor is lost when the script is pasted into the
ePublisher AutoMap script editor.

ePublisher AutoMap treats scripts like DOS batch files. The script must be complete
and valid or it will fail when the job runs. Although you can write all your scripts
directly in the ePublisher AutoMap script editor; this approach may not be your best
option.

When calling complex scripts, you may want to create and store those complex
scripts in your file system and simply call those files from the script you create
in the ePublisher AutoMap script editor. Since the script editor treats the scripts
like DOS batch files, you can call other batch files, applications, or scripts written
in any scripting language, such as VBScript, Perl, and Python. You can also pass
parameters and script variables to the files you call. However, some variables have
meaning only for certain types of scripts. For example, the DeployFolder variable
is specific to a target and does not having meaning in a pre-build or post-build job
script.

Working Folder
Windows associates batch files with a working folder. The working folder is the
current working directory used by an application or batch file for processing.
For example, if a batch file creates a new file without specifying a path, the file
is created in the working folder. If a batch file attempts to read a file without a
specifying a path, Windows assumes the file is in the working folder.

The working folder for an ePublisher AutoMap batch file is the job folder itself. You
can locate this folder using the job directory ${JobDir} scripting variable. For more
information, see “Using Scripting Variables Example”.

Opening and Using the Script Editor
ePublisher AutoMap includes an editor for specifying and writing job scripts. This
editor provides a text area for writing or pasting your script and a list of ePublisher
AutoMap variables that you can use in your scripts or pass to other scripts and
applications.

218 | Opening and Using the Script Editor

To open the script editor and edit a script

1. Start ePublisher AutoMap.

2. Select the job to edit in the ePublisher AutoMap main window.

3. On the Job menu, click Edit.

4. Click the appropriate Edit Script button to open the script editor window for
the script you want to edit.

5. Click in the text editing area.

6. Type your script, or press Ctrl+V to paste it from the clipboard.

7. If you want to insert an ePublisher AutoMap scripting variable,
complete the following steps:

a. Click in the editor window where you want to insert the variable.

b. Double-click the variable name in the Script Variables pane to
insert it. You can also type the variable name surrounded by ${} . For
example, to include the project directory variable in your script, type
${ProjectDir} .

Scripting Variables
The following table provides a summary of the available scripting variables.

Scripng Variables | 219

220 | Scripng Variables

Variable Description Scope

FileListName Returns the name of the
file that contains the list of
source documents.

Document scripts only

FileListPath Returns the path of the
file that contains the list of
source documents.

Document scripts only

GroupName Returns the name of the
documents group that is
currently being processed.

Document scripts only

BuildAction Returns whether the
current build action is pre-
build or post-build.

Job scripts, target scripts,
and document scripts

JobDir Returns the path of the job
.waj file.

Job scripts, target scripts,
and document scripts

JobFile Returns the name of the
job .waj file.

Job scripts, target scripts,
and document scripts

JobName Returns the name of the
job.

Job scripts, target scripts,
and document scripts

ProjectDir Returns the path of the
temporary project file
that ePublisher AutoMap
created for the job.

Job scripts, target scripts,
and document scripts

ProjectFile Returns the name of the
temporary project file
that ePublisher AutoMap
created for the job.

Job scripts, target scripts,
and document scripts

DeployFolder Returns the deployment
directory path.

Target scripts only

Scripng Variables | 221

Variable Description Scope

ErrorCount Returns the number of
errors reported during the
generation process.

Target scripts only

TargetDeployKey Returns the deployment
target name.

Target scripts only

TargetName Returns the name of the
target being generated.

Target scripts only

TargetOutputDir Returns the output path of
the target.

Target scripts only

Scripting Examples
The following list highlights a few of the ways you can use scripts to customize and
integrate the content publication process:

You can write scripts to get the latest version of files from your version control
system or content management system. For more information, see “CVS
Version Control Checkout Example”.

You can use variables within scripts. For more information, see “Scripting
Variables” and “Using Scripting Variables Example”.

You can customize the log file created when ePublisher runs a job. For
more information, see “Show Time and Date Example” and “Using Scripting
Variables Example”.

You can use post-processing scripts to customize the deployment process.
These scripts can modify files and even rebuild the final deliverable. For
example, you can use scripts to further customize the generated files and
then automatically run Microsoft HTML Help Workshop to rebuild the .chm file.

Show Time and Date Example
This example simply displays the time and date in the log file by calling the time
and date commands built into the DOS command-line interface. In this case, the
script was added as a pre-build step for the job running before the first target starts
generating output.

222 | Show Time and Date Example

The following output shows the time and date included in the log before the first
target starts the generation process. This information can automatically timestamp
a job log file. You can also use these values in your script to log elapsed time and
make decisions.
WebWorks Automap
09:57 AM
Mon 6/23/2008
Scanning 1 document(s)...
Building target: WebWorks Help 5.0
Generation started at 9:57:15 AM
Initializing file information
Updating documents.
Applying settings to WebWorks.doc, 1 of 1.

Using Scripting Variables Example
This example creates a simple mini-report inside the log file for each target in the
job. This simple example demonstrates the use of the scripting variables. In this
case, the values of the variables are displayed as part of the report using the echo
command built into the DOS command-line interface.

The following figure shows some of the variable names surrounded by single
quotes. You do not need to enclose variable names in quotes. These quotes are
there only to show emphasis on the variable values in the mini-report example.

Using Scripng Variables Example | 223

The following output shows the mini-report displayed immediately after the target
starts to be built. You could add this same script as a post-build step for the
target and a similar mini-report would be created when the target is done being
generated.
Building target: WebWorks Help 5.0

--- Target Mini-Report for WebWorks Help 5.0 ---
‘WebWorks Help 5.0’ is running from the ‘Scripting Demo’ job located
 at C:\Documents and Settings\doc\My Documents\WebWorks Automap\Jobs
\Demo.
Currently running the ‘PreBuild’ script for the WebWorks Help 5.0
 target. ‘WebWorks Help 5.0’ will deploy to ‘Online Help’ located in
 the C:\AutoMapOutput\Help Systems\Online Help folder.
So far, 0 errors have occurred.
--- End of WebWorks Help 5.0 mini-report ---

Generation started at 9:57:15 AM
Initializing file information
Updating documents.
Applying settings to WebWorks.doc, 1 of 1.

CVS Version Control Checkout Example
The previous example scripts demonstrate some simple capabilities of using scripts
in ePublisher AutoMap. This example shows how to check out source files from a
version control system at the start of a job.

224 | CVS Version Control Checkout Example

Version control systems let you store files and retain information concerning
different versions of those files. You can store multiple versions of files, revert
to previous versions of files, and share files among large groups of people. The
advantage of using a version control script to retrieve source files rather than
adding them directly to a project ensures that your job is always working with the
latest checked in version of each source file.

Each version control system works in a slightly different way. ePublisher AutoMap
is not tied to a specific version control solution. ePublisher AutoMap provides an
abstract way of retrieving a list of source files to transform. There are a few rules
about how this list is named and formatted, but the actual creation of the list is left
to the script and scriptwriter.

The scripting capabilities in the Documents panel are not limited to checking
files out of a version control system. The only requirement is that the
FileList.txt file includes a list of files and paths to be transformed. You can
access the FileList.txt file and the path to it using the ePublisher AutoMap
${FileListName} and ${FileListPath} scripting variables. For more information,
see “Scripting Variables”.

The following script example calls getfilesaction_cvs.vbs , which is installed with
ePublisher AutoMap. By default, this script is located in the following location:

\Program Files\WebWorks\ePublisher AutoMap\Scripts
\getfilesaction_cvs.vbs

The getfilesaction_cvs.vbs script is written using the Visual Basic Scripting
(VBS) capabilities built into Microsoft Windows to check out files from a CVS
(Concurrent Version System) server and create a file list to be processed by
ePublisher AutoMap. This script is not meant to be used in its current form. This
script provides a starting point that includes everything you need to set up a
working script for your particular environment.

The getfilesaction_cvs.vbs script includes comments to help someone with
scripting experience understand the actions it performs. Since this script provides
only a starting point, you need to modify this script for your environment. For
example, you need to set the CVS attributes for your user name, server name, and
type of authentication. You also need to adjust for how CVS is installed and called in
your environment. These areas of the script are highlighted in the following figure:

CVS Version Control Checkout Example | 225

The following figure shows an example of how to call the getfilesaction_cvs.vbs
script. The parameters passed indicate the module to checkout and to filter on the
.doc extension. When this script runs, it checks out the indicated module from
CVS, filters those files based on the .doc extension, and adds those .doc files to
the FileList.txt file. That file list is then used by the job as the list of files to
process and transform.

226 | CVS Version Control Checkout Example

This example is only one possible way of creating a list of files to transform. Once
you understand the mechanism that ePublisher AutoMap uses to retrieve its list
of source documents to transform, you can create that list using the process you
prefer. Whether you want to use a script or an application, ePublisher AutoMap can
run it from the script editor as long as it is available to ePublisher AutoMap.

Using the Command-Line Interface
In addition to the ePublisher AutoMap console that allows you to create, edit, and
schedule jobs, ePublisher AutoMap also provides a command-line interface (CLI).
The CLI gives you control of ePublisher AutoMap from the Windows command-line
interface. You can use the CLI and the supported options in scripts and batch files
to automate and streamline your processes.

Running ePublisher AutoMap from the
Command Line
You can run ePublisher AutoMap from the command line using the ePublisher
AutoMap WebWorks.Automap.exe command-line application. This application is
installed at the root of your ePublisher AutoMap installation location. The default
location for this file is:
Program Files\WebWorks\ePublisher AutoMap\WebWorks.AutoMap.exe

Notes:

If you install ePublisher AutoMap in another location, the
WebWorks.Automap.exe file is installed in that location and you need to adjust
your specified path.

The WebWorks.Automap.exe file depends on other files installed in the
ePublisher AutoMap folder. Do not move or copy the WebWorks.Automap.exe
file.

To run ePublisher AutoMap from the command line

1. Open a Windows command prompt by completing the following steps:

a. On the Start menu, click Run.

b. Type cmd , and then click OK.

2. Enter the following command to change to the default ePublisher AutoMap
folder:

CD \Program Files\WebWorks\ePublisher AutoMap

3. Enter the WebWorks.AutoMap.exe command with the appropriate options.

Running ePublisher AutoMap from the Command Line | 227

If you run the WebWorks.AutoMap.exe . command without any options, ePublisher
AutoMap displays a typical usage syntax statement.

CLI Syntax and Reference
The ePublisher AutoMap command-line interface can run a job or an ePublisher
project. The command-line interface uses the following syntax:
WebWorks.Automap.exe [-f] [-n] [-c] [-l] [-u] [-j] [-d directory]

[{[-s directory] jobfile}|{[-t targets] projectfile}]

The supported command-line options are defined in the following table.

228 | CLI Syntax and Reference

Option Description

-c Deletes cached information and builds the output
from scratch. Use this option only when passing an
ePublisher project .wrp file. This option is equivalent
to selecting Regenerate All. The default is to generate
only what is needed and to use all available cached
information. You can also specify this option as --
clean .

-d directory Specifies an alternate deployment directory. This
setting overrides the specified default values. You can
also specify this option as
--deployfolder directory.

-u Scans all source documents for new styles, conditions,
variables and xrefs. After the conversion is completed
the resulting Express project file will be saved with
all the updated information. You can also specify this
option as --update .

-j Just scans all source documents for new styles,
conditions, variables and xrefs. Saves Express project
file without running a conversion.You can also specify
this option as --justupdate .

-f Does not send an email notification when this job
is finished. This setting overrides the default value
specified in the ePublisher AutoMap preferences. You
can also specify this option as --nonotify .

-l Deletes all files in the deployment location before
deploying the newly-generated output. This option
ensures that all files in the deployment folder are from
this last generation process. You can also specify this
option as
--cleandeploy .

-n Generates output and does not deploy it. This setting
overrides the default deployment settings specified in

CLI Syntax and Reference | 229

Option Description
the job or ePublisher project. You can also specify this
option as --nodeploy .

-s directory Specifies the staging directory to use. Use this option
only when passing a job .waj file. This setting
overrides the default value specified in the ePublisher
AutoMap preferences. You can also specify this option
as
--stagingdir directory.

-t targets Builds only the specified targets. Separate multiple
targets with a comma and no space on either side
of the comma. Use this option only when passing an
ePublisher project .wrp file. The default is to build all
targets. You can also specify this option as --target
targets.

jobfile Specifies the name of the ePublisher AutoMap .waj job
file.

project Specifies the name of the ePublisher .wrp project file.

As with other command-line applications, specify the command-line options on the
command line after the application name itself. Separate multiple command-line
options with a space. Review the following additional notes concerning ePublisher
AutoMap command-line options:

The command-line options have both shortened and verbose formats. For
example, you can specify the clean option as –c or --clean . Both options
mean exactly the same thing and you can mix the shortened and verbose
formats across the options.

Some options require additional information. For example, the staging folder
option requires the name of the directory and is specified as --stagingdir
directory . You need to include the equals sign without spaces on either
side.

In cases where you specify paths with spaces, enclose those paths in double
quotes to correctly handle the paths. You do not have to enclose paths without
spaces in double quotes, but you can without an issue. For example, c:
\projects works without enclosing it in double-quotes. However, c:\my
projects does not work as expected. The correct format for the latter path is
”c:\my projects”.

230 | CLI Syntax and Reference

CLI Examples
The following examples illustrate how to use the command-line interface.

Running a Project and Updating the Express
project file
The following example runs the c:\Projects\MyProject.wrp project and updates
MyProject.wrp with the new styles, conditions, variables and xrefs:
WebWorks.AutoMap.exe –u ”c:\Projects\MyProject.wrp”

Running a Project and Generating Only One
Target
The following example runs the c:\Projects\MyProject.wrp project and
generates only the WebWorks Help target:
WebWorks.AutoMap.exe –t ”WebWorks Help” ”c:\Projects\MyProject.wrp”

Running a Project from Scratch and Deploying to
a Clean Location
The following example runs the c:\Projects\MyProject.wrp project and
generates all targets defined in the project. This example also deletes the cached
information in ePublisher to ensure it generates all the content from scratch,
and it deletes all the files in the deployment location before deploying the newly-
generated files:
WebWorks.AutoMap.exe --clean --cleandeploy ”c:\Projects\MyProject.wrp”

Running a Project and Deploying to an Alternate
Location
The following example runs the c:\Projects\MyProject.wrp project and
generates all targets defined in the project. This example also deploys all the newly
generated files to the \\TestServer\Review folder:
WebWorks.AutoMap.exe -d ”\\TestServer\Review” ”c:\Projects
\MyProject.wrp”

Running a Job Without Sending Notification
When Done
The following example runs the c:\Jobs\MyJob.waj job and does not send any
email notification when the job is done:
WebWorks.AutoMap.exe --nonotify ”c:\Jobs\MyJob.waj”

Running a Job Without Sending Noficaon When Done | 231

Running a Job and Deploying to a Clean Location
The following example runs the c:\Jobs\MyJob.waj job and deletes all the files in
the deployment location before deploying the newly-generated files:
WebWorks.AutoMap.exe --cleandeploy ”c:\Jobs\MyJob.waj”

Running a Job Without Deploying the Content
The following example runs the c:\Jobs\MyJob.waj job and does not deploy the
generated output files. This example also uses the C:\Temp\Stage folder as the
staging folder when running the job:
WebWorks.AutoMap.exe --nodeploy -s ”C:\Temp\Stage” ”c:\Jobs\MyJob.waj”

The staging folder provides a working folder for processing the job. ePublisher
AutoMap stores the automatically generated ePublisher project, intermediate data
files, and the output files in this folder.

232 | Running a Job Without Deploying the Content

Markdown++ Source Documents
Introduction
Getting Started with Markdown
Learning Markdown
Learning Markdown++

Introduction
Markdown is a text-based authoring format created by John Gruber. It's a simple,
light-weight and robust language that puts emphasis on efficiency and readability.

Quick Links

Getting Started with Markdown

Learning Markdown

Learning Markdown++

Markdown Cheat Sheet

These sections will go into detail on authoring in Markdown and Markdown++,
how-tos for syntax features, as well as how to prepare documents for publishing in
ePublisher.

Getting Started with Markdown
Markdown is a text-based authoring format. Any text editor can be used to create
Markdown documents. Here are some popular ones to try out:

• Notepad++. Simple, lightweight notepad app with syntax highlighting based
on file extension.

• Visual Studio Code. Code-centric text editor. Has community-made
extensions, including many for Markdown.

• Obsidian. A Markdown-specific note taking app. Has themes, a writing mode,
and a preview mode.

• Typora. A Markdown editor with many authoring experience features.

After choosing a text editor, Markdown and Markdown++ documents can be created
using the .md extension.

Learning Markdown

Learning Markdown | 233

https://daringfireball.net/projects/markdown/
https://notepad-plus-plus.org/
https://code.visualstudio.com/
https://obsidian.md/
https://typora.io/

This section will detail the features of Markdown, how to write them, and how to
use them in ePublisher. For quick reference material, see the Markdown Cheat
Sheet.

Any text can be Markdown. Common prose parses into Markdown with no issue.
Simple text documents can be formatted into Markdown documents quickly and
easily because of this.

Quick Links
Paragraphs
Titles
Headings
Lists
Tables
Blockquotes
Code Fences
Code Blocks
Horizontal Rule
Block HTML
Bold, Italic, Strikethrough, Code
Links
Images
Link References
Inline HTML

Paragraphs
The basic organization of block-level text, the paragraph is the building block of a
Markdown document.

Syntax
A Paragraph is created by writing any text content on a line. It is the default block-
level element, meaning all content is considered a Paragraph if the content does not
have any recognizeable block-level syntax.

Basics
Any amount of text will do to create a Paragraph. Start the line with non-space
characters to avoid indentation-related parsing issues.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
 eiusmod tempor incididunt ut labore et dolore magna aliqua.

Separate with Empty Lines
Keep an empty line between Paragraphs that should be separated. This is a general
good rule of thumb for all Markdown content.

234 | Paragraphs

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
 eiusmod tempor incididunt ut labore et dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
 nisi ut aliquip ex ea commodo consequat.

Multi-Line Paragraphs
Multiple lines not separated by an empty line will be treated as parts of the same
Paragraph. The lines will be consolidated and separated by space in the output.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
 eiusmod tempor incididunt ut labore et dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
 nisi ut aliquip ex ea commodo consequat.

Preserve Line Breaks
Ending a line with a space character at the end will preserve the line break within
the Paragraph. Useful for poetry, or other types of content where line structure is
important.

Nature's first green is gold,

Her hardest hue to hold.

Her early leaf's a flower;

But only so an hour.

Markdown++
A custom Paragraph Style can be given to a Paragraph using a Markdown++ style
tag on the line directly above the Paragraph.

<!--style:CustomParagraph-->

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
 eiusmod tempor incididunt ut labore et dolore magna aliqua.

To learn more about Markdown++ tagging, see Learning Markdown++.

ePublisher Style Information
Default Style Properties

Paragraphs | 235

Style Type: Paragraph
Style Name: Paragraph

236 | Paragraphs

Property Value

font family Arial

font size 12pt

line height 1.2em

padding top 0pt

padding bottom 6pt

If a custom style name is assigned to a Paragraph, that style name will still inherit
all of the listed default style information.

Titles
Also referred to as a setext heading, Titles are useful to communicate the central
idea of a document. Titles are most useful as the leading content of a set of text
material.

Syntax
Titles are created by writing a single line of content followed by a line containing
at least 1 of either = or - characters. The second line shouldn't contain text other
than these two characters.

Basics
The most basic example, a line of content with a following line with a = character.

My Document Title

=

Titles can be written in the same way using - characters.

My Document Title

-

Any Amount of Characters
The amount of = or - characters that are used is not important. Having a matching
amount of characters on both lines can be a nice touch for readability, though.

Titles | 237

My Document Title

=================

Markdown++
A custom Paragraph Style can be given to a Title using a Markdown++ style tag on
the line directly above the Title.

<!--style:CustomTitle-->

My Document Title

=================

To learn more about Markdown++ tagging, see Learning Markdown++.

ePublisher Style Information
Style Behavior

The style name a Title will get is dependent on the characters used in the second
line. Title 1 is given to Titles that use = characters, and Title 2 is given to Titles
that use - characters.

Default Style Properties

Style Type: Paragraph
Style Name: Title 1, Title 2

238 | Titles

Property Value

font family Arial

font size 24pt

font weight bold

line height 1.2em

padding top 0pt

padding bottom 12pt

Default Style Options

Titles | 239

Option Value

Table of Contents level 1

If a custom style name is assigned to a Title, that style name will still inherit all of
the listed default style information.

Headings
Originally named the ATX heading, a Heading communicates a central idea for
a topic. Headings should contain the main idea for a section, and have useful
keywords to make the section easy to find in a search.

Syntax
Headings are created by starting a line of content with the # character. The #
characters and the text content of the Heading need to be separated by a space
character. The amount of # characters used indicates the level of heading which will
be created.

Basics
Create a Heading 1 with a single # , a space, and some text.

Heading 1

More # characters can be added to the Heading to increase the heading level, up to
6.

240 | Headings

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5

Heading 6

Markdown++
A custom Paragraph Style can be given to a Heading using a Markdown++ style tag
on the line directly above the Heading.

<!--style:CustomHeading-->

Heading 1

To learn more about Markdown++ tagging, see Learning Markdown++.

Heading Behavior
Heading Alias

Each created Heading gets an alias that can be used to link to it from another place
in the publication.

To determine the alias value, ePublisher takes the text of the Heading, lower-cases
it, removes all non-alphanumeric characters, and replaces space with - characters.

The below Heading will get the alias value lets-go-to-the-moon .

Let's Go to the Moon!

Any time the text of a Heading is changed, the alias will also change. It's
recommended to use a Custom Alias to avoid having to change link paths when
Headings change.

Headings | 241

ePublisher Style Information
Style Behavior

The style name ePublisher will create for a Heading will is dependent on the number
of # characters used at the front of the line. One # character creates the style
name Heading 1, two # characters creates Heading 2, etc.

Default Style Properties

Style Type: Paragraph
Style Name: Heading 1, Heading 2, Heading 3, Heading 4, Heading 5,
Heading 6

Heading 1

242 | Headings

Property Value

font family Arial

font size 21pt

font weight bold

line height 1.2em

padding top 0pt

padding bottom 12pt

Heading 2

Headings | 243

Property Value

font family Arial

font size 18pt

font weight bold

line height 1.2em

padding top 0pt

padding bottom 12pt

Heading 3

244 | Headings

Property Value

font family Arial

font size 15pt

font weight bold

line height 1.2em

padding top 0pt

padding bottom 12pt

Heading 4, Heading 5, Heading 6

Headings | 245

Property Value

font family Arial

font size 12pt

font weight bold

line height 1.2em

padding top 0pt

padding bottom 12pt

Default Style Options
Heading 1

246 | Headings

Option Value

Table of Contents level 2

Heading 2

Headings | 247

Option Value

Table of Contents level 3

Heading 3

248 | Headings

Option Value

Table of Contents level 4

Heading 4

Headings | 249

Option Value

Table of Contents level 5

Heading 5

250 | Headings

Option Value

Table of Contents level 6

Heading 6

Headings | 251

Option Value

Table of Contents level none

If a custom style name is assigned to a Heading, that style name will still inherit all
of the listed default style information for the matching Heading syntax.

Lists
Lists are a structural feature in Markdown. They're useful for many things, such as
itemizing a collection of information, providing steps to a procedure, or numbering
sections of information.

Syntax
There are two types of lists that can be created: Ordered Lists and Unordered Lists.

Ordered Lists are created by starting a line with a number or letter, followed by a
single . , then space (two is recommended), then some text content.

Unordered Lists are created by starting a line with any - , * , or + character,
followed by a space, then some text content.

Beyond these differences, both types of Lists have the same behavior when it
comes to syntax and authoring.

Basics
Ordered List
Create a simple Ordered List using a number and a . character. Each list item is
written on it's own line.

1. list item one

2. list item two

3. list item three

Ordered Lists can also be created using letters and . .

a. list item one

b. list item two

c. list item three

252 | Lists

Roman numerals are fine, too. Remember to keep the vertical spacing consistent.

i. list item one

ii. list item two

iii. list item three

Re-using the same letter or number is OK.

1. list item one

1. list item two

1. list item three

a. list item one

a. list item two

a. list item three

Unordered List
Create a simple Unordered List using - . Each list item is written on it's own line.

- list item one

- list item two

- list item three

Unordered Lists can also be created using * .

* list item one

* list item two

* list item three

The + character can be used as well.

Lists | 253

+ list item one

+ list item two

+ list item three

One Empty Line Between List Items
Put a single empty line between list items to give room. More than one empty line
will break the list into two.

- list item one

- list item two

- list item three

Don't Use Unlike Characters
Using non-matching characters on the same list level will break the list in two.

- list item one

* list item one

+ list item one

1. list item one

a. list item one

Multi-Line Content in List Items
List Item content can span multiple lines. Use a blank line to separate elements.
Make sure all lines of content retain the same vertical spacing.

254 | Lists

1. ### Cities in the US

 Here is a sample of some cities in the United States.

 | Name | State |

 |--------|----------|

 | Austin | Texas |

 | Tulsa | Oklahoma |

2. list item two

- ### Cities in the US

 Here is a sample of some cities in the United States.

 | Name | State |

 |--------|----------|

 | Austin | Texas |

 | Tulsa | Oklahoma |

- list item two

Nested List Items
To nest List items, make sure the vertical spacing of the nested List item matches
up with the content of the parent List item.

Lists | 255

1. list item one

 1. nested list item one

2. list item two

3. list item three

- list item one

 - nested list item one

- list item two

- list item three

Nesting Different Types of Lists
Nesting Lists of different types is acceptable. Use the same spacing rules as usual.

1. list item one

 - nested list item one

 - nested list item two

2. list item two

3. list item three

256 | Lists

- list item one

 1. nested list item one

 2. nested list item two

- list item two

- list item three

Markdown++
A custom Paragraph Style can be given to a List using a Markdown++ style tag on
the line directly above the List.

<!--style:CustomOList-->

1. A customized ordered list, style name "CustomOList"

2. CustomOList item two

3. CustomOList item three

<!--style:CustomUList-->

- A customized unordered list, style name "CustomUList"

- CustomUList item two

- CustomUList item three

Customizing Nested Lists
Nested Lists can be customized as well.

Lists | 257

1. A default list, style name "OList"

 <!--style:CustomOList-->

 a. A customized list, style name "CustomOList"

 b. CustomOList item two

2. OList item two

- A default list, style name "UList"

 <!--style:CustomUList-->

 - A customized list, style name "CustomUList"

 - CustomUList item two

- UList item two

Default Until Customized
Nested Lists are treated as standalone; they will not inherit the outermost
stylename if customized.

<!--style:CustomOList-->

1. A customized list, style name "CustomOList"

 a. A default list, style name "OList"

 b. OList item two

2. CustomOList item two

258 | Lists

<!--style:CustomUList-->

- A customized list, style name "CustomUList"

 - A default list, style name "UList"

 - UList item two

- CustomUList item two

Add a style tag to each list individually for consistency with custom styles.

<!--style:CustomOList-->

1. A customized list, style name "CustomOList"

 <!--style:CustomOList-->

 a. A customized list, style name "CustomOList"

 b. CustomOList item two

2. CustomOList item two

<!--style:CustomUList-->

- A customized list, style name "CustomUList"

 <!--style:CustomUList-->

 - A customized list, style name "CustomUList"

 - CustomUList item two

- CustomUList item two

Nested Content in Lists

Lists | 259

The tagging convention can be used for other Markdown elements inside List items.
The resulting style name will be appended with the style name of the containing
List.

1. <!--style:CustomParagraph-->

 A customized paragraph, style name "OList CustomParagraph"

2. list item two

- <!--style:CustomParagraph-->

 A customized paragraph, style name "UList CustomParagraph"

- list item two

To learn more about Markdown++ tagging, see Learning Markdown++.

ePublisher Style Information
Style Behavior

To allow full styling of Lists, ePublisher creates a number of style names when a list
is detected inside a Markdown source document.

List Style

The List Style is the first style that ePublisher adds to the Style Designer when a list
is detected in a source document. The default name is OList for ordered lists, and
UList for unordered lists, but could also be a custom name if the style tag syntax is
used on the list.

This style applies to the container area surrounding the lists's items. It's style rules
can also apply to list items or nested content, if the same rule isn't already applied
on a nested style.

Customizing the List Style

By adding a Markdown++ custom style tag, the List Style name can be changed.
The example below changes the List Style name to CustomUList:

260 | Lists

<!--style:CustomUList-->

- This is a custom list

- unordered

- named "CustomUList"

List Item Style

The list items inside a list also get a style name. To determine the List Item Style's
name, ePublisher takes the List Style and adds Item to the end, separated by a
space. The default name is OList Item for ordered list items, and UList Item for
unordered list items, but could also be a custom name if the style tag syntax is
used on the list.

Customizing the List Item Style

By adding a Markdown++ custom style tag, the List Item Style name can be
changed. The example below adds the List Item Style CustomUList Item, because
the List Style name has been set to CustomUList:

<!--style:CustomUList-->

- This is a custom list

- unordered

- named "CustomUList"

List items can't be styled individually. This will break the list into two separate lists.
All list items in a given list are styled by the same List Item Style.

Nested Styles

Nested content inside of list items also get a new style name. To determine the
Nested Style's name, take the List Style and add the style name of the nested
content to the end, separated by a space.

The example below populates the Style Designer with 3 Paragraph Styles: UList
(the List Style), UList Item (the List Item Style), and UList Paragraph when
scanned into ePublisher.

Lists | 261

- This is a simple list

- unordered

- default style names

Customizing Nested Styles

By adding a Markdown++ custom style tag, the Nested Style name can
be changed. The example below changes the Nested Style name to UList
CustomParagraph:

- <!--style:CustomParagraph-->

 This is a custom paragraph.

Custom Style Names can be used on both the list and nested content
simultaneously. This example creates the style names CustomUList, CustomUList
Item, and CustomUList CustomParagraph:

<!--style:CustomUList-->

- <!--style:CustomParagraph-->

 This is a custom paragraph inside a blockquote.

Default Style Properties

Style Type: Paragraph
Style Name: OList, OList Item, UList, UList Item

OList

262 | Lists

Property Value

padding top 0pt

padding right 0pt

padding bottom 0pt

padding left 0pt

margin top 0pt

margin right 0pt

margin bottom 0pt

margin left 0pt

tag ol

UList

Lists | 263

Property Value

padding top 0pt

padding right 0pt

padding bottom 0pt

padding left 0pt

margin top 0pt

margin right 0pt

margin bottom 0pt

margin left 0pt

tag ul

OList Item, UList Item

264 | Lists

Property Value

padding top 0pt

padding right 0pt

padding bottom 0pt

padding left 0pt

margin top 0pt

margin right 0pt

margin bottom 0pt

margin left 36pt

tag li

If a custom style name is assigned to a List, that style name will still inherit all of
the listed default style information.

Tables
Tables lay out multiple lines of detailed data in an organized way. In Markdown,
Tables are used to display cells of inline content. This often means that table
structure is kept simple.

If a Table with complex structure is needed, it can be created as an HTML fragment
in a Block HTML element.

Markdown++ also supports multiline tables, which provide additional
flexibility for structuring content. To learn more, see the Multiline Tables in
Markdown++ page.

Syntax
Markdown Tables consist of 3 things:

• A header row, which contains header cell content separated by |
characters.

• An alignment row, that indicates the alignment of the body cells' text. Each
cell in this row contains at least 3 - characters, and an optional : character
to indicate alignment. Each cell is separated by a | character.

Tables | 265

◦ Default alignment only uses - characters; 3 or more.
◦ Left align the column by starting the cell with : and filling in the rest

with : characters; 3 or more.
◦ Right align the column by starting the cell with 3 or more -

characters, ending with a : character.
◦ Center align the column by starting and ending the cell with :

characters. Put - characters between them; 3 or more.
• 1 or more body rows, that contain body cell content separated by |

characters.

Each row's content should be confined to a single line. The table will not parse
properly if rows have multi-line content.

Optionally, all lines in the table can start and end with | characters. Be sure to
apply them to all lines if they are to be used.

Basics
Two basic Tables; one with wrapping | characters, one without.

| name | age | city |

|---|---|---|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

 name | age | city

---|---|---

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Line up the | characters in each row for a nice touch for readability.

| name | age | city |

|------|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

266 | Tables

 name | age | city

------|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Left-align the text of cells in a column by starting the alignment cell with : . The
first column is left-aligned in this example:

| name | age | city |

|:-----|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

 name | age | city

:-----|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Right-align the text of cells in a column by ending the alignment cell with : . The
first column is right-aligned in this example:

| name | age | city |

|-----:|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

 name | age | city

-----:|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Tables | 267

Center-align the text of cells in a column by starting and ending the alignment cell
with : . The first column is center-aligned in this example:

| name | age | city |

|:----:|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

 name | age | city

:----:|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Each column gets its own alignment. Mix them together as needed.

| name | age | city |

|:-----|:---:|--------:|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

 name | age | city

:-----|:---:|--------:

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Markdown In Tables
Inline Markdown elements, like bold, italic, and even inline HTML, can be used with
cell text content.

268 | Tables

| name | age | city |

|----------|-----|---------|

| **Bob** | 42 | Dallas |

| **Mary** | 37 | El Paso |

 name | age | city

----------|-----|---------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Markdown++
A custom Table Style can be given to a Table using a Markdown++ style tag on the
line directly above the Table.

<!--style:CustomTable-->

| name | age | city |

|------|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

<!--style:CustomTable-->

 name | age | city

------|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Content in Cells
Inline text content can be customized using the inline tag convention.

Tables | 269

| name | age | city |

|-------------------------------|-----|---------|

| <!--style:CustomText-->*Bob* | 42 | Dallas |

| <!--style:CustomText-->*Mary* | 37 | El Paso |

 name | age | city

-------------------------------|-----|------

 <!--style:CustomText-->*Bob* | 42 | Dallas

 <!--style:CustomText-->*Mary* | 37 | El Paso

To learn more about Markdown++ tagging, see Learning Markdown++.

ePublisher Style Information
Style Behavior

In order to style a Table and its cells in detail, a few different styles are needed in
ePublisher. A Table gets 3 styles when ePublisher detects one in a document.

The example below populates the Style Designer with 1 Table Style called Table,
and 2 Paragraph Styles: Table Cell Head, and Table Cell Body when scanned into
ePublisher.

> # Heading 1 element inside a blockquote

>

> This is a Paragraph element inside of a blockquote.

>

Table Style

The Table Style is the first style that ePublisher adds to the Style Designer when a
table is detected in a source document. The default name is Table, but could also
be a custom name if the style tag syntax is used on the table.

This style applies table-specific style rules to the entire table. It is the only style in
Markdown++ that creates an entry in the Table Styles area in the Style Designer.

270 | Tables

Customizing the Table Style

By adding a Markdown++ custom style tag, the Table Style name can be changed.
The examples below change the Table Style name to CustomTable:

<!--style:CustomTable-->

| name | age | city |

|------|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

<!--style:CustomTable-->

 name | age | city

------|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Header & Body Cell Styles

Every cell on a header row gets a Header Cell Style. Each cell on body rows get a
Body Cell Style as well. To determine the Header Cell Style's name, ePublisher takes
the Table Style and adds Cell Head to the end for Header Cell Styles, and Cell
 Body to the end for Body Cell Styles. The default names are Table Cell Head and
Table Cell Body, but these will also be customized if the Table Style has a custom
name.

Customizing Header & Body Cell Styles

By adding a Markdown++ custom style tag, the Header & Body Cell Style names
can be changed. The example below changes the style names to CustomTable
Cell Head and CustomTable Cell Body because the Table Style has been given
the custom style name CustomTable:

Tables | 271

<!--style:CustomTable-->

| name | age | city |

|------|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

<!--style:CustomTable-->

 name | age | city

------|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Default Style Properties

Style Type: Table, Paragraph
Style Name: Table, Table Cell Head, Table Cell Body

Table

272 | Tables

Property Value

border top color #222222

border top style solid

border top width 1px

border right color #222222

border right style solid

border right width 1px

border bottom color #222222

border bottom style solid

border bottom width 1px

border left color #222222

border left style solid

border left width 1px

Table Cell Head

Tables | 273

Property Value

font family Arial

font size 11pt

font weight bold

padding top 6pt

padding right 6pt

padding bottom 6pt

padding left 6pt

Table Cell Body

274 | Tables

Property Value

font family Arial

font size 11pt

padding top 6pt

padding right 6pt

padding bottom 6pt

padding left 6pt

If a custom style name is assigned to a Table, the style names will still inherit all of
the listed default style information.

Blockquotes
Blockquotes are unique block-level elements that can contain other block-level
elements. They have a diverse set of usages due to this, such as capturing a
sequence of conversation, or being a container for an important presentation of
concepts.

Syntax
Blockquotes are created by starting a line with the > character. A space between
text content and the > character is optional, but recommended. Any Markdown or
Markdown++ convention is acceptable as text content inside of Blockquotes.

Basics
A basic Blockquote containing a single Paragraph

> A paragraph inside a blockquote.

Markdown In Blockquotes
Other Markdown elements, like headings and lists, can be used inside Blockquotes.
Use the same spacing and indentation rules as usual when inside Blockquotes.

Blockquotes | 275

> ### How to Publish Content with ePublisher

>

> Here's some steps to publish your content with ePublisher.

>

> 1. Open ePublisher

> 2. Add source documents

> 3. Select Format

> 4. Click **Generate All**

Nested Blockquotes
Other Blockquotes can also be nested inside of Blockquotes, and so on.

> First level blockquote

>

> > Second level nested blockquote.

> >

> > > Third level nested blockquote.

> > >

Markdown++
A custom Paragraph Style can be given to a Blockquote using a Markdown++ style
tag on the line directly above the Blockquote.

<!--style:CustomBlockquote-->

> A customized blockquote, style name "CustomBlockquote"

Customizing Nested Blockquotes
Nested Blockquotes can be customized as well.

276 | Blockquotes

> A default blockquote, style name "Blockquote"

>

> <!--style:CustomBlockquote-->

> > A customized blockquote, style name "CustomBlockquote"

> >

Default Until Customized
Nested Blockquotes are treated as standalone; they will not inherit the outermost
stylename if customized.

<!--style:CustomBlockquote-->

> A customized blockquote, style name "CustomBlockquote"

>

> > A default blockquote, style name "Blockquote"

> >

Add a style tag to each blockquote individually for consistency with custom styles.

<!--style:CustomBlockquote-->

> A customized blockquote, style name "CustomBlockquote"

>

> <!--style:CustomBlockquote-->

> > A customized blockquote, style name "CustomBlockquote"

> >

Markdown in Blockquotes
The tagging convention can be used for other Markdown elements inside
Blockquotes. These style names will inherit the Blockquote's style name as a prefix.
See Nested Styles for more info.

Blockquotes | 277

> <!--style:CustomParagraph-->

> A customized paragraph, style name "Blockquote CustomParagraph"

>

> <!--style:CustomList-->

> - an unordered list

> - customized

> - style name "Blockquote CustomList"

>

To learn more about Markdown++ tagging, see Learning Markdown++.

ePublisher Style Information
Style Behavior

Blockquotes are considered containers; they contain other block-level elements,
like Paragraphs, Lists, and Tables. Because of this, ePublisher creates a number of
different styles when it detects blockquotes in source documents.

Blockquote Style

The Blockquote Style is the first style that ePublisher adds to the Style Designer
when a blockquote is detected in a source document. The default name is
Blockquote, but could also be a custom name if the style tag syntax is used on the
blockquote.

This style applies to the container area surrounding the blockquote's content. It's
style rules can also apply to nested content, if the same rule isn't already applied
on the nested style.

Customizing the Blockquote Style

By adding a Markdown++ custom style tag, the Blockquote Style name
can be changed. The example below changes the Blockquote Style name to
CustomBlockquote:

278 | Blockquotes

<!--style:CustomBlockquote-->

> This is a custom named blockquote.

>

Nested Styles

Nested content inside of Blockquotes also get a new style name. To determine the
Nested Style's name, take the Blockquote Style and add the style name of the
nested content to the end, separated by a space.

The example below populates the Style Designer with 3 Paragraph Styles:
Blockquote (the Blockquote Style), Blockquote Heading 1, and Blockquote
Paragraph when scanned into ePublisher.

> # Heading 1 element inside a blockquote

>

> This is a Paragraph element inside of a blockquote.

>

Customizing Nested Styles

By adding a Markdown++ custom style tag, the Nested Style name can be
changed. The example below changes the Nested Style name to Blockquote
CustomParagraph:

> <!--style:CustomParagraph-->

> This is a custom paragraph.

>

Custom Style Names can be used on both the blockquote and nested content
simultaneously. This example creates the style names CustomBQ, and CustomBQ
CustomParagraph:

Blockquotes | 279

<!--style:CustomBQ-->

> <!--style:CustomParagraph-->

> This is a custom paragraph inside a blockquote.

>

Default Style Properties

Style Type: Paragraph
Style Name: Blockquote

280 | Blockquotes

Property Value

background color #efefef

border left style solid

border left color #DFE2E5

border left width 3pt

padding top 12pt

padding right 12pt

padding bottom 12pt

padding left 12pt

If a custom style name is assigned to a Blockquote, that style name will still inherit
all of the listed default style information.

Code Fences
A Code Fence preserves all text content it encapsulates and presents it exactly how
it was written. Code Fences are useful for presenting information that needs to be
written explicitly, like examples of code. They can provide users with content that
can be copied and used for their own purposes, too.

Syntax
Code Fences are created in three steps:

1. Start with a line containing ``` or ~~~ .

2. A following line or lines of text content.

3. End with a line containing ``` or ~~~ , matching the starting line.

Basics
A simple example using ``` tags. Any amount of text can be written between the
two tags, as long as the tags match and are written correctly.

Code Fences | 281


```

function addTwoNumbers(num1, num2) {

  return num1 + num2;

}

```

Code Fences can be created using ~~~ , too.

~~~

function addTwoNumbers(num1, num2) {

  return num1 + num2;

}

~~~

No Parsing in Code Fences
Markdown written inside of Code Fences will render as plain text.

```

# Heading 1 in Plain Text

```

HTML will also render as plain text when written inside Code Fences.

```

<p>HTML in plain text</p>

```

Markdown++
A custom Paragraph Style can be given to a Code Fence using a Markdown++ style
tag on the line directly above the Code Fence.

282 | Code Fences

<!--style:CustomCodeFence-->

```

function addTwoNumbers(num1, num2) {

  return num1 + num2;

}

```

To learn more about Markdown++ tagging, see Learning Markdown++.

ePublisher Style Information
Default Style Properties

Style Type: Paragraph
Default Style Name: Code Fence

Code Fences | 283

Property Value

background color #efefef

font family Consolas

font size 11pt

margin top 6pt

margin bottom 6pt

padding top 12pt

padding right 12pt

padding bottom 12pt

padding left 12pt

overflow auto

white space pre

If a custom style name is assigned to a Code Fence, that style name will still inherit
all of the listed default style information.

Code Blocks
A Code Block preserves all text content it encapsulates and presents it exactly how
it was written. Code Blocks are useful for presenting information that needs to be
written explicitly, like examples of code. They can provide users with content that
can be copied and used for their own purposes, too.

Syntax
Code Blocks are created by adding 4 spaces before text content. A Code Block can
consist of one or more lines created in this manner.

Basics
Starting a line with 4 spaces will create a basic Code Block.

 var firstName, lastName;

284 | Code Blocks

Multi-Line Code Blocks
Multiple lines can be used; start all lines with at least 4 spaces.

 var firstName, lastName;

 firstName = "John";

 lastName = "Doe";

Space is Preserved.
Any spaces after the first 4 will be used as indentation for the content of the Code
Block.

 function addTwoNumbers(num1, num2) {

 return num1 + num2;

 }

No Parsing in Code Blocks
Markdown written inside of Code Blocks will render as plain text.

 # Heading 1 in Plain Text

HTML will also render as plain text when written inside Code Blocks.

 <p>HTML in plain text</p>

Markdown++
A custom Paragraph Style can be given to a Code Block using a Markdown++ style
tag on the line directly above the Code Block.

<!--style:CustomCodeBlock-->

 function addTwoNumbers(num1, num2) {

 return num1 + num2;

 }

To learn more about Markdown++ tagging, see Learning Markdown++.

Code Blocks | 285

ePublisher Style Information
Default Style Properties

Style Type: Paragraph
Style Name: Code Block

286 | Code Blocks

Property Value

background color #efefef

font family Consolas

font size 11pt

margin top 6pt

margin bottom 6pt

padding top 12pt

padding right 12pt

padding bottom 12pt

padding left 12pt

overflow auto

white space pre

If a custom style name is assigned to a Code Block, that style name will still inherit
all of the listed default style information.

Horizontal Rules
A Horizontal Rule provides a visual separation between sections of content. They're
useful to separate unrelated ideas on a single page.

Syntax
A Horizontal Rule is created by using at least 3 - , _ , or * characters. These should
be the only characters on the line, but any combination of them is acceptable.

Basics
A simple Horizontal Rule using - characters.

An example using * characters.

Horizontal Rules | 287

And one with _ characters.

3 or More Characters
More than 3 characters can be used, if desired.

Spaces OK
Spaces are acceptable between the characters.

- - - - - - -

Mixed Characters
Combinations of the 3 characters is fine to use as well.

-*_*-*_*-*_*-

-_-_-_-_-_-_-

* - * - * - *

Markdown++
A custom Paragraph Style can be given to a Horizontal Rule using a Markdown++
style tag on the line directly above the Horizontal Rule.

<!--style:CustomHR-->

To learn more about Markdown++ tagging, see Learning Markdown++.

ePublisher Style Information
Default Style Properties

Style Type: Paragraph
Style Name: Horizontal Rule

288 | Horizontal Rules

Property Value

border top color #222222

border top style inset

border top width 1px

border right color #222222

border right style inset

border right width 1px

border bottom color #222222

border bottom style inset

border bottom width 1px

border left color #222222

border left style inset

border left width 1px

display block

margin top 6pt

margin bottom 6pt

tag hr

If a custom style name is assigned to a Horizontal Rule, that style name will still
inherit all of the listed default style information.

Block HTML
The common markup language for web technology, HTML, can be used in Markdown
documents on the block level. Refer to W3Schools' HTML Tutorial to learn more
about how to write and use HTML.

Syntax

Block HTML | 289

https://www.w3schools.com/html/

Block HTML is created by writing a valid HTML fragment on a line or set of lines.
HTML syntax must be the first thing on the line to be considered Block HTML.

Basics
Simple Block HTML using a p element.

<p>A simple paragraph element.</p>

Multi-Line HTML
HTML can span multiple lines. Keep it compact. An empty line will break the
fragment in two, so it is best used to separate the fragment from other content.

<table>

 <tr>

 <th>Name</th>

 <th>Age</th>

 <th>Country</th>

 </tr>

 <tr>

 <td>John Doe</td>

 <td>35</td>

 <td>USA</td>

 </tr>

 <tr>

 <td>Jane Doe</td>

 <td>32</td>

 <td>USA</td>

 </tr>

</table>

No Markdown in Block HTML

290 | Block HTML

Markdown syntax can't be used inside of Block HTML. The entire HTML fragment is
passed straight to the output as-is.

<p>No **Markdown** here.</p>

Markdown++
A custom Paragraph Style can be given to Block HTML using a Markdown++ style
tag on the line directly above the Block HTML.

<!--style:CustomHTML-->

<p>HTML block given the style name "CustomHTML"</p>

To learn more about Markdown++ tagging, see Learning Markdown++.

ePublisher Style Information
Style Behavior

All HTML fragments are wrapped in a container element, which is given a style
name. The default name is HTML, but can also be a custom name if the style tag is
used directly above an HTML fragment.

HTML is unavailable for publishing in PDF or PDF XSL-FO output due to
incompatibility with those technologies. ePublisher will remove any HTML content it
detects before generating PDF output.

Default Style Properties

Style Type: Paragraph
Style Name: HTML

Block HTML | 291

Property Value

display block

overflow auto

If a custom style name is assigned to a Block HTML, that style name will still inherit
all of the listed default style information.

Bold, Italic, Strikethrough, Code
Inline text can be styled to put emphasis or formatting on certain phrases.
Markdown offers wrappers for Bold, Italic, Strikethrough, and Code.

Syntax
Bold text is created by wrapping a set of text with a pair of either ** or __
characters.

Italic text is created by wrapping text with a pair of either * or _ .

Strikethrough text is created by wrapping text between a pair of ~~ characters.

Code spans are created by wrapping text between a pair of ` characters.

Basics
Two simple examples for Bold text. Notice either * or _ can be used, but there
must be two on each side of the wrap. The start and end characters must also
match.

Here's **bold** and here's also __bold__.

Italic text is written similarly, using one * or _ instead of two.

Here's *italic* and here's also _italic_.

Same rules apply to Strikethrough text, using ~~ .

Using ~~strikethrough~~ text.

Code spans follow the same rules, too.

Defining a `technical term`.

292 | Bold, Italic, Strikethrough, Code

Mixing Styles of Text
Combinations of these can be used together. Make sure the innermost pair of tags is
closed before closing an outer pair. Using unlike characters for different pairs helps
with readability. (Using * for bold, _ for italic, etc.)

We can write **bold and _italic_**.

Spanning Multiple Lines
Inline text decorators can span multiple lines, as long as there are no empty lines
between the start and end tags.

Writing a sentence that **has

bold text** across lines.

Markdown++
A custom Character Style can be given to Inline Text using a Markdown++ style tag
directly before the start tag of the Inline Text.

Styling <!--style:CustomBold-->**inline text. Style name
 "CustomBold"**.

To learn more about Markdown++ tagging, see Learning Markdown++.

ePublisher Style Information
Default Style Properties

Style Type: Character
Style Name: Bold, Italic, Strikethrough, Code

Bold

Bold, Italic, Strikethrough, Code | 293

Property Value

font weight bold

Italic

294 | Bold, Italic, Strikethrough, Code

Property Value

font style italic

Strikethrough

Bold, Italic, Strikethrough, Code | 295

Property Value

text decoration line-through

Code

296 | Bold, Italic, Strikethrough, Code

Property Value

background color #efefef

font family Consolas

white space pre

If a custom style name is assigned to Inline HTML, that style name will still inherit
all of the listed default style information.

Links
Links are an inline Markdown convention used to connect users to other locations
and resources in a set of information.

Syntax
Link syntax looks interesting, but is simple enough once written a few times. Write
the link's displayed text in between [and] characters, and directly next to it
write the link's URL between (and) characters. Optionally, a title can be given
to the Link, written next to the link URL, separated by a space and wrapped in "
characters.

Basics
A basic Link example.

[Link Text](path/to/my_doc.md)

Titles are optional. Keep the URL and title separate with a space. Wrap the title in "
characters.

[Link Text](path/to/my_doc.md "Link Title")

Links can be the only thing on a line or mixed in anywhere inline text can go.

To see more, follow the [Link](path/to/my_doc.md).

Relative paths, absolute paths, web links, and Aliases are all valid path values.

Links | 297

[Link Text](../my_doc.md)

[Link Text](D:/Markdown/Docs/my_doc.md)

[Link Text](https://www.webworks.com)

[Link Text](#my-doc)

Using Link References
Links can make use of Link References to simplify URL management for documents
with many different link paths.

[Link Text][0]

[0]: my_image.png

Titles are also available and written the same way using Link References.

[Link Text][0]

[0]: my_image.png "Link Title"

Markdown++
A custom Character Style can be given to an Image using a Markdown++ style tag
immediately before the Link syntax.

<!--style:CustomLink-->[Link Text](path/to/my_doc.md)

To learn more about Markdown++ tagging, see Learning Markdown++.

Link Behavior
Links in ePublisher have a variety of ways to connect to other resources in a
publication. What they connect to depends on what is used as a path value. All path
values inside links also apply to path values in Link References.

Web Links

Write a fully qualified web URL in the path area to link to an external resource.
Make sure to start the URL with http:// or https:// .

298 | Links

[WebWorks Website](https://www.webworks.com)

Link to Other Documents

Write the file path for the intended file in the path area to link to another document.
Relative paths need to resolve from the file the link is written in. Absolute paths can
also be used.

[link text](path/to/my_doc.md)

[link text](C:/Users/me/path/to/my_doc.md)

Link to Topics in Other Documents

To link to a specific section in a document, write the file path followed immediately
with the alias for the topic. This can be either a Heading Alias or a Custom Alias.
Relative paths need to resolve from the file the link is written in. Absolute paths can
also be used.

The examples link to the alias #my-alias in my_doc.md .

[link text](path/to/my_doc.md#my-alias)

[link text](C:/Users/me/path/to/my_doc.md#my-alias)

Link to Topics in Same Document

Use an alias by itself to link to a topic in the current document. This can be either a
Heading Alias or a Custom Alias.

The example links to the alias #my-alias in the current document.

[link text](#my-alias)

ePublisher Style Information
Default Style Properties

Style Type: Character
Style Name: Link

Links | 299

Property Value

text decoration underline

color #0078d7

If a custom style name is assigned to a Link, that style name will still inherit all of
the listed default style information.

Images
Images are an inline Markdown convention used to display graphics in a document.

Syntax
The image syntax is identical to the Link syntax, with the addition of a ! character
at the beginning. Alt text is written between ![and] characters. Inside of (and
) , the URL path to the image should be written, then, optionally, a title wrapped in
" characters.

Basics
A basic Image example.

![alt text](path/to/my_image.png)

Titles are optional. Keep the URL and title separate with a space.

![alt text](path/to/my_image.png "Image Title")

Images can be the only thing on a line or mixed in anywhere inline text can go.

Images can go anywhere text can: ![alt text](path/to/my_image.png)

Relative paths and absolute paths can both be used.

![alt text](../my_image.png)

![alt text](D:/Images/my_image.png)

Using Link References

300 | Images

Images can also make use of [Link References][md-link-reference] in the same way
Links do.

![alt text][0]

[0]: my_image.png

Titles are also available and written the same way using Link References.

![alt text][0]

[0]: my_image.png "Image Title"

Markdown++
A custom Graphic Style can be given to an Image using a Markdown++ style tag
immediately before the Image syntax.

<!--style:CustomImage-->![alt text](path/to/my_image.png)

To learn more about Markdown++ tagging, see Learning Markdown++.

ePublisher Style Information
Default Style Properties

Style Type: Graphic
Style Name: Image

If a custom style name is assigned to an Image, that style name will still inherit all
of the listed default style information.

Link References
Link References accompany Links and Images, and are used to keep path values in
a separated location from text content. They're useful for readability because they
simplify links and images in inline text, and can be written in a standalone location
for editing en masse.

This section requires familiarity with Links and Images to teach referencing
concepts.

Syntax

Link References | 301

A Link Reference must be the only thing on a line. The link key is written between
[and]: . The URL path is written next, separated by a space. Optionally, a title
can be written after the URL, separated by a space.

Once a Link Reference has been written, the link key from it can be used with a
Link or Image. Replace the Link/Image's parenthesis () section with the link key
between [and] .

Basics
A Link Reference example used with an accompanying Link. The Link is written first
and makes use of the link key, in this example 0 .

[Link Text][0]

[0]: path/to/my_doc.md

Titles are optional. Keep the URL and title separate with a space.

[Link Text][0]

[0]: path/to/my_doc.md "Link Title"

A Link Reference example with an accompanying Image.

![alt text][0]

[0]: path/to/my_image.png

Make sure to keep the Reference on it's own line. The Link or Image can be used
anywhere text is allowed, though.

For more info, check the [Link][0].

[0]: my_doc.md

Use Unique Values for Link Keys
Any text will work for the link key, but something unique that can be searched for
will help in the authoring process. Link keys must be one-of-a-kind as well. In the
case of overlapping link keys, the last link key written will be the accepted one.

302 | Link References

[wwdoc_0001]: my_doc.md

[wwdoc_0002]: doc2.md

[wwdoc_0003]: doc3.md

[wwimg_0001]: img1.png

[wwimg_0002]: img2.png

[wwimg_0003]: img3.png

Inline HTML
The common markup language for web technology, HTML, can be used in Markdown
documents mixed with text and other inline elements. Refer to W3Schools' HTML
Tutorial to learn more about how to write and use HTML.

Syntax
Inline HTML is created by writing a valid HTML fragment in an area where other
inline content exists.

Basics
Simple Inline HTML using a strong element.

Write words with bold emphasis.

Markdown and Inline HTML
Markdown syntax can be mixed with Inline HTML.

We can write **bold** text.

Markdown++
A custom Character Style can be given to Inline HTML using a Markdown++ style
tag directly before the Inline HTML.

Styling <!--style:CustomHTML-->inline HTML. Style name
 "CustomHTML".

Inline HTML | 303

https://www.w3schools.com/html/
https://www.w3schools.com/html/

To learn more about Markdown++ tagging, see Learning Markdown++.

ePublisher Style Information
Style Behavior

All HTML fragments are wrapped in a container element, which is given a style
name. The default name is HTML, but can also be a custom name if the style tag is
used directly before an HTML fragment.

HTML is unavailable for publishing in PDF or PDF XSL-FO output due to
incompatibility with those technologies. ePublisher will remove any HTML content it
detects before generating PDF output.

Default Style Properties

Style Type: Character
Style Name: HTML

If a custom style name is assigned to Inline HTML, that style name will still inherit
all of the listed default style information.

Learning Markdown++
This section will detail the features of Markdown++, how to write them, and how
to use them in ePublisher. For quick reference material, see the Markdown Cheat
Sheet.

Markdown++ is a superset of Markdown, meaning that any convention available in
Markdown also applies to Markdown++. Learn about Markdown before reading this
section.

Quick Links
Markdown++ Basics
Multiline Tables
Custom Styles
Aliases
Markers
Conditional Text
File Includes
Variables

Markdown++ Basics
Markdown++ is a superset of Markdown. Because of this, all Markdown files are
also Markdown++ files. Any tools used for Markdown also work well for Markdown+
+.

304 | Markdown++ Basics

Filling out Markdown with a full designing & publishing experience, while also
maintaining readability, is a major design goal of Markdown++. Another goal is to
preserve the integrity of rendering and previews across the many Markdown tools
out there.

Markdown++ uses the HTML Comment tag with a set of commands inside them for
most of it's features. Using these enables Markdown++ syntax to be transparent
when documents are rendered or previewed, and aids in quick learning by using a
well-established pattern.

Learning the HTML Comment tag opens the door to learning most of the features
Markdown++ offers.

Syntax
Write an HTML Comment by starting with <!-- and ending with --> . Any text can
be written between these two patterns. Keeping the entire comment on a single line
is required by Markdown++.

Any unrecognized text inside of a comment gets treated as a regular HTML
comment and carries through to the output.

Basics
A simple comment tag with a Custom Style Name command. Keep the tag on a
single line.

<!--style:CustomStyle-->

Apply commands to block-level elements by adding the tag to the line directly
above the block element. The style CustomParagraph is added to a paragraph
below.

<!-- style:CustomParagraph -->

A customized paragraph, named "CustomParagraph".

Apply commands to inline elements by adding the tag directly before the inline
syntax. Don't put space between the comment tag and the inline syntax. The style
CustomBold is added to bold text below.

Customizing some <!--style:CustomBold-->**bold text**.

Whitespace OK
In general, it is safe to include any amount of whitespace between the comment
tags. Use it as necessary for readability.

Markdown++ Basics | 305

<!-- style: CustomStyle -->

Multiple Commands
Any number of commands can be put inside the comment. Separate the commands
with a ; character. This example applies two commands to a Heading 1: a Custom
Style Name, and a Custom Alias.

<!-- style:CustomHeading1 ; #custom-heading1 -->

Heading 1

Start & End Tags
Some features, like Conditional Text, require start & end tags. The example wraps
condition tags around content meant only for printed publications.

<!--condition:print_only-->

Print Only

This ccontent is meant for print only.

<!--/condition-->

Multiline Tables in Markdown++
Multiline tables in Markdown++ provide an enhanced way to organize detailed
content across multiple lines, allowing for more readable and flexible structures.
Unlike standard tables, multiline tables allow rows to span multiple lines by using a
special tag and structured spacing.

Introduction
Multiline tables are very similar to regular Markdown tables, but they are more
flexible when it comes to the table structure. In Markdown++, multiline tables
are indicated by placing a <!-- multiline --> tag directly above the table.
Additionally, a new row is created by adding a row of cells that are either empty or
contain only whitespace.

A key feature of multiline tables is that you can include full block Markdown
elements within cells, such as lists, code blocks, or paragraphs. This makes
multiline tables particularly useful when content within a cell becomes too detailed
to fit conveniently on a single line. By utilizing multiline tables, writers can keep
content organized and easier to edit.

306 | Mulline Tables in Markdown++

Syntax
Multiline tables in Markdown++ consist of the same main elements as standard
tables:

• A header row, which contains header cell content separated by |
characters.

• An alignment row, which indicates the alignment of the body cells' text.
Each cell in this row contains at least 3 - characters, and an optional :
character to indicate alignment. Each cell is separated by a | character.

◦ Default alignment only uses - characters; 3 or more.
◦ Left align the column by starting the cell with : and filling in the rest

with : characters; 3 or more.
◦ Right align the column by starting the cell with 3 or more -

characters, ending with a : character.
◦ Center align the column by starting and ending the cell with :

characters. Put - characters between them; 3 or more.
• 1 or more body rows, that contain body cell content separated by |

characters.

The key difference is the <!-- multiline --> tag and the ability to use blank
rows to create new table rows, along with the capability to write full block
Markdown inside cells.

Multiline Tag
To use a multiline table, add the following tag directly above your table:

<!-- multiline -->

This tag tells Markdown++ to treat the following table as a multiline table.

Creating New Rows
To create a new row, simply add a row of cells that are either empty or contain
only whitespace. This indicates to Markdown++ that the next line of cells should be
treated as part of a new row.

Basics
Below is an example of a multiline table:

Mulline Tables in Markdown++ | 307

<!-- multiline -->

| name | details |

|------|--------------------------|

| Bob | Lives in Dallas. |

| | - Enjoys cycling |

| | - Loves cooking |

| | |

| Mary | Lives in El Paso. |

| | - Works as a teacher |

| | - Likes painting |

In this example, the empty row acts as a separator, creating a break before the
next row. Notice how detailed information, including lists, is included within a cell.

You can also use multiline tables without wrapping | characters:

<!-- multiline -->

 name | details

------|--------------------------

 Bob | Lives in Dallas.

 | - Enjoys cycling

 | - Loves cooking

 |

 Mary | Lives in El Paso.

 | - Works as a teacher

 | - Likes painting

Alignment in Multiline Tables

308 | Mulline Tables in Markdown++

Just like with standard tables, multiline tables can have different alignments for
each column.

Left-align the text of cells in a column by starting the alignment cell with : :

<!-- multiline -->

| name | details |

|:-----|-------------------------|

| Bob | Lives in Dallas. |

| | - Enjoys cycling |

| | - Loves cooking |

| | |

| Mary | Lives in El Paso. |

| | - Works as a teacher |

| | - Likes painting |

Center-align the text of cells in a column by starting and ending the alignment cell
with : :

<!-- multiline -->

| name | details |

|:------:|-------------------------|

| Bob | Lives in Dallas. |

| | - Enjoys cycling |

| | - Loves cooking |

| | |

| Mary | Lives in El Paso. |

| | - Works as a teacher |

| | - Likes painting |

Mulline Tables in Markdown++ | 309

Markdown In Multiline Tables
Multiline tables can also include full Markdown blocks, such as code blocks or lists:

<!-- multiline -->

| name | hobbies |

|----------|-------------------------|

| **Bob** | - Biking |

| | - Cooking |

| | - Reading |

| | |

| **Mary** | Here is a code example: |

| | |

| | ``` |

| | function greet() { |

| | console.log("Hi"); |

| | } |

| | ``` |

Including full Markdown blocks like code and lists helps emphasize complex content
within cells, making tables more versatile.

Markdown++ Custom Styles
A custom Table Style can be given to a multiline Table using a Markdown++ style
tag directly above the multiline tag. Additionally, multiple Markdown++ commands
can be combined using ; :

310 | Mulline Tables in Markdown++

<!--style:CustomTable; multiline -->

| name | description |

|------|-----------------------------|

| Bob | - Loves biking |

| | - Enjoys programming |

| | |

| Mary | A passionate teacher. |

| | - Loves painting |

| | - Enjoys hiking |

Content in Cells
Inline text content can be further customized using the inline tag convention, and
multiple commands can be used in a single tag:

<!-- multiline -->

| name | age | city |

|-------------------------------|-----|---------|

| <!--style:CustomText-->*Bob* | 42 | Dallas |

| | | |

| <!--style:CustomText-->*Mary* | 37 | El Paso |

To learn more about Markdown++ tagging, see Learning Markdown++.

ePublisher Style Information
Style Behavior

In order to style a multiline Table and its cells in detail, the same styles are needed
as with standard tables in ePublisher. A multiline table gets 3 styles when detected
in a document: Table, Table Cell Head, and Table Cell Body.

Table Style

Mulline Tables in Markdown++ | 311

The Table Style is the primary style that ePublisher adds when a multiline table is
detected. The default name is Table, but this can be customized using a Markdown
++ style tag.

Customizing the Table Style

By adding a Markdown++ custom style tag, the Table Style name can be changed:

<!--style:CustomTable; multiline -->

| name | age | city |

|------|-----|---------|

| Bob | 42 | Dallas |

| | | |

| Mary | 37 | El Paso |

Header & Body Cell Styles

Header and body cell styles function in the same way for multiline tables as they do
for standard tables. Each header cell gets a Table Cell Head style, and each body
cell gets a Table Cell Body style. These styles can also be customized if the Table
Style is given a custom name:

<!--style:CustomTable; multiline -->

| name | age | city |

|------|-----|---------|

| Bob | 42 | Dallas |

| | | |

| Mary | 37 | El Paso |

Default Style Properties

Style Type: Table, Paragraph
Style Name: Table, Table Cell Head, Table Cell Body

Table

312 | Mulline Tables in Markdown++

Property Value

border top color #222222

border top style solid

border top width 1px

border right color #222222

border right style solid

border right width 1px

border bottom color #222222

border bottom style solid

border bottom width 1px

border left color #222222

border left style solid

border left width 1px

Table Cell Head

Mulline Tables in Markdown++ | 313

Property Value

font family Arial

font size 11pt

font weight bold

padding top 6pt

padding right 6pt

padding bottom 6pt

padding left 6pt

Table Cell Body

314 | Mulline Tables in Markdown++

Property Value

font family Arial

font size 11pt

padding top 6pt

padding right 6pt

padding bottom 6pt

padding left 6pt

If a custom style name is assigned to a multiline Table, the style names will still
inherit all of the listed default style information.

Custom Styles
The Custom Style command overrides the default Style Name of a Markdown
element with a user-defined Style Name. Using this feature enables a virtually
limitless amount of styles for designing & publishing in ePublisher.

Syntax
The Custom Style command is created by writing style: followed by the name of
the intended style.

Basics
A basic Custom Style command applied to a Paragraph.

<!--style:CustomParagraph-->

This paragraph has it's style name customized to "CustomParagraph".

Put the tag on the line above any block-level element to customize it. Make sure
there are no empty lines between the tag and the block element. The tag needs to
be the only thing on it's line.

<!--style:CustomHeading1-->

This Heading has been renamed to "CustomHeading1".

Custom Styles | 315

For Custom Styles on inline text content, put the tag directly before the starting
syntax. No space should be put between the tag and the inline syntax. A string of
bold text is customized with the Style Namme CustomBold below.

This paragraph has customized <!--style:CustomBold-->**bold text**.

Mix with Other Commands
Custom Styles can be in the same comment tag with other commands. Separate
them with a ; character. A Custom Style and Custom Alias are written in the same
tag below.

<!-- style:CustomStyle ; #custom-alias -->

Custom Style Command Behavior
Through the Custom Style command, it is possible to get name entries for almost
any type of style into ePublisher's Style Designer. How to do so varies based on
style type.

Custom Paragraph Style

Add the style tag to the line directly above a block-level element to give it a custom
Paragraph Style. This applies to any block-level element, except for Tables.

<!--style:CustomParagraph-->

This is a custom paragraph called "CustomParagraph".

<!--style:CustomHeading1-->

This is a custom paragraph called "CustomParagraph".

<!--style:UList-->

- custom list

- unordered

- called "CustomUList"

316 | Custom Styles

<!--styleCustomBlockquote-->

> This is a custom blockquote

>

<!--style:CustomHTML-->

<div>

 <p>This is customized HTML. Named "CustomHTML".</p>

</div>

Custom Character Style

Add a style tag directly before inline syntax to create a custom Character Style.
Remember, no space between the tag and the inline syntax. This applies to any
inline syntax, except for Images.

This is customized <!--style:CustomBold-->**bold text**.

This is customized <!--style:CustomItalic-->*italic text*.

This is a customized <!--style:CustomLink-->[link](my_doc.md).

This is a customized <!--style:CustomHTML-->Inline HTML.

Custom Graphic Style

Add a style tag directly before image syntax to create a custom Graphic Style.
Remember, no space between the tag and the image syntax.

<!--style:CustomImage-->![alt text](my_image.png)

<!--style:CustomImage-->![alt text][link_key]

Custom Table Style

Custom Styles | 317

Like custom Paragraph Styles, add the tag to the line directly above Table syntax to
give it a custom Table Style.

<!--style:CustomTable-->

| name | age | city |

|------|-----|---------|

| Bob | 42 | Dallas |

| Mary | 37 | El Paso |

<!--style:CustomTable-->

 name | age | city

------|-----|------

 Bob | 42 | Dallas

 Mary | 37 | El Paso

Custom Page Style

Custom Page Styles need to be created through the Custom Markers command.
Refer to the linked section for details.

<!--markers:{"PageStyle": "CustomPage"}-->

Topic Heading

Custom Marker Style

Custom Marker Styles need to be created through the Custom Markers command.
Refer to the linked section for details.

<!--marker:Keywords="topic, heading, markers"-->

Topic Heading

Custom Aliases

318 | Custom Aliases

Use a Custom Alias to give an element a unique pointer for linking to in other
places in the publication. The Custom Alias is a powerful tool that can simplify link
management and speed up authoring and editing.

Syntax
Create a Custom Alias by starting with a single # character, followed any
alphanumeric characters, - , or _ . Space characters cannot be used in an alias; the
Alias will cut off before the space.

Basics
A basic Custom Alias applied to a Heading 1.

<!--#custom-alias-->

Custom Aliased Heading

Inline syntax can be given an Alias as well.

This <!--#bold-keyword-->**bold text** has a custom alias.

Mix with Other Commands
Custom Aliases can be in the same comment tag with other commands. Separate
them with a ; character. A Custom Style and Custom Alias are written in the same
tag below.

<!-- style:CustomStyle ; #custom-alias -->

Custom Alias Behavior
Custom Aliases create an entry in the document's WIF that enable linking to the
element it was created with.

Using a Custom Alias

The first step in using a Custom Alias is to create one by adding the Alias tag to
the location that will be linked to. Below, the Custom Alias #my-alias is created,
associated with a Heading 1.

<!--#my-alias-->

A Topic Heading

Custom Aliases | 319

After that, the Alias #my-alias can be used in the path value for Links and Link
References. Once the link is clicked, it will take readers to the location the Alias was
created.

Refer to the linked sections for detailed instructions on using these elements.

Some quick examples for Links:

[link text](#my-alias)

[link text](my_doc.md#my-alias)

Some quick examples for Link References:

[link text][link_key]

[link_key]: #my-alias

[link text][link_key]

[link_key]: my_doc.md#my-alias

Markers in Markdown++
Markers are pieces of metadata that can be inserted into a document to add
different features or change the behavior of the publication. They are useful for
adding keywords to improve search relevance, or for instructing ePublisher to pass
text through to the output without processing.

Syntax
The Markers command has two main formats. The preferred format is to start with
marker: , followed by the key and value directly as key="value" . This simpler
version is ideal when you need to write a single marker value.

For more advanced scenarios where multiple markers are required in one
statement, you can use the markers: command, followed by a JSON Object Literal.
In this case, the marker names are written as keys and their respective values
as values. Make sure all keys and values are wrapped in " , and separated by : .
Multiple key/value pairs can be included, separated by , .

320 | Markers in Markdown++

https://www.w3schools.com/Js/js_json_objects.asp

Basics
A basic Markers command using the preferred compact version:

<!--marker:Keywords="webworks"-->

About WebWorks

Adding multiple marker: statements in a single tag is also acceptable:

<!--marker:Keywords="webworks"; marker:Category="documentation"-->

About WebWorks

Or, using the JSON format for multiple markers:

<!--markers:{"Keywords": "webworks", "Category": "documentation"}-->

About WebWorks

The marker command is also available for inline-level syntax:

Add a custom <!--marker:Keywords="inline"-->**marker**.

Or using the JSON format for multiple values:

Add a custom <!--markers:{"Keywords": "inline, marker"}-->**marker**.

Mix with Other Commands
Markers can be used in the same comment tag with other commands. Separate
them with a ; character. Below, a Custom Style and a marker are written in the
same tag:

<!-- style:CustomStyle ; marker:Keywords="webworks" -->

Or using the JSON format for multiple markers:

<!-- style:CustomStyle ; markers:{"Keywords": "webworks"} -->

Markers Behavior
Markers associate a piece of metadata with an element on the page. To learn more
about ePublisher's built-in markers and what they do, see the Markers reference
table.

Markers in Markdown++ | 321

https://static.webworks.com/docs/epublisher/latest/help/#context/markers_list
https://static.webworks.com/docs/epublisher/latest/help/#context/markers_list

Using a Marker

To use a marker, first add it to the intended area of the content. The marker should
be tagged to a content element, such as a paragraph or heading.

Below, a Keywords marker is tagged to a Heading 1 using both formats:

Using the preferred compact version:

<!--marker:Keywords="markers"-->

Using Markers in Source Content

Using the JSON format for multiple values:

<!--markers:{"Keywords": "markers, content, create"}-->

Using Markers in Source Content

Next, scan the document in ePublisher. This will add the marker to the Marker
Styles area of the Style Designer.

322 | Markers in Markdown++

With the marker added to ePublisher, you can now generate output with the new
keywords. This marker will improve search relevance in outputs with searching
capabilities, such as Reverb 2.0.

Markers in Markdown++ | 323

https://static.webworks.com/docs/epublisher/latest/help/#context/epub-reverb-2

Conditions
Conditions allow an author to create sections of content that are available in certain
contexts, and excluded in others. They can be useful for the Edit/Review process, or
to switch out sections meant only for print or the Web.

324 | Condions

Syntax
Conditional text is written between two HTML Comment Tags. In the first tag, write
one or more conditions between <!--condition: and --> . The second closing tag
is always written as <!--/condition--> . Between the tags, any valid Markdown+
+ content can be written. Condition names must only use alphanumeric characters,
- , and _ . Do not use spaces in Condition names.

See Condition Operators for details on advanced conditional logic syntax.

Basics
A Condition containing a single Paragraph, using the Condition print_only .

<!--condition:print_only-->

This paragraph is meant only for print.

<!--/condition-->

Conditions can contain multiple block-level elements.

<!--condition:print_only-->

The Print Section

This sections is meant only for print.

It will not be visible if `print_only` is set to `Hidden`.

<!--/condition-->

Conditions can be used with inline content, too.

Go to the Section <!--condition:print_only-->on page 304<!--/
condition--> for more details.

Operators
Complex logic can be used with Conditions using a set of Operators. This block is
hidden when production is set Visible using the ! (logical NOT) operator.

Condions | 325

<!--condition:!production-->

This paragraph is not meant for production publications.

<!--/condition-->

Multiple Conditions
Multiple Conditions can be used in a single conditional block Operators. This
example only show the block of text if print_only AND production are set to
Visible .

<!--condition:print_only production-->

This paragraph is meant only for print and production.

<!--/condition-->

Conditions Behavior
Conditions are rendered or removed from the document when publishing based
on values set in the Conditions Window. Conditions are considered unset, and
therefore always render, if they haven't been scanned into ePublisher. Conditions
are also considered unset if they still have the default value Use document
 condition in the Conditions Window.

Using Conditions

First, create a condition by writing it in a source document. Below, and block of
conditional text is created with the Condition print_only .

<!--condition:print_only-->

The Print Section

This sections is meant only for print.

It will not be visible if `print_only` is set to `Hidden`.

<!--/condition-->

Next, scan the document in ePublisher. This will add the Condition print_only to
the Conditions Window.

326 | Condions

https://static.webworks.com/docs/epublisher/latest/help/#context/epub-conditions-window

Once scanned, the print_only Condition's value can be changed to either
Visible or Hidden . The Condition is considered unset, and will always render, if
the value is left with the default, Use document value .

Condions | 327

Condition Operators

Using Operators, an author can create additional logic to determine whether
conditional text should be rendered or hidden.

In a conditional statement, the block of text renders if the entire statement
evaluates to true . The block is hidden if the statement evaluates to false .

In this context, Visible is considered true , and Hidden is considered false . Use
 document value disables the conditional statement and always renders the block.

Combine Condition names and Operators to create complex statements to
determine if the content should be rendered or removed in the publication.

The Space Operator - Logical AND

The space character in a conditional statement is a Logical AND. Meaning, if the
statements on both sides of evaluate to true , the statement passes.

The conditional text below is rendered if print_only AND production are set to
Visible .

<!--condition:print_only production-->

This paragraph is meant only for print and production.

<!--/condition-->

328 | Condions

The , Operator - Logical OR

The , character in a conditional statement is a Logical OR. Meaning, if a statement
on either side of , evaluates to true , the statement passes.

The conditional text below is rendered if one of print_only OR production are
set to Visible .

<!--condition:print_only,production-->

This paragraph is meant for either print or production.

<!--/condition-->

The ! Operator - Logical NOT

The ! character in a conditional statement is a Logical NOT. Adding ! to the
beginning of a Condition reverses it's truthiness. Meaning, a Condition with ! on
the front of it's name evaluates Visible to false and Hidden to true .

The conditional text below is removed if production is set to Visible .

<!--condition:!production-->

This paragraph is not meant for production.

<!--/condition-->

Conditions and Includes

Conditions can be used as expected in File Includes since they are processed at the
same time as Includes. Additionally, Includes can be used inside of conditions to
import entire documents based on certain Conditions.

File Includes
A File Include statement points to another Markdown++ file and imports the file's
contents at the location of the statement. This enables multi-file structure in a
single document.

Syntax
An Include statement is created by writing a path to a Markdown++ document
between <!--include: and --> . Relative paths and absolute paths are both valid

File Includes | 329

path values. Web paths are not supported. The include statement must be the only
thing on a line.

Basics
A basic Include statement. The Include must be written on it's own line to work
properly.

<!--include:my_file.md-->

Relative paths and absolute paths are fine to use.

<!--include:my_file.md-->

<!--include:C:/Users/Me/Docs/my_file.md-->

Multiple includes can be used in the same document.

<!--include:my_file.md-->

<!--include:doc_2.md-->

File Includes Behavior
When ePublisher detects a File Include statement, the file is read, and the Include
tag is replaced with the content of the file. If the no file is found at the path given,
the Include tag will be passed through to the output as an HTML Comment.

Using a File Include

To use an Include statement, all that needs to be done is write the tag where the
file's content is to be imported. Below, an include statement is written below a Title.

Learning ePublisher

===================

<!--include:epublisher_basics.md-->

This can even be done inside of documents used in an Include statement, as long as
it is not a [Recursive Include][mdp-includes-recursion]. Use this feature to create
Map Files for many Markdown++ documents, or create documents needed for
content re-use.

330 | File Includes

Recursive Includes

If an Include statement tries to insert a document that has already been inserted by
a parent file, ePublisher's generation log will display a message like this one:

[Warning]

Skipping recursive include file:

 'C:\Users\Me\Documents\include_doc.md'

 in file: 'C:\Users\Me\main_doc.md'

This message displays because ePublisher cannot insert the document. Doing so
would create a recursive loop and would break the generation. If this message is
recieved, it's time to look at the layout of Includes in the source documents.

The message can be useful to track down the file in error. The first file path refers
to the file in the attempted Include statement. The second file path refers to where
the Include occured.

Variables
Variables represent a shorthand to store a value that can be re-used across a set of
documents. They're useful to store content that only needs to be written once, but
is used in the same way in many places. Store values like product names, copyright
text, publication dates, and more inside of Variables.

Syntax
Variables are the only syntax in Markdown++ that doesn't use the HTML Comment
Tag.

To write one, start with $, write the variable name using alphanumeric characters,
- , and _ . End the Variable with ; . Do not use spaces in the Variables's name.

Basics
A simple example of writing a Variable, called product_name .

$product_name;

Variables can be intermixed with other text content.

Document last published on $publish_date;.

Variables | 331

The full range of Markdown features is available with Variables as well, both around
them and written in their values.

The documentation for our product, **$product_name;**.

Variable Behavior
Variables, once scanned into ePublisher, can be given values that are saved to an
ePublisher Project.

Using Variables

First, a Variable must be created by writing it into a document. Here, we create a
Variable called publish_date .

Document last published on $publish_date;.

Next, scan the document in ePublisher. This will add the Variable to the Variables
Window.

332 | Variables

https://static.webworks.com/docs/epublisher/latest/help/#context/epub-setting-variables
https://static.webworks.com/docs/epublisher/latest/help/#context/epub-setting-variables

The Variable can now be given a value, typed in the input field next to the Variable's
name in the Variable Window.

Use Document Value

The Use Document Value checkbox inside the Variables Window does not apply
to Markdown++ Variables, since their values are instead maintained in ePublisher.
There's no change in behavior based on if the box is checked or not. This feature
applies to legacy source document types, such as FrameMaker and Word.

See Online Help for Markdown++ cheatsheet.

Variables | 333

Adobe FrameMaker
Adobe FrameMaker Formats and Standards
Implementing Online Features in FrameMaker
Working with Tables in FrameMaker
Working with Images in FrameMaker
Working with Videos in FrameMaker
Creating Index Entries in FrameMaker
Using Variables in FrameMaker
Using Conditions in FrameMaker
Specifying Output File Names in FrameMaker
Creating Context-Sensitive Help in FrameMaker
Creating Popup Windows in FrameMaker
Creating Expand/Collapse Sections (Drop-Down Hotspots) in FrameMaker
Creating Related Topics in FrameMaker
Creating See Also Links in FrameMaker
Creating Meta Tag Keywords in FrameMaker
Assigning Custom Page Styles in FrameMaker
Opening Topics in Custom Windows in FrameMaker
Customizing TOC Entry in FrameMaker
Customizing Table of Contents Icons in FrameMaker
Specifying Context Plug-ins in FrameMaker
Creating Accessible Online Content in FrameMaker
Troubleshooting FrameMaker issues

If you want to implement online content features in your generated output, you
need to prepare your Adobe FrameMaker source documents for output generation.
This section explains how to prepare your Adobe FrameMaker source documents.

Adobe FrameMaker Formats and
Standards
Adobe FrameMaker provides a comprehensive publishing solution with XML-
based structured authoring. You can develop the templates you need to deliver
polished technical documentation for large product libraries. FrameMaker allows
you to create both structured and unstructured content. You can also create DITA-
compliant content.

This section describes the design considerations for a FrameMaker catalog
and template files. By effectively designing your FrameMaker template, and
by consistently applying formats throughout your source documents, you can
streamline single-sourcing processes and reduce your production and maintenance
costs. This section does not describe all FrameMaker processes, but it focuses on
the design considerations related to ePublisher.

Standards for Single-Sourcing
To define your FrameMaker standards, create a FrameMaker file with all the
elements you need in it, including formats, markers, conditions, variables, tables,

334 | Standards for Single-Sourcing

and master pages. You can use this file to import and update your standards.
For example, you can use this file to update variables and conditions across your
FrameMaker source files. You can also use this file as a source document in your
Stationery design project. To create a template file, start with one of the default
templates provided with FrameMaker that most closely matches the format you
want. Then, customize the default file to meet your specific needs. The following
sections describe various template areas and considerations, and how to effectively
design your FrameMaker template file to support single-sourcing with ePublisher.

Planning for Importing Elements Across
Files
You need to carefully plan your FrameMaker standards so you can import all
elements, such as formats, page layouts, variables, and conditions across all source
files. To avoid issues, do not reuse an element for two different purposes in two
different files. For example, if the footer text differs between the front matter and
the main chapters of a book, do not use the same variable to define the footer in
both files. Otherwise, you cannot import that variable across files.

To avoid conflicts when importing master pages, use different page layout names
for special pages in all files, such as Title, TOC right, TOC left, and Index first.
In addition, delete unneeded formats, variables, and conditions to simplify your
template use and maintenance.

Paragraph Formats in FrameMaker
Create paragraph formats for items based on function, not based on formatting.
This approach allows you to modify formatting over time and the format names
continue to apply. It also prepares you for structured writing in the future. If you
are using DITA, paragraph formats are already defined.

Name your paragraph formats starting with naming conventions that group formats
by function. For example, group procedure-related formats together by starting
the format names with Procedure, such as ProcedureIntro, ProcedureStep1,
ProcedureStep, ProcedureSubStep1, and ProcedureSubstep. You do not need to
restart numbering using a step1 format. If you have a format that always proceeds
a numbered list, such as a ProcedureIntro, you can restart the numbering with that
format, which allows you to not use a step1. Either method is fine, but one can
require less maintenance when updating steps in a procedure topic.

Note: Format names should not include a period in their name. The period can
cause display issues when ePublisher creates the cascading style sheet entry
that defines the appearance of the format.

To simplify formatting and save time for future maintenance and customization, set
the default paragraph font for all formats, then customize specific formats that need
customization. You may need multiple paragraph formats to define functions that

Paragraph Formats in FrameMaker | 335

support pagination settings, such as a BodyListIntro format that has Keep with
next paragraph set.

In ePublisher, you can scan the source documents to list all the paragraph formats.
Then, you can organize them in ePublisher to allow property inheritance and to
streamline the customization process for your generated output.

To automate and simplify template use, define the paragraph format that follows
each paragraph format. This process allows the writer to press Enter after writing
a paragraph and the template creates the next paragraph with the format most
commonly used next. For example, after a Heading format, the writer most often
writes a body paragraph of content.

Common paragraph formats include:

Anchors for images and tables. You may need multiple indents, such as
Anchor, AnchorInList, and AnchorInList2.

Body paragraphs. You may need multiple indents, such as Body, BodyInList,
and BodyInList2.

Headings, such as ChapterTitle, AppendixTitle, Heading1, Heading2,
Heading3, and Heading4. You may also need specialized headings,
such as Title, Subtitle, FrontMatterHeading1, FrontMatterHeading2, and
FrontMatterHeading3.

Bulleted lists. You may need multiple bullet levels, such as Bullet, Bullet2,
Bullet3. You may also need a bullet item within a procedure, such as a
ProcedureBullet and a bullet item within a table, such as a CellBullet. For more
information, see “Bulleted and Numbered Lists in FrameMaker”.

Numbered lists. You may need multiple levels, such as ProcedureStep that
uses numbers and ProcedureSubstep that uses lowercase letters. You can use
ProcedureStep1 and ProcedureSubstep1 to restart numbering, or you can use
a common paragraph that precedes each list to restart numbering. You may
also need numbered list items in tables, such as CellStep and CellStep1. Be
sure to consider related supporting formats, such as ProcedureIntro. For more
information, see “Bulleted and Numbered Lists in FrameMaker”.

Examples, such as code or command syntax statements, usually in a fixed
font. To keep the lines of a code example together, you can set the Example
format to keep with next paragraph and use an ExampleLast format to identify
the end of the example. You may also need multiple example levels, such as
ExampleInList and ExampleInListLast.

Paragraphs in tables, such as CellHeading, CellBody, CellBody2, CellStep,
CellStep1, and CellBullet. Although you can reuse paragraph formats in tables
and adjust the margins when those formats are in a table in FrameMaker,
create unique paragraph formats for use in tables to give you complete control
in ePublisher.

336 | Paragraph Formats in FrameMaker

Legal notice and copyright or trademark formats for inside the cover page.

Table of contents and Index formats. However, these formats are defined on
the reference pages rather than as paragraph formats.

Definition lists, such as term and definition or description. You can use a two-
column table for this purpose, but a definition list allows long terms, such as
field labels in a user interface, to run across the page without wrapping. Then,
the definition or description are indented below the term.

Header and footer formats to control formatting.

Notes, cautions, tips, and warnings. You can use the numbering property of
a paragraph format to insert default text at the beginning of a paragraph,
such as Note, Caution, Tip, or Warning. In ePublisher, you can use the Bullet
properties for the paragraph style to add an image to the left of each note,
caution, tip, or warning.

Page breaks, which can be identified with a small-font paragraph format with
Keep with previous paragraph set and a large space below the paragraph
that pushes the next paragraph to the next page. This paragraph format is
hidden in online content. This approach allows you to put page breaks in
the content where needed to achieve the cleanest printed output without
customizing the pagination settings for individual paragraphs. However, you
need to review all these paragraphs each release and remove unneeded
PageBreak paragraphs. This approach increases maintenance, but it prevents
format customization for pagination.

ePublisher projects use custom marker types, paragraph formats, and character
formats to define online features. You need to give the list of markers and formats
to the writers so they know how to implement each online feature. The writers use
the markers and formats you create to define online features.

The Stationery defines the custom markers and formats. To reduce complexity,
you can use the format names defined in the documentation, or you can define the
online feature to a different format. The following list identifies additional paragraph
formats you may need to support ePublisher online content features:

Paragraph or character formats to support multiple languages, such as
bidirectional languages and text.

Dropdown paragraph format that identifies the start of an expand/collapse
section. You can end the section with a paragraph format defined to end the
section, or with a DropDownEnd marker.

Popup paragraph formats that define several aspects of popup window
content:

Paragraph Formats in FrameMaker | 337

Popup paragraph format identifies the content to display in a popup
window and in a standard help topic. This format is applied to the first
paragraph of popup content.

Popup Append paragraph format identifies the content to display in a
popup window and in a standard help topic. This format is applied to
additional popup paragraphs when you have more than one paragraph of
content to include in a popup window.

Popup Only paragraph format identifies the content to display only in
a popup window. This format is applied to the first paragraph of popup
content.

Popup Only Append paragraph format identifies the content to display
only in a popup window. This format is applied to additional popup
paragraphs when you have more than one paragraph of content to
include in a popup window.

Related topics paragraph format that identifies a link to a related topic, such
as a concept topic related to a task or a task related to a concept.

See Also paragraph format that identifies the text you want to include in an
inline See Also link.

For more information about enabling a specific online feature, see “Designing,
Deploying, and Managing Stationery”.

Character Formats in FrameMaker
Create character formats for items based on function, not based on formatting
or appearance. This approach allows you to modify formatting over time and the
format names continue to apply. It also prepares you for structured writing in the
future. If you are using DITA, character formats are already defined.

For character formats, use As Is to start with as base, which allows you to apply
multiple character formats to the same text. It also allows each character format
to define only the aspects of the formatting required for that character format.
Customize each format for your specific need by specifying only the properties
required for that format.

Common character formats include:

Book titles in cross references

Emphasized text

Command names

338 | Character Formats in FrameMaker

File and folder names

User interface items

Optional steps or if clauses used to introduce optional steps

Links

New terms

Step numbers, which allows you to apply formatting to the number for a step

Text the user must type

Variables

ePublisher projects use custom marker types, paragraph formats, and character
formats to define online features. You need to give the list of marker types and
formats to the writers so they know how to implement each online feature. The
writers use the markers and formats you create to define online features.

The Stationery defines the custom marker types, paragraph formats, and character
formats. To reduce complexity, you can use the format names defined in the
documentation, or you can define the online feature to a different format. The
following list identifies additional character formats you may need to support
ePublisher online content features:

Link character format, which identifies the text to include in the link. Include
the marker and text in the Link character format.

Multiple language support, such as bidirectional languages and text, can
require a paragraph or character format with Bidi support enabled.

Abbreviation character format identifies abbreviation alternate text for
browsers to display for abbreviations, such as SS#, when a user hovers over
the abbreviation in output. Screen readers also can read the abbreviation
alternate text. This character format is used in combination with the
AbbreviationTitle marker type.

Acronym character format identifies acronym alternate text for browsers to
display for acronyms, such as HTML, when a user hovers over the acronym
in output. Screen readers can also read the acronym alternate text. This
character format is used in combination with the AcronymTitle marker type.

Citation character format identifies the source of a quote using a fully-
qualified Uniform Resource Identifier (URI) when a user hovers over the quote
in output. Screen readers can also read the URI for the quote. This character
format is used in combination with the Citation marker type.

Character Formats in FrameMaker | 339

See Also character format identifies the text you want to include in a See Also
button. This format controls the appearance of the text on the button.

For more information about enabling a specific online feature, see “Designing,
Deploying, and Managing Stationery”.

Bulleted and Numbered Lists in
FrameMaker
ePublisher uses a table-like structure with two columns to display any paragraph
format with a hanging indent, such as bulleted and numbered list items, in
generated output. ePublisher uses the numbers, characters, formats, and fonts
from the source documents for the bullets or numbers. Since some fonts are not
available on all computers, you should use character formats in ePublisher to
override the formatting of the bullets or numbers. You can also use an image in
ePublisher for bullets.

For bulleted lists, you may need multiple bullet levels, such as Bullet, Bullet2, and
Bullet3. You may also need a format for a bullet within a procedure, such as a
ProcedureBullet, and a bullet within a table, such as a CellBullet. Make sure you
consider all supporting formats you may need, such as a ListIntro format for the
paragraph that introduces the bulleted list, which should be set to stay with the list
(Keep with Next).

For numbered lists, you may need multiple levels, such as a ProcedureStep that
uses numbers and a ProcedureSubstep that uses lowercase letters. To restart
numbering, you can use a ProcedureStep1 and a ProcedureSubstep1 format. If
you have a common paragraph format that precedes each list, you can use that
paragraph format to restart numbering, which would eliminate the need for a
ProcedureStep1 format. You may also need a numbered list item in tables, such
as CellStep and CellStep1. Make sure you consider all supporting formats you may
need, such as a ProcedureIntro format

Note: Be aware of paragraphs that have a hanging indent. The hanging indent can
cause incorrect alignment of text on the first line of your generated output.
For more information see “Defining the Appearance of Numbered Lists”.

Image Formats and Considerations in
FrameMaker
If ePublisher cannot use an original image in the output, or if ePublisher determines
it needs to modify the image based on how it is included in the source document,
ePublisher rasterizes the image using the options you define for your graphic styles
in Style Designer. For example, you can define the dots per inch (DPI) and format
for the final images. Rasterization of an image can cause the image to be less clear
in the output.

340 | Image Formats and Consideraons in FrameMaker

To avoid reduced image quality in your output, and to avoid an extended
transformation time during the Image stage and pipeline, review the following
considerations:

When ePublisher encounters an anchored frame in your FrameMaker source
documents, ePublisher checks for the following conditions:

Is the frame a different size than the original image?

Is there white space in the frame?

Is the image copied into the document, rather than imported by
reference?

Is the original image a file format other than .jpg , .gif , .png , or
.svg?

Are there additional elements in the frame, such as text boxes, multiple
images, or callouts?

If ePublisher determines that any of these conditions apply, ePublisher
rasterizes the entire frame and applies the options you defined in Style
Designer.

To display images at full size in online output and avoid resizing, which
can cause the image to be rasterized, set the By reference graphics use
document dimensions option for your graphic styles to Disabled.

If you want ePublisher to rasterize all images according to your Style Designer
options, set the By reference graphics option to Disabled for all graphic
styles.

When ePublisher finds an image included by-reference that is the original
size, is shrink-wrapped, and contains no callouts, ePublisher copies the image
directly into the output folder in most cases, bypassing the graphic style
options.

To improve the image quality in your output, resize your images as needed
using an image editing application before importing them, rather than
adjusting the DPI or scale in FrameMaker. Otherwise, an image included by
reference retains its original file size, and it is either scaled by the browser or
rasterized according to the size of the anchored frame, which can result in a
distorted image.

For the best compatibility with most computer monitors, save and import your
images at 96 DPI using a format that ePublisher does not rasterize.

Image callouts are useful in many publications. However, text boxes and line
drawings cause images to be rasterized, which can make images less clear in

Image Formats and Consideraons in FrameMaker | 341

your output. Add and edit callouts in your image editing application and then
import the single, final image to avoid the rasterization process.

If you use .svg image files, you need to configure the .svg options to specify
whether to rasterize these images. Some output formats and some browsers
do not support .svg image files.

You can add text boxes with GraphicStyle markers to your images without
causing the image to be rasterized, since markers do not affect the
appearance or format of an anchored frame.

ePublisher does not include images from FrameMaker Master or Reference
pages, and it does not include content outside the main text flow.

Store image files and source documents on the local computer when
generating output.

To achieve the best results when inserting images in FrameMaker

1. Create a unique paragraph format for images. Use the paragraph alignment
properties to control the position of your images. Make sure the Fixed check
box in the Line Spacing section is not selected for the paragraph format.

2. Insert an anchored frame in an empty paragraph of the format created in step
1.

3. Import your image file by reference into the anchored frame rather than
copying it into the document. ePublisher supports only .jpg , .gif , .png ,
and .svg files. ePublisher rasterizes all other formats.

4. Import the image at the native resolution of the image.

5. Shrink-wrap the frame (type Esc+m+p with the frame selected) and change
its Anchoring Position to At Insertion Point or Below Current Line.

Table Formats in FrameMaker
Table formats allow you to define standard tables and quickly apply those standards
to tables in your source documents. When you define your table formats, be sure
to consider the various types of tables you may need, such as with lines, without
lines, checklists, and action/result tables. You can use a table without lines to layout
content within an area on a page, such as a definition list with short terms. You can
also create a table format for each indent position needed. For example, you can
create a table format to use for tables within a bulleted list that is indented to align
with the text of each bulleted list item.

ePublisher allows you to define how the header, footer, and main rows of a table
appear in your generated output. To support these formatting properties, your
tables must have each of these parts defined in your source documents. If a table

342 | Table Formats in FrameMaker

does not have a header defined, ePublisher cannot apply the formatting defined for
the header row.

ePublisher applies the paragraph and character formats you define for content
within each cell. You can also configure ePublisher to ignore character formats in a
table. You may need additional paragraph formats to use in tables, such as CellBody
and CellBullet, so you can define the proper margins and appearance for your
generated output. You cannot adjust paragraph formats to change their appearance
when used within tables.

Cross Reference Formats in FrameMaker
Cross reference formats allow you to quickly use consistent cross references
throughout your source documents. However, you probably want to change the
appearance of your cross references in your generated output. For example, you
may not want to include page numbers in your online content. ePublisher allows
you to define how each cross reference format appears in your generated output.

Define the cross reference formats you need in your source documents, such as
references to headings, steps, figures, tables, and chapters. Then, you can define
each of these formats separately in ePublisher.

Markers in FrameMaker
FrameMaker uses markers to implement standard features, such as index entries
and hypertext links. ePublisher recognizes these standard markers and uses them
to implement these standard features in your generated output.

ePublisher projects also use custom marker types, paragraph formats, and
character formats to define online features. You need to give the list of marker
types and formats to the writers so they know how to implement each online
feature. The writers use the markers and formats you create to define online
features.

The Stationery defines the custom marker types, paragraph formats, and character
formats. Markers with reserved names have their functions defined by default.
You can use these default names, or you can create your own markers. To reduce
complexity, use the default marker names, which are also used throughout the
documentation. You can also use the format names defined in the documentation to
reduce complexity. The following table lists the default custom marker types used to
implement online features.

Markers in FrameMaker | 343

Marker Type Description

AbbreviationTitle Specifies abbreviation alternate text for browsers to
display for abbreviations such as SS# when a user
hovers over the abbreviation in output. Screen readers
also can read the abbreviation alternate text. Used in
combination with the Abbreviation character format.

AcronymTitle Specifies acronym alternate text for browsers to display
for acronyms such as HTML when a user hovers over
the acronym in output. Screen readers can also read
the acronym alternate text. Used in combination with
the Acronym character format.

Citation Specifies the source of a quote using a fully qualified
Uniform Resource Identifier (URI) when a user hovers
over the quote in output. Screen readers can also read
the URI for the quote. Used in combination with the
Citation character format.

Context Plugin Specifies context plug-ins for Eclipse help systems.
Other Eclipse plug-ins can use the context plug-in IDs
to call the Eclipse help system. For more information,
see “Using Markers to Specify Context Plug-ins in
Eclipse Help”.

DropDownEnd Marks the end of an expand/collapse section. Used in
conjunction with an Expand/Collapse paragraph format.

Filename Specifies the name of an output file for a page or an
image.

GraphicScale Specifies a percentage to use to resize an image, such
as 50 or 75 percent, in generated output.

GraphicStyle Specifies the name of a graphic style defined in a
project to apply to an image. This marker type is an
internal marker type that is not displayed in Stationery
Designer. You cannot create a marker type with a
different name and assign it this functionality.

344 | Markers in FrameMaker

Marker Type Description

Hypertext Specifies a link using the newlink and gotolink
commands in Adobe FrameMaker. This marker type is
a default Adobe FrameMaker marker type ePublisher
automatically maps.

ImageAltText Specifies alternate text for an image.This text is added
to the alt attribute of the img tag in the output.
Screen readers use this text when you create accessible
content.

ImageAreaAltText Specifies alternate text for clickable regions in an image
map. This text is added to the alt attribute of the img
tag in the output. Screen readers use this text when
you create accessible content.

ImageLongDescByRef Specifies the path to the file that contains the long
description for an image. This text is added to the
longdesc attribute of the img tag in the output.
Screen readers read this description when you create
accessible content.

ImageLongDescNotReq Specifies that a long description is not required for an
image, which bypasses this accessibility check for the
image when you create accessible content.

ImageLongDescText Specifies the long description for an image. This text is
added to the longdesc attribute of the img tag in the
output. Screen readers read this description when you
create accessible content.

Keywords Specifies the keywords to include in the meta tag for
the topic. The meta tag improves searchability on the
Web.

PageStyle Specifies the name of a page style defined in the
project to apply to a topic. This marker type is an
internal marker type that is not displayed in Stationery
Designer. You cannot create a marker type with a
different name and assign it this functionality.

Markers in FrameMaker | 345

Marker Type Description

PassThrough Specifies that ePublisher place the contents of the
marker directly into the generated output without
processing the content in any way. For example, you
could use a PassThrough marker if you wanted to
embed HTML code within your generated output.

Popup Specifies the start of the content to include in a popup
window. The content is displayed in a popup window
when you hover over the link. When you click the link
in some output formats, the topic where the popup text
is stored, such as the glossary, is displayed.

PopupEnd Marks the end of the content to include in a popup
window.

PopupOnly Specifies the start of the content to include in only a
popup window. Browsers display the content in a popup
window when you hover over or click the link.

RubiComposite No longer supported.

SeeAlsoKeyword Specifies an internal identifier for a topic. SeeAlsoLink
markers in other topics can list this identifier to create
a link to this topic. Used in conjunction with a See Also
paragraph format or character format.

SeeAlsoLink Identifies an internal identifier from another topic to
include in the list of See Also links in this topic. Used
in conjunction with a See Also paragraph format or
character format.

SeeAlsoLinkDisplayType Specifies whether to display the target topics on a
popup menu or in a window. By default, the links are
displayed in the Topics Found window. To display a
popup menu, set the value to menu . This marker type is
supported only in HTML Help.

SeeAlsoLinkWindowType Specifies the name of the window defined in the .hhp
file, such as TriPane or Main, that the topic opens

346 | Markers in FrameMaker

Marker Type Description
in when the user clicks the link. This marker type is
supported only in HTML Help.

TableSummary Specifies an alternate text summary for a table, which
is used when you create accessible content. This text is
added to the summary attribute of the table tag in the
output. Screen readers read this description when you
create accessible content.

TableSummaryNotReq Specifies that a summary is not required for a table,
which bypasses this accessibility check for that table.

TOCIconHTMLHelp Identifies the image to use as the table of contents icon
for a topic in the HTML Help output format.

TOCIconJavaHelp Identifies the image to use as the table of contents icon
for a topic in the Sun JavaHelp output format.

TOCIconOracleHelp Identifies the image to use as the table of contents icon
for a topic in the Oracle Help output format.

TOCIconWWHelp Identifies the image to use as the table of contents icon
for a topic in the WebWorks Help output format.

TopicAlias Specifies an internal identifier for a topic that can be
used to create a context-sensitive link to that topic.

TopicDescription Specifies a topic description for a context-sensitive help
topic in Eclipse help systems. For more information,
see “Using Markers to Specify Topic Descriptions for
Context-Sensitive Help Topics in Eclipse Help”.

WhatIsThisID Identifies a What Is This help internal identifier for
creating context-sensitive What Is This field-level help
for Microsoft HTML Help.

WindowType Specifies the name of the window defined in the
help project that the topic should be displayed in. In
Microsoft HTML Help, the window names are defined

Markers in FrameMaker | 347

Marker Type Description
in the .hhp file. This marker type is supported in
Microsoft HTML Help and Oracle Help.

Variables and Conditions in FrameMaker
Variables allow you to define a phrase once and consistently use that phrase
throughout your source documents. Then, if you ever need to change that phrase,
you can change it in one location and apply that change throughout your source
documents. For example, you can use variables for product names, book titles, and
company names.

Conditions allow you to single-source information and include or exclude specific
sets of information. You can apply a condition to a character, word, sentence,
paragraph, or entire sections of content. Then, you can specify whether to show
or hide the content with that condition applied to it. This capability allows you
to create multiple version of content based on your specific needs. You can also
use conditions to include and exclude notes to the writer or reviewer during the
content development process. When you combine variables and conditions, you
can customize information for multiple versions of a product while reducing your
maintenance costs by reducing duplicate information.

When working with conditions, you can customize the appearance of content with a
condition applied by using color, underline, overline, and strikethrough formatting
for the condition. This formatting helps you maintain and work with the content.
However, ePublisher does not display this formatting in the generated output. If
you want to apply formatting in the generated output, use paragraph and character
formats to define the appearance for the content.

To simplify consistently setting variables and conditions across your source
documents, create a standard file with all the variables and conditions defined in
it. The file can display the value of each variable and the show/hide state of each
condition. Writers can set the variables and conditions as needed in this one file.
Then, the writers can import the variables and conditions from this file into all the
source documents.

Note: Use each variable and condition for the same purpose and value in all source
documents. For example, if you want the footer in the preface file to be
different from the footer in the chapter files, use a different variable to define
the footer in each file. Otherwise, you cannot import variables across all the
source documents.

Page Layouts in FrameMaker

348 | Page Layouts in FrameMaker

A master page defines the layout of one or more pages and includes all design
elements, such as headers, footers, background text, and graphics, for every
page that uses that master page. A master page allows you to define the layout of
multiple pages in one place, and apply that layout to multiple pages. If you want to
adjust the page layout, you need change it only in one place. Each template has at
least one master page.

You can create multiple master pages, such as one for odd pages, one for even
pages, and one for the first page of each chapter. To simplify page management
and being able to import master pages across files, do not redefine a master page
to have a different layout in different files. For example, if you want odd pages to
have a different footer in the front matter than in the chapters, create a master
page for each case, such as ChapterOdd and PrefaceOdd.

You may need to create many master pages for special purposes, such as Title,
LegalNotice, PrefaceOdd, PrefaceEven, ChapterFirst, ChapterOdd, ChapterEven,
AppendixFirst, AppendixOdd, AppendixEven, IndexFirst, IndexOdd, and IndexEven.

Reference Pages, Table of Contents, and
Indexes in FrameMaker
Reference pages define default images, lines, heading levels, and formatting
for generated table of contents and index files. You can use reference pages to
simplify content creation in your source documents. For more information about
reference pages and formatting generated table of contents and indexes in your
printed content, see the Adobe FrameMaker documentation and help.

Since graphics and lines defined on the reference pages are not in the main flow,
ePublisher cannot include these items in the generated output. For images and
lines, use anchored frames in your content to include the images by reference.

Since the appearance of online table of contents and indexes often differ from
printed versions, you need to be able to deliver customized table of contents and
indexes in your online content. Therefore, ePublisher does not need the table
of contents and index formatting defined on the reference pages. ePublisher
allows you to define the table of contents levels and appearance, as well as the
appearance of the index in your generated output. ePublisher uses the index
markers throughout your source files to build the online index. This powerful
support allows you to deliver the online content you require.

Implementing Online Features in
FrameMaker
Implement online features in your output by preparing your Adobe FrameMaker
source documents with custom marker types, paragraph formats, and character

Implemenng Online Features in FrameMaker | 349

formats defined by the Stationery designer for your Stationery. These markers and
styles define the presentation and behavior or your online content. For example,
markers can define the name of the file generated for a topic. Formats can define
how content displays online.

Custom Marker Types in FrameMaker
ePublisher projects use the custom marker types to implement online features
when generating output. Before you begin using custom marker types, talk to the
Stationery designer and verify which online features your Stationery supports.
Your Stationery only recognizes the custom marker types defined by the Stationery
designer in your Stationery. If you try to implement online features using custom
marker types not supported in your Stationery, ePublisher does not recognize these
items when generating output. ePublisher correctly converts all standard Adobe
FrameMaker marker types. In addition, ePublisher also supports several custom
marker types you can use to implement online features in your generated output.

When the Stationery designer creates the Stationery, the Stationery designer can
use the default name for a custom marker type or the Stationery designer can use
a different name for the customer marker type. The following table lists the default
names of custom marker types used to implement online features. Always verify
with the Stationery designer the names of the custom marker types you should
use when implementing online features before you use these items in your source
documents.

350 | Custom Marker Types in FrameMaker

Marker Type Description

AbbreviationTitle marker
type

Specifies abbreviation alternate text for browsers to
display for abbreviations such as SS# when a user
hovers over the abbreviation in output. Screen readers
also can read the abbreviation alternate text. Used in
combination with the Abbreviation character format.
For more information, see “Assigning Alternate Text to
Abbreviations in FrameMaker”

AcronymTitle marker
type

Specifies acronym alternate text for browsers to
display for acronyms such as HTML when a user
hovers over the acronym in output. Screen readers
can also read the acronym alternate text. Used in
combination with the Acronym character format. For
more information, see “Assigning Alternate Text to
Acronyms in FrameMaker”.

Citation marker type Specifies the source of a quote using a fully qualified
Uniform Resource Identifier (URI) when a user hovers
over the quote in output. Screen readers can also read
the URI for the quote. Used in combination with the
Citation character format. For more information, see
“Providing Citations for Quotes in FrameMaker”.

Context Plugin marker
type

Specifies context plug-ins for Eclipse help systems.
Other Eclipse plug-ins can use the context plug-in IDs
to call the Eclipse help system. For more information,
see “Specifying Context Plug-ins in FrameMaker”.

DropDownEnd marker
type

Marks the end of an expand/collapse section. Used in
conjunction with an Expand/Collapse paragraph format.
For more information, see “Creating Expand/Collapse
Sections (Drop-Down Hotspots) in FrameMaker”.

Filename marker type Specifies the name of an output file for a page or an
image. For more information, see “Specifying Output
File Names in FrameMaker”.

GraphicScale marker type Specifies a percentage to use to resize an image,
such as 50 or 75 percent, in generated output. For

Custom Marker Types in FrameMaker | 351

Marker Type Description
more information, see “Assigning Image Scales in
FrameMaker”.

GraphicStyle marker type Specifies the name of a image style defined in a
project to apply to an image. This marker type is an
internal marker type that is not displayed in Stationery
Designer. You cannot create a marker type with a
different name and assign it this functionality. For
more information, see “Assigning Image Styles in
FrameMaker”.

Hypertext marker type Specifies a link using the newlink and gotolink
commands in Adobe FrameMaker. This marker type is
a default Adobe FrameMaker marker type ePublisher
automatically maps.

ImageAltText marker
type

Specifies alternate text for an image.This text is added
to the alt attribute of the img tag in the output.
Screen readers use this text when you create accessible
content. For more information, see “Assigning Alternate
Text to Images in FrameMaker”.

ImageAreaAltText marker
type

Specifies alternate text for clickable regions in an
image map. This text is added to the alt attribute
of the img tag in the output. Screen readers use this
text when you create accessible content. For more
information, see “Assigning Alternate Text to Image
Maps in FrameMaker”.

ImageLongDescByRef
marker type

Specifies the path to the file that contains the long
description for an image. This text is added to the
longdesc attribute of the img tag in the output.
Screen readers read this description when you create
accessible content. For more information, see “Using
Text in External Files to Assign Long Descriptions to
Images in FrameMaker”.

ImageLongDescNotReq
marker type

Specifies that a long description is not required for an
image, which bypasses this accessibility check for the
image when you create accessible content. For more
information, see “Excluding Images from Accessibility
Report Checks in FrameMaker”.

352 | Custom Marker Types in FrameMaker

Marker Type Description

ImageLongDescText
marker type

Specifies the long description for an image. This text
is added to the longdesc attribute of the img tag in
the output. Screen readers read this description when
you create accessible content. For more information,
see “Assigning Long Descriptions to Images in
FrameMaker”.

Keywords marker type Specifies the keywords to include in the meta tag for
the topic. The meta tag improves searchability on the
Web. For more information, see “Creating Meta Tag
Keywords in FrameMaker”.

PageStyle marker type Specifies the name of a page style defined in the
project to apply to a topic. This marker type is an
internal marker type that is not displayed in Stationery
Designer. You cannot create a marker type with a
different name and assign it this functionality. For more
information, see “Assigning Custom Page Styles in
FrameMaker”.

PassThrough Specifies that ePublisher place the contents of the
marker directly into the generated output without
processing the content in any way. For example, you
could use a PassThrough marker if you wanted to
embed HTML code within your generated output.

Popup marker type Specifies the start of the content to include in a popup
window. The content is displayed in a popup window
when you hover over the link. When you click the link
in some output formats, the topic where the popup
text is stored, such as the glossary, is displayed. For
more information, see “Using Markers to Create Popup
Windows in FrameMaker”.

PopupEnd marker type Marks the end of the content to include in a popup
window. For more information, see “Using Markers to
Create Popup Windows in FrameMaker”.

PopupOnly marker type Specifies the start of the content to include in only
a popup window. Browsers display the content in a
popup window when you hover over or click the link.

Custom Marker Types in FrameMaker | 353

Marker Type Description
For more information, see “Using Markers to Create
Popup Windows in FrameMaker”.

RubiComposite marker
type

No longer supported.

SeeAlsoKeyword marker
type

Specifies an internal identifier for a topic. SeeAlsoLink
markers in other topics can list this identifier to
create a link to this topic. Used in conjunction with a
See Also paragraph format or character format. For
more information, see “Creating See Also Links in
FrameMaker”.

SeeAlsoLink marker type Identifies an internal identifier from another topic to
include in the list of See Also links in this topic. Used
in conjunction with a See Also paragraph format or
character format. For more information, see “Creating
See Also Links in FrameMaker”.

SeeAlsoLinkDisplayType
marker type

Specifies whether to display the target topics on a
popup menu or in a window. By default, the links are
displayed in the Topics Found window. To display a
popup menu, set the value to menu . This marker type is
supported only in HTML Help. For more information, see
“Creating See Also Links in FrameMaker”.

SeeAlsoLinkWindowType
marker type

Specifies the name of the window defined in the .hhp
file, such as TriPane or Main, that the topic opens
in when the user clicks the link. This marker type is
supported only in HTML Help. For more information, see
“Creating See Also Links in FrameMaker”.

TableStyle marker type Specifies the name of a table style defined in the
project to apply to a table in versions of Microsoft
Word that did not support table styles. This marker
type is an internal marker type that is not displayed
in Stationery Designer. This marker type is supported
only for Microsoft Word documents. You cannot create
a marker type with a different name and assign it this
functionality. For more information, see “Applying Table
Styles in Word”

354 | Custom Marker Types in FrameMaker

Marker Type Description

TableSummary marker
type

Specifies an alternate text summary for a table, which
is used when you create accessible content. This text
is added to the summary attribute of the table tag in
the output. Screen readers read this description when
you create accessible content. For more information,
see “Assigning Alternate Text (Summaries) to Tables in
FrameMaker”.

TableSummaryNotReq
marker type

Specifies that a summary is not required for a table,
which bypasses this accessibility check for that table.
For more information, see “Excluding Tables from
Accessibility Report Checks in FrameMaker”.

TOCIconHTMLHelp
marker type

Identifies the image to use as the table of contents icon
for a topic in the HTML Help output format. For more
information, see “Customizing Table of Contents Icons
in FrameMaker”.

TOCIconJavaHelp marker
type

Identifies the image to use as the table of contents icon
for a topic in the Sun JavaHelp output format. For more
information, see “Customizing Table of Contents Icons
in FrameMaker”.

TOCIconOracleHelp
marker type

Identifies the image to use as the table of contents icon
for a topic in the Oracle Help output format. For more
information, see “Customizing Table of Contents Icons
in FrameMaker”.

TOCIconWWHelp marker
type

Identifies the image to use as the table of contents icon
for a topic in the WebWorks Help output format. For
more information, see “Customizing Table of Contents
Icons in FrameMaker”.

TopicAlias marker type Specifies an internal identifier for a topic that can be
used to create a context-sensitive link to that topic. For
more information, see “Creating Context-Sensitive Help
in FrameMaker”.

TopicDescription marker
type

Specifies a topic description for a context-sensitive help
topic in Eclipse help systems. For more information,

Custom Marker Types in FrameMaker | 355

Marker Type Description
see “Specifying Context-Sensitive Help Links in
FrameMaker”.

WhatIsThisID marker
type

Identifies a What’s This help internal identifier for
creating context-sensitive What’s This field-level help
for Microsoft HTML Help. For more information, see
“Opening Topics in Custom Windows in FrameMaker”.

WindowType marker type Specifies the name of the window defined in the
Help project that the topic should be displayed in. In
Microsoft HTML Help, the window names are defined
in the .hhp file. This marker type is supported in
Microsoft HTML Help and Oracle Help. For more
information, see “Opening Topics in Custom Windows in
FrameMaker”.

Paragraph and Character Formats in
FrameMaker
ePublisher projects use the paragraph formats and character formats defined by
the Stationery designer to implement online features when generating output.
Before you begin using paragraph formats and character formats to implement
online features, talk to the Stationery designer and verify which online features
your Stationery supports. Your Stationery only recognizes the paragraph formats
and character formats defined by the Stationery designer in your Stationery. If you
try to implement online features using paragraph formats and character formats
not supported in your Stationery, ePublisher does not recognize these items when
generating output.

When the Stationery designer creates the Stationery, the Stationery designer
specifies the names of paragraph format and character formats used to implement
an online feature. Consult with the Stationery designer to obtain the names of the
paragraph formats and character formats defined by the Stationery designer to
support each online feature you want to implement.

The following table lists the default names of paragraph formats and character
formats used to implement online features. Always verify with the Stationery
designer the names of the paragraph formats and character formats you should
use when implementing online features before you use these items in your source
documents.

356 | Paragraph and Character Formats in FrameMaker

Format Description

AbbreviationTitle
character format

Specifies abbreviation alternate text for browsers to
display for abbreviations such as SS# when a user
hovers over the abbreviation in output. Screen readers
also can read the abbreviation alternate text. Used in
combination with the AbbreviationTitle marker type.
For more information, see “Assigning Alternate Text to
Abbreviations in FrameMaker”.

AcronymTitle character
format

Specifies acronym alternate text for browsers to
display for acronyms such as HTML when a user
hovers over the acronym in output. Screen readers
can also read the acronym alternate text. Used in
combination with the AcronymTitle marker type. For
more information, see “Assigning Alternate Text to
Acronyms in FrameMaker”.

Citation character format Specifies the source of a quote using a fully qualified
Uniform Resource Identifier (URI) when a user hovers
over the quote in output. Screen readers can also
read the URI for the quote. Used in combination with
the Citation marker type. For more information, see
“Providing Citations for Quotes in FrameMaker”.

Expand/Collapse
paragraph format

Specifies the content you want to include in an
expand/collapse section. Used in conjunction with a
DropDownEnd marker type. For more information,
see “Creating Expand/Collapse Sections (Drop-Down
Hotspots) in FrameMaker”.

Popup paragraph format Specifies the popup content to display in both a popup
window and in a standard help topic. Applied to the first
paragraph of popup content. For more information, see
“Using Paragraph Formats to Create Popup Windows in
FrameMaker”.

Popup Append paragraph
format

Specifies the popup content to display in a popup
window and in a standard help topic. Applied to
additional popup paragraphs when you have more
than one paragraph of popup content. For more

Paragraph and Character Formats in FrameMaker | 357

Format Description
information, see “Using Paragraph Formats to Create
Popup Windows in FrameMaker”.

Popup Only paragraph
format

Specifies the popup content to display in only a popup
window. Applied to the first paragraph of popup
content. For more information, see “Using Paragraph
Formats to Create Popup Windows in FrameMaker”.

Popup Only Append
paragraph format

Specifies the popup content to display in only a popup
window. Applied to additional popup paragraphs when
you have more than one paragraph of popup content.
For more information, see “Using Paragraph Formats to
Create Popup Windows in FrameMaker”.

Related Topic paragraph
format

Specifies related topics links. For more information, see
“Creating Related Topics in FrameMaker”.

See Also character
format

Specifies the text you want to include in a See Also
button. For more information, see “Creating See Also
Links in FrameMaker”.

See Also paragraph
format

Specifies the text you want to include in a See Also
inline text link. For more information, see “Creating See
Also Links in FrameMaker”.

Obtaining and Applying the Latest Adobe
FrameMaker Template
An efficient, effective, and consistent ePublisher online content generation process
relies upon the use of templates. Templates define marker types and paragraph,
character, and table formats. Templates may also contain standard conditions,
variables, and cross-reference definitions that you can use when creating and
working with source documents used to generate online content. Templates help
control the look and feel of source documents and generated output across multiple
writers, multiple projects, and multiple types of generated output.

The ePublisher content generation process assumes that you use marker types
and paragraph, character and table formats defined in an Adobe FrameMaker
template prepared by a Stationery designer as you create content and format
your source documents. Using Adobe FrameMaker templates and the marker
types and paragraph, character, and table formats and other layout formats and

358 | Obtaining and Applying the Latest Adobe FrameMaker Template

characteristics defined in templates ensures that you format content in your source
documents consistently and also ensures ePublisher can use your source documents
effectively to generate output.

If your source documents do not use templates or do not use the same marker
types, formats, and standards defined in your Stationery by the Stationery
designer, your generated output may not conforms to the styles and standards
defined by the Stationery designer for output. You may also not be able to
implement some online features if you do not use the correct templates or the
correct marker types and formats defined in the templates.

As a part of preparing your Adobe FrameMaker source documents for output
generation, ensure your source documents use the correct Adobe FrameMaker
templates from the Stationery designer and you have applied all paragraph,
character, and table formats specified in the template correctly.

Importing Custom Marker Types in
FrameMaker
Typically the Stationery designer defines custom marker types supported in your
ePublisher Stationery in an Adobe FrameMaker template. You then import the
custom marker types defined in an Adobe FrameMaker template into your Adobe
FrameMaker source documents by importing document properties from the Adobe
FrameMaker template. This procedure explains how to import custom marker types
from an Adobe FrameMaker template. For more information about creating custom
marker types, see “Creating Custom Marker Types in FrameMaker”.

The following procedure provides an example of how to import custom marker
types into Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for importing custom marker types in Adobe FrameMaker
may be different in other versions of Adobe FrameMaker.

To import custom marker types from an Adobe FrameMaker template into
your source documents

1. In your Adobe FrameMaker source document, on the File menu, click Import
> Formats.

2. In the Import from Document field, select the Adobe FrameMaker template
that contains the custom marker types you want to import from the list.

3. In the Import and Update field, select only the Document Properties
check box.

4. Click Import.

5. Click OK to confirm the operation.

Imporng Custom Marker Types in FrameMaker | 359

Creating Custom Marker Types in
FrameMaker
Typically you should not need to create a custom marker type in an Adobe
FrameMaker source document. If you want to use a custom marker type to
implement an online feature, use the custom marker type provided in the Adobe
FrameMaker template you use for your source documents. If you do not see a
custom marker type you want to use to implement an online feature in the Adobe
FrameMaker template, verify with the Stationery designer that your Stationery
supports the custom marker type before you insert and use the custom marker in a
source document.

Occasionally your Stationery may support a custom marker type that is not defined
in the Adobe FrameMaker template you use with your source documents. In this
situation, first confirm with the Stationery designer that your Stationery supports
the custom marker type. After confirming your project supports the custom marker
type, you can create the custom marker type in your Adobe FrameMaker source
document.

The following procedure provides an example of how to create custom marker
types in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for creating custom marker types in Adobe FrameMaker
may be different in other versions of Adobe FrameMaker.

To create a custom marker type in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, on the Special menu, click
Marker.

2. In the Marker Type field, select Edit from the drop-down list.

3. Type CustomMarkerTypeName to create a custom marker type, where
CustomMarkerTypeName is the name of the custom marker type you want to
create.

Note: The custom marker type name you type must match the name of
the custom marker type supported in your ePublisher Stationery. If
you specify a name for the custom marker type that is different than
the name of the custom marker type supported in your ePublisher
Stationery, ePublisher will not be able to recognize and use the custom
marker type when generating output.

4. Click Add.

5. Click OK to confirm the operation.

360 | Creang Custom Marker Types in FrameMaker

6. Click Done. Adobe FrameMaker displays the custom marker type you created
in the Marker window in the Marker Type field.

Creating a Passthrough Marker in
FrameMaker
A passthrough marker is a marker that allows you to insert content that you do
not want ePublisher to process when you generate output. For example, if you
have embedded multimedia files in your source documents, such as Audio Video
Interleave files (.avi) or Adobe Software Flash files (.swf), you can insert a
passthrough marker with a value that is set to the HTML code that you do not want
ePublisher to process.

The following example shows .avi code to which you could insert using a
passthrough marker.

<embed src="sample.avi" width="400"
 height="300" pluginspage="">
</embed>

To create a passthrough marker in an Adobe FrameMaker source document

1. In Adobe FrameMaker, on the Special menu, click Marker.

2. In the Marker Type field, select Passthrough from the drop-down list.

3. If the Passthrough marker type is not on the list, check with the
Stationery designer to obtain the name of the marker type the Stationery
designer created to support this functionality and then use the marker
type specified by the Stationery designer. For more information, refer to
“Implementing Online Features in FrameMaker”.

4. In the Marker Text field, type the html code that you would like to not
be processed by ePublisher such as the Flash embed code indicated in the
previous topic.

5. Click New Marker.

6. Save your source document.

7. Generate output for your project. For more information, see “Generating
Output”.

8. In Output Explorer, verify ePublisher created the appropriate result for your
embedded html code. For more information, see “Viewing Output in Output
Explorer”.

Creang a Passthrough Marker in FrameMaker | 361

Creating Cross-References and Links in
FrameMaker
When you generate output, ePublisher automatically converts all cross-references in
your Adobe FrameMaker source documents to links. Typically Stationery designers
specify in Stationery how cross-references should display in generated output. For
example, Stationery designers typically specify that cross-references that contain
page numbers in source documents display without page numbers in generated
output, as page numbers are out of context in online output. If you have target
setting permissions, you can also customize the cross-reference formats you want
to use when you generate output. For more information about customizing cross-
reference settings, see “Setting Cross-References in Projects”.

Including cross-references in Adobe FrameMaker source documents is typically the
easiest way to produce links in online content. However, in some cases you may not
be able to achieve the effect you want by creating links using cross-references. In
these cases, you can insert native Adobe FrameMaker Hypertext markers that use
the gotolink and message URL hypertext commands in your Adobe FrameMaker
source documents and use the Hypertext markers to create the links you want.

To create a link using a cross-reference or Hypertext markers in an Adobe
FrameMaker source document

1. If you want to create a link using a cross-reference, complete the
following steps:

a. In your Adobe FrameMaker source document, select the text for which
you want to create a link.

b. On the Special menu, click Cross-Reference.

c. In the Document field, select the document that contains the content to
which you want to link.

d. In the Paragraph Tags field, select the paragraph tag used for the
content to which you want to link.

e. In the Paragraphs field, select the paragraph to which you want to link.

f. In the Format field, select the appropriate format for the link. For
example, if you are creating a link to a glossary term, select a glossary
term cross-reference format.

g. Click Replace.

2. If you want to create a link using hypertext markers, complete the
following steps:

362 | Creang Cross-References and Links in FrameMaker

a. In your Adobe FrameMaker source document, insert your cursor in front
of the link target text.

b. On the Special menu, click Marker.

c. In the Marker Type field, select Hypertext from the list.

d. In the Marker Text field, type newlink linkname or newlink
filename:linkname, where linkname is the name of the named
destination for the link, and filename is the name of the file that
contains the link, if the link is in a different Adobe FrameMaker source
document. To make maintenance easy, create short link names that use
alphanumeric, lowercase characters.

e. Click New Marker.

f. Insert your cursor in front of the word or phrase for which you want to
create a link.

a. On the Special menu, click Marker.

b. In the Marker Type field, select Hypertext from the list.

c. In the Marker Text field, type gotolink linkname or gotolink
filename:linkname, where linkname is the name of the named
destination you created for the link, and filename is the name of the
file that contains the link, if the link is in a different Adobe FrameMaker
source document.

d. Click New Marker.

e. Select the word or phrase for which you want to create a link. The
selected area must contain the both text and the hypertext marker you
created.

f. Apply a link character format to the word or phrase. Applying a link
character format to the word or phrase makes the link appear active, or
clickable, in the generated output. If you do not know which character
format to use for links, consult the Stationery designer.

3. If you want to create a link to a PDF file, complete the following steps:

a. In the FrameMaker menu, go to Special > Hypertext

b. From the Command dropdown menu, chose Message Client

c. In the Syntax text box, type message openfile relative_path where
relative_path is the relative directory where you have your PDF
located and then you add example.pdf to this path

Creang Cross-References and Links in FrameMaker | 363

4. Save your Adobe FrameMaker source document.

Working with Tables in FrameMaker
This section explains how to prepare tables in source documents for output
generation. Obtain your latest templates and apply the latest table formats from
the template to tables in your source documents. If your tables do not have header
rows, create a header row for each table. If your tables do not have footer rows,
create a footer row for each table.

Applying Table Formats in FrameMaker
Table formats define the appearance of your tables, and ePublisher uses table
formats to define the appearance of tables in generated output. When you work
with tables in your Adobe FrameMaker source documents, ensure you apply
the correct table formats to your tables. The Stationery designer defines the
table formats you can use in your Adobe FrameMaker source documents in the
Adobe FrameMaker templates you associate with your Adobe FrameMaker source
documents. If you want to specify a different table format for sets of tables in
your generated output, first ensure the different table format you want to apply
is available in your Adobe FrameMaker source document. Then apply the different
table format to tables in your Adobe FrameMaker source documents as appropriate.

For example, you may have a small set of tables that contain information about a
specific component in a product. If you decide you want to modify the appearance
of these tables in your generated output by specifying that the tables associated
with this component display with a yellow background in your generated output,
apply a table format available in your Adobe FrameMaker source document that the
Stationery designer created to meet this requirement. When you generate output,
the Stationery designed by the Stationery designer specifies that any tables created
with a table format configured to display tables with a yellow background display in
your output with a yellow background.

Creating Table Header Rows in FrameMaker
Most tables in Adobe FrameMaker source documents include header rows, because
by default Adobe FrameMaker allows you to quickly and easily specify the number
of header rows in a table when you create a table. However, if your tables do not
have header rows, consider adding table header rows to tables in your Adobe
FrameMaker source documents. Using table header rows allows you to more tightly
control the appearance of tables when you generate output. For example, if you use
header rows, you can specify one appearance for header rows in your generated
output, and a difference appearance for body rows in your generated output.

The following procedure provides an example of how to create table header rows in
Adobe FrameMaker source documents using unstructured Adobe FrameMaker 7.2.

364 | Creang Table Header Rows in FrameMaker

Steps for creating table header rows in Adobe FrameMaker may be different in
other versions of Adobe FrameMaker.

To create a table header row in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, locate the table for which you
want to create a table header row.

2. Insert your cursor in the top row of the table.

3. On the Table menu, click Add Rows or Columns.

4. Click Add 1 Row.

5. Select To Heading from the list.

6. Click Add. Adobe FrameMaker inserts a header row into the table.

7. Type the text for the header row into the table.

8. Delete any existing rows in the text that contain the text you typed into the
new table header row as needed.

Creating Table Footer Rows in FrameMaker
Most tables in Adobe FrameMaker source documents include footer rows, because
by default Adobe FrameMaker allows you to quickly and easily specify the number
of footer rows in a table when you create a table. However, if your tables do not
have footer rows, consider creating footer rows in your source documents in order
to quickly and easily specify the appearance that you want for your table footer
rows in your generated output. For example, if you use footer rows in conjunction
with header rows, you can specify one appearance for footer rows in your generated
output, and then different appearances for header rows and table body rows in your
generated output.

The following procedure provides an example of how to create table footer rows in
Adobe FrameMaker source documents using unstructured Adobe FrameMaker 7.2.
Steps for creating table footer rows in Adobe FrameMaker may be different in other
versions of Adobe FrameMaker.

To create a table with a footer row in Adobe FrameMaker

1. In your Adobe FrameMaker source document, locate the table for which you
want to create a table footer row.

2. Insert your cursor in the bottom row of the table.

3. On the Table menu, click Add Rows or Columns.

4. Click Add 1 Row.

Creang Table Footer Rows in FrameMaker | 365

5. Select To Footing from the list.

6. Click Add. Adobe FrameMaker inserts a footer row into the table.

Working with Images in FrameMaker
Many writers include images when producing documents using Adobe FrameMaker.
Most writers typically insert images into Adobe FrameMaker source documents in
one of the following ways:

Copying images directly into in Adobe FrameMaker source documents, also
known as embedding images

Importing images by reference, which creates a link to the source image in
the Adobe FrameMaker source documents

If you copy an image into an Adobe FrameMaker source document, Adobe
FrameMaker copies, or embeds, the image in the Adobe FrameMaker source
document, and the image becomes a part of the document.

If you import an image by reference in Adobe FrameMaker source documents,
Adobe FrameMaker creates a link to the image and displays the image in the
Adobe FrameMaker source document. The link becomes a part of the document,
but the actual image file is not inserted into the document, although the actual
image files is displayed in the document. If you update the image file referenced
by the link, Adobe FrameMaker displays the updated image referenced by the link
automatically.

There are benefits and drawbacks to copying images directly into Adobe
FrameMaker source documents and importing images by reference.

For example, if you copy images into Adobe FrameMaker source documents,
you do not have worry about breaking the reference, or link, between the Adobe
FrameMaker source documents and the image files. If you import the image by
reference into Adobe FrameMaker source documents, you must ensure that you
keep the same file structure for the image files in order to not break the references,
or links, between the Adobe FrameMaker source document and the image file.

However, importing images by reference in Adobe FrameMaker source documents,
rather than copying images into the source documents, provides the following
benefits:

You can update image files without recopying the image into your Adobe
FrameMaker source documents.

If you have one image used in multiple places, you can update the image in
one place, rather than recopying the image into multiple places.

366 | Working with Images in FrameMaker

You can manage your documentation files and image files separately, which
makes organizing images easier.

Source documents with images imported by reference in Adobe FrameMaker
are smaller than source documents with copied images.

When you work with Adobe FrameMaker source documents that you will use to
generate output, ensure you follow the guidelines specified by the Stationery
designer for the following items:

Method used to insert images

Correct DPI to use for inserted images

Correct image file format to use for inserted images

Inserting Images in FrameMaker
Before you insert images into Adobe FrameMaker source documents you plan to
use to generate output, review image considerations. For more information, see
“Working with Images in FrameMaker”.

When you insert images into Adobe FrameMaker source documents, insert the
image into an anchored frame. The anchored frame allows you to specify the image
alignment and position. For more information about anchored frame options, see
the Adobe FrameMaker documentation.

The following procedure provides an example of how to use an anchored frame
to insert an image by reference in an unstructured Adobe FrameMaker source
document using Adobe FrameMaker 7.2. Steps for inserting an image by reference
in Adobe FrameMaker may be different in other versions of Adobe FrameMaker.

To insert an image in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, insert your cursor on a blank
line below the paragraph where you want to insert your image.

Note: Inserting an image on a blank line allows you to customize the
paragraph tag applied to the line. Many Adobe FrameMaker templates
have a special paragraph tag for you to use when you insert graphics.
This paragraph tag specifies the space above and below the paragraph
and the alignment of the inserted image.

2. Apply the appropriate paragraph format for images to the blank anchored
frame line. For more information about the correct paragraph format to use
for image anchored frame lines, consult with the Stationery designer.

Inserng Images in FrameMaker | 367

3. On the Special menu, click Anchored Frame.

4. Specify the position, alignment, and size of the anchored frame, and then click
New Frame. Adobe FrameMaker inserts an empty anchored frame into the
source document.

For more information about anchored frame options, see the Adobe
FrameMaker documentation.

5. On the File menu, click Import > File.

6. Click OK to continue.

7. Browse to the location of the file you want to import and select the file.

8. Click Import by Reference, and then click Import.

9. Specify the size of the graphic.

Note: Most writers do not select the Fit in Selected Rectangle option. This
option resizes the image to fit inside the selected anchor or graphic
frame. When you select this option, Adobe FrameMaker sets the DPI to
unknown, and the imported image is usually distorted.

If you want to use the DPI from the graphic, do not change the
setting in the Custom dpi field. The number in the Custom dpi field is
the DPI of the imported graphic.

If you want to change the size of the graphic, click the button for
the dpi setting you want to specify.

Note: If you do not use the same DPI setting as the source image, the
image in your output may be distorted.

10. Click Set. Adobe FrameMaker imports the image into the source document.

11. If you have white space between the graphic and the anchored frame,
you can shrink-wrap the frame by completing the following steps:

Shrinking-wrapping an anchored frame removes the white space between
the graphic and the anchored frame and changes the anchoring position of
the frame to At Insertion Point and displays the frame 0 points above the
baseline of the text. If the anchored frame is on the same line as the text, the
0 point baseline can cause the image to cover the text of the preceding lines.
For this reason, many writers prefer to insert images on a separate line below
the text. The image may also be distorted if you don’t shrink wrap the image.

a. Click the anchored frame or the image in the anchored frame.

368 | Inserng Images in FrameMaker

b. Press ESC+M+P . Adobe FrameMaker shrinks or expands the anchored
frame to fit the contents of the anchored frame and positions the
anchored frame according to the paragraph pagination settings.

After you insert an image, you can assign alternate text or a long description to the
image. For more information, see “Assigning Alternate Text to Images and Image
Maps in FrameMaker” and “Assigning Long Descriptions to Images in FrameMaker”.

Creating Image Links in FrameMaker
You can create image links that allow users who click the image to link to content
in another location. For example, if you include your company logo in a source
document, you can define a link for the logo so that when users click the logo, they
link to your company home page.

The following procedure provides an example of how to create an image link in
Adobe FrameMaker source documents using Adobe FrameMaker 7.2. Steps for
creating an image link in Adobe FrameMaker may be different in other versions of
Adobe FrameMaker.

To create an image link in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, insert the image for which you
want to create an image link. For more information, see “Inserting Images in
FrameMaker”.

2. If you want to link to content in a different location in your source
document, create a named destination for the link by completing the
following steps:

Note: You do not need to perform these steps if you want to link to content on
a Web site.

a. Locate the link target in your source document.

b. On the Special menu, click Marker.

c. In the Marker Type field, click Hypertext.

d. In the Marker Text field, newlink linkname or newlink
filename:linkname, where linkname is the name of the named
destination for the link, and filename is the name of the file that
contains the link, if the link is in a different Adobe FrameMaker source
document.

Note: To make maintenance easy, create short link names that use
alphanumeric, lowercase characters.

Creang Image Links in FrameMaker | 369

e. Click New Marker.

3. In the anchored frame that contains the image for which you want to create
a link, draw a text frame that covers the entire clickable region by completing
the following steps:

a. On the Graphics menu, click Tools to display the graphic tools palette.

b. Click the Text Frame icon.

c. Drag the cursor across the image to draw a text frame over the image.

d. In the Create New Text Frame window, in the Number field, type 1 , and
then click Set.

e. Click outside of the image, and then insert your cursor in the text frame.

4. In the text frame, insert a Hypertext marker that specifies the destination of
the link by completing the following steps:

a. On the Special menu, click Marker.

b. In the Marker Type field, select Hypertext from the list.

c. If you want link to content in a different location in your source
document, use the named destination link you created in step 2.
In the Marker Text field, type gotolink linkname or gotolink
filename:linkname, where linkname is the name of a link target you
created previously, and filename is the name of the file that contains
the link, if the link is in a different Adobe FrameMaker source document.

d. If you want to link to a page on a Web site, in the Marker Field,
type message URL web address, where web address is the URL of the
web page you want to open when users click the image.

Note: For more information about using the gotolink and message URL
commands, see the Adobe FrameMaker documentation.

e. Click New Marker.

5. Save your Adobe FrameMaker source document.

6. Generate output for your project. For more information, see “Generating
Output”.

7. In Output Explorer, verify ePublisher created the image link using the link
information you specified on the page by clicking on the image. For more
information about viewing output files in Output Explorer, see “Viewing Output
in Output Explorer”.

370 | Creang Image Links in FrameMaker

Creating Clickable Regions for Image Maps
in FrameMaker
An image map can be a single image separated with clickable regions or a
composite image made up of multiple images grouped together, yet still separated
with clickable regions. For example, you could create an image of the countries of
Europe and then define an image map for the image that allows users to link to a
topic about each country when they click on an area of the image. User can click
France to see information about France, Italy to see information about Italy, and so
on.

When you define an image map, you can also define alternate text for each
clickable region. For example, you might define alternate text for the Italy region as
“Click here for more information about Italy.” For more information about assigning
alternate text to image maps, see “Assigning Alternate Text to Images and Image
Maps in FrameMaker”.

Creating Image Maps for Single Images in
FrameMaker
You create image maps for single images in Adobe FrameMaker source documents
using text frames and hyperlinks. In Adobe FrameMaker, a hyperlink consists of
a link and a link target, or named destination. A named destination is a unique
identifier for a location in the document.

You can also create an image map for a composite image in an Adobe FrameMaker
source document. For more information about creating composite images, see
“Creating Image Maps for Composite Images in FrameMaker”.

The following procedure provides an example of how to create an image map for
a single image in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for creating an image map for a single image in Adobe
FrameMaker may be different in other versions of Adobe FrameMaker.

To create an image map for a single image in an Adobe FrameMaker source
document:

1. In your Adobe FrameMaker source document, insert the image you want to
use for you image map into an anchored frame. For more information, see
“Inserting Images in FrameMaker”.

2. If you want to link to content in a different location in your source
document, create a named destination for the link for each area of the image
map by completing the following steps:

Note: You do not need to perform these steps if you want to link to content on
a Web site.

Creang Image Maps for Single Images in FrameMaker | 371

a. Locate the link target in your source document.

b. On the Special menu, click Marker.

c. In the Marker Type field, click Hypertext.

d. In the Marker Text field, newlink linkname or newlink
filename:linkname, where linkname is the name of the named
destination for the link, and filename is the name of the file that
contains the link, if the link is in a different Adobe FrameMaker source
document.

Note: To make maintenance easy, create short link names that use
alphanumeric, lowercase characters.

e. Click New Marker.

3. In the anchored frame that contains the image for which you want to create
an image map, draw a text frame that covers each region of the image where
you want users to be able to click by completing the following steps:

a. On the Graphics menu, click Tools to display the graphic tools palette.

b. Click the Text Frame icon.

c. Drag the cursor over the portion of the image for which you want to
create a clickable area.

d. In the Create New Text Frame window, in the Number field, type 1 , and
then click Set.

4. In the text frame, insert a Hypertext marker that specifies the destination for
the clickable region by completing the following steps:

a. Insert your cursor into the text frame.

b. On the Special menu, click New Marker.

c. If you want to link to content in a different location in your
source document, use a named destination link you created in step
2. In the Marker Text field, type gotolink linkname or gotolink
filename:linkname, where linkname is the name of a link target you
created previously, and filename is the name of the file that contains
the link, if the link is in a different Adobe FrameMaker source document.

d. If you want to link to a page on a Web site, in the Marker Text
field, type message URL web address, where web address is the URL of
the web page you want to open when users click the image.

372 | Creang Image Maps for Single Images in FrameMaker

Note: For more information about using the these commands, see the
Adobe FrameMaker documentation.

e. Click New Marker.

5. Save your Adobe FrameMaker source document.

6. Generate output for your project. For more information, see “Generating
Output”.

7. In Output Explorer, verify ePublisher created the image map using the link
information you specified by clicking on the page that contains the image map
and then clicking on each area of the image where you created a link. For
more information about viewing output files in Output Explorer, see “Viewing
Output in Output Explorer”.

Creating Image Maps for Composite Images in
FrameMaker
You can create composite images by inserting the composite images into an
anchored frame and then inserting text frames that contain the link you want users
to go to when they click an area of a composite image.

The following procedure provides an example of how to use Hotspots in Adobe
FrameMaker to create image maps for composite images in source documents.

To create an image map for a composite image using Hotspots in an Adobe
FrameMaker source document:

1. In your Adobe FrameMaker source document, insert each image you want to
use for your image map into an anchored frame. For more information, see
“Inserting Images in FrameMaker”.

2. If you want to link to content in a different location in your source
document, create a named destination for the link for each area of the image
map by completing the following steps:

Note: You do not need to perform these steps if you want to link to content on
a Web site.

a. Locate the link target in your source document.

b. On the Special menu, click Marker.

c. In the Marker Type field, click Hypertext.

d. In the Marker Text field, newlink linkname or newlink
filename:linkname, where linkname is the name of the named

Creang Image Maps for Composite Images in FrameMaker | 373

destination for the link, and filename is the name of the file that
contains the link, if the link is in a different Adobe FrameMaker source
document.

Note: To make maintenance easy, create short link names that use
alphanumeric, lowercase characters.

e. Click New Marker.

3. In the anchored frame that contains the image for which you want to create
an image map, draw a text frame that covers each region of the image where
you want users to be able to click by completing the following steps:

a. On the Graphics menu, click Tools to display the graphic tools palette.

b. Click the Text Frame icon.

c. Drag the cursor over the portion of the image for which you want to
create a clickable area.

d. In the Create New Text Frame window, in the Number field, type 1 , and
then click Set.

4. For each text frame, set the Hotspot properties that specifies the destination
for the clickable region and optionally set its tooltip text by completing the
following steps:

a. On the Graphics menu, click Tools to display the graphic tools palette.

b. Click the Select Object icon.

c. Click on the text frame so that you can set its hotspot properties.

d. With the text frame selected, right-click and select Hotspot
Properties... from the menu.

e. If you want to link to content in a different location in your
source document, under Destination select the Document radio
button. Then select either Current or the name of your target source
document. Then click the marker with the named destination you
created previously in step 2.

f. If you want to link to a page on a Web site, under Destination
select the URL radio button. Then type the complete web address
(including protocol such as http://) in the adjacent text box of the web
page you want to open when users click the image.

g. If you want tooltip text to be available in the output, under the
Tooltip Text label, enter the text you want to appear as the tooltip.

374 | Creang Image Maps for Composite Images in FrameMaker

h. Click the Save button on the Hotspot dialog.

5. Save your Adobe FrameMaker source document.

6. Generate output for your project. For more information, see “Generating
Output”.

7. In Output Explorer, verify ePublisher created the image map using the link
information you specified by clicking on the page that contains the image map
and then clicking on each area of the image where you created a link. For
more information about viewing output files in Output Explorer, see “Viewing
Output in Output Explorer”.

If your version of Adobe FrameMaker does not provide for Hotspot properties,
you can still create image maps for composite images by following this alternate
example of how to create image maps for composite images in Adobe FrameMaker
source documents using unstructured Adobe FrameMaker 7.2. Steps for creating
image maps for composite images in Adobe FrameMaker may be different in other
versions of Adobe FrameMaker.

To create an image map for a composite image in an Adobe FrameMaker
source document using hypertext markers:

1. In your Adobe FrameMaker source document, insert each image you want to
use for your image map into an anchored frame. For more information, see
“Inserting Images in FrameMaker”.

2. If you want to link to content in a different location in your source
document, create a named destination for the link for each area of the image
map by completing the following steps:

Note: You do not need to perform these steps if you want to link to content on
a Web site.

a. Locate the link target in your source document.

b. On the Special menu, click Marker.

c. In the Marker Type field, click Hypertext.

d. In the Marker Text field, newlink linkname or newlink
filename:linkname, where linkname is the name of the named
destination for the link, and filename is the name of the file that
contains the link, if the link is in a different Adobe FrameMaker source
document.

Note: To make maintenance easy, create short link names that use
alphanumeric, lowercase characters.

Creang Image Maps for Composite Images in FrameMaker | 375

e. Click New Marker.

3. In the anchored frame that contains the image for which you want to create
an image map, draw a text frame that covers each region of the image where
you want users to be able to click by completing the following steps:

a. On the Graphics menu, click Tools to display the graphic tools palette.

b. Click the Text Frame icon.

c. Drag the cursor over the portion of the image for which you want to
create a clickable area.

d. In the Create New Text Frame window, in the Number field, type 1 , and
then click Set.

4. In each text frame, insert a Hypertext marker that specifies the destination
for the clickable region by completing the following steps:

a. Insert your cursor into the text frame.

b. On the Special menu, click Marker.

c. If you want to link to content in a different location in your
source document, use the named destination link you created in step
2. In the Marker Text field, type gotolink linkname or gotolink
filename:linkname, where linkname is the name of a link target you
created previously, and filename is the name of the file that contains
the link, if the link is in a different Adobe FrameMaker source document.

d. If you want to link to a page on a Web site, in the Marker Text
field, type message URL web address, where web address is the URL of
the web page you want to open when users click the image.

Note: For more information about using the these commands, see the
Adobe FrameMaker documentation.

e. Click New Marker.

5. Save your Adobe FrameMaker source document.

6. Generate output for your project. For more information, see “Generating
Output”.

7. In Output Explorer, verify ePublisher created the image map using the link
information you specified by clicking on the page that contains the image map
and then clicking on each area of the image where you created a link. For
more information about viewing output files in Output Explorer, see “Viewing
Output in Output Explorer”.

376 | Creang Image Maps for Composite Images in FrameMaker

Assigning Image Scales in FrameMaker
When ePublisher converts images inserted into your source documents, it can
scale images to make them display larger or smaller in your generated output. By
default, ePublisher uses the scaling factor applied to images as specified by the
image format you apply to each image. For example, if you apply an image format
to images and the Stationery designer defined the image format to scale images to
80% of their original size, all images that have this image format applied to them
will be scaled to 80% in the generated output.

Typically, using the standard scaling factor specified in the image format is
sufficient. Occasionally, however you may want to override the scaling factor for
an individual image. For example, while most .gif images scale to 80%, you may
have one large image that you want scaled to 60% in your generated output. You
can manually override the standard scaling factor specified in your Stationery for a
specific image by using the GraphicScale marker.

To assign a scale to a specific image, your Stationery and template must have the
GraphicScale marker type configured. Your output format must also support scaling
by image.

The following procedure provides an example of how to specify image scaling
for an image in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for specifying image scaling for an image in Adobe
FrameMaker may be different in other versions of Adobe FrameMaker.

To specify an image scale for an image in an Adobe FrameMaker source
document

1. In your Adobe FrameMaker source document, locate the anchored frame for
the image for which you want to specify image scaling.

2. Right-click on the image anchor. Make sure this is the entire anchor, not just
the graphic itself

Assigning Image Scales in FrameMaker | 377

3. Click on Object Properties and then click Object Attributes. Identify the
GraphicScale according to the box below. Assign the desired style name in
the attribute value box.

4. Click Add, then Set, and then Set. Adobe FrameMaker may prompt you to
approve the change as the operation cannot be undone

5. Save your Adobe FrameMaker source document.

6. Scan this document in ePublisher so that the GraphicScale marker will show
up under “Marker Styles”. This will configure the correct marker behavior for
processing.

7. Generate output for your project. For more information, see “Generating
Output”.

8. In Output Explorer, verify ePublisher created the image using the image
scale you specified in the GraphicScale marker by clicking on the page
that contains the image for which you specified image scaling. For more
information about viewing output files in Output Explorer, see “Viewing Output
in Output Explorer”.

Assigning Image Styles in FrameMaker

378 | Assigning Image Styles in FrameMaker

Typically you do not need to specify an image style for images when you generate
output. By default, each image generated by ePublisher is associated with the
default image style defined in the Stationery. However, if you want to change the
image style of one image or a small set of images, you can specify the image style
you want to use for an image in your source document using the GraphicStyle
marker type.

For example, if you want to specify a yellow border around a set of screen shot
images that illustrate a particular piece of product functionality, you can specify
that each of the screen shots images in the set have a yellow border around them
through the use of the GraphicStyle marker type.

To assign a style to a specific image, your Stationery and FrameMaker template
must have the GraphicStyle marker type configured. Your output format must also
support specifying image styles.

The following procedure provides an example of how to specify image styles
for images in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for specifying image styles for images in Adobe FrameMaker
may be different in other versions of Adobe FrameMaker.

To specify an image style for an image in an Adobe FrameMaker source
document

1. In your Adobe FrameMaker source document, locate the anchored frame for
the image for which you want to specify an image style.

2. Right-click on the image anchor. Make sure this is the entire anchor, not just
the graphic itself

Assigning Image Styles in FrameMaker | 379

3. Click on Object Properties and then click Object Attributes. Identify the
GraphicStyle according to the box below. Assign the desired style name in
the attribute value box.

4. Click Add, then Set, and then Set. Adobe FrameMaker may prompt you to
approve the change as the operation cannot be undone

5. Save your Adobe FrameMaker source document.

6. Scan this document in ePublisher so that the GraphicStyle marker will show
up under “Graphic Styles”

7. Generate output for your project. For more information, see “Generating
Output”.

8. In Output Explorer, verify ePublisher created the image using the image style
you specified by clicking on the page that contains the image for which you
specified an image style and verifying ePublisher applied the image style you
specified in the generated output. For more information about viewing output
files in Output Explorer, see “Viewing Output in Output Explorer”.

Working with Videos in FrameMaker

380 | Working with Videos in FrameMaker

Occasionally, writers include videos when producing documents using Adobe
FrameMaker.

Note: If the video is not found, ensure the correct path to the video is specified
in the FrameMaker document.

To include a video in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, click on File from the tool bar,
select Import File, then a dialog box will appear.

2. Locate the video file in the dialog box.

3. Select the video file, click the import button.

4. Select which file type to convert from. This example uses an MP4 formatted
video selected, so MP4 format should be selected in the dialog.

Working with Videos in FrameMaker | 381

5. Select the Imported Graphic Scaling. For this example 72 dpi was used. After
making the selection, the video will appear in the FrameMaker document.

6. Add a poster image to the video file. This step is optional.

382 | Working with Videos in FrameMaker

a. Click on File, then select Import File. Select the image to use as the
poster file image.

b. Click the Replace button.

c. Select the Imported Graphic Scaling. 72 dpi was used in the example.

d. Position the video with your mouse.

e. Save the File

7. Add the document to your Reverb 2.0 project and generate.

Working with Videos in FrameMaker | 383

Creating Index Entries in FrameMaker
An index lists the terms and topics discussed in a document and the page or pages
on which they appear. An online index provides the user with a point-and-click
resource for quickly navigating online content.

ePublisher uses the same native index entry features used in source documents to
create a printed index to create an online index. If you include index entries in your
source documents, ePublisher detects the index entries and uses the index entries
to create an online index in your generated output.

Adobe FrameMaker inserts index entries as Index markers. To create index entries
in an Adobe FrameMaker source document, insert Index markers into your Adobe
FrameMaker source document. ePublisher then uses the Index markers to create an
online index when you generate output.

384 | Creang Index Entries in FrameMaker

Before you insert index entries, verify with the Stationery designer that your
Stationery is configured to support online index generation. By default, ePublisher
enables online index generate for output, but this functionality can be disabled in
your Stationery by the Stationery designer. Also confirm that your output format
supports online index creation.

Talk with the Stationery designer and other writers about the standard location
and method you should use when you insert Index markers into your Adobe
FrameMaker source documents. For example, some writers prefer to insert index
entries into topic headings, while other writers prefer to insert index entries on the
first line of the paragraph that contains the indexed term or terms. Some writers
prefer to create one Index marker for each term, while other writers prefer to
create one Index marker and then type all index terms associated with a paragraph
into one Index marker.

The following procedure provides an example of how to inset index entries in Adobe
FrameMaker source documents using unstructured Adobe FrameMaker 7.2. Steps
for inserting index entries in Adobe FrameMaker may be different in other versions
of Adobe FrameMaker.

To insert an index entry in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, insert your cursor in the
location where you want to create an index entry.

2. On the Special menu, click Marker.

3. In the Marker Type field, select Index from the drop-down list.

4. In the Marker Text field, type the text you want to specify for the index
entry.

Note: Following are some common ways writers can create index entries in
Adobe FrameMaker. For more information about creating index entries,
see the Adobe FrameMaker Help.

If you want to specify multiple index entries in the marker,
separate each index entry with a semicolon (;) character.

For example, type index; table of contents; headings; footers

If you want to create a subentry, separate the primary and
secondary entry with a colon (:).

For example, type index:creating; index:generating;

If you want to create See references, insert the entry but use the <
$nopage> command to suppress the page number.

Creang Index Entries in FrameMaker | 385

For example, type document, See source document <$nopage>

If you want to create see references with the word See italicized,
use a character tag inside the Index marker and the <Default Para
Font> tag to turn off the character tagging.

For example, type document, <Emphasis>See <Default Para
Font>source documents<$nopage>

If you want to create See also references, use alternate text that
specifies how Adobe FrameMaker sorts the see also reference.

For example, type document, <Emphasis>See also<Default Para
Font>source documents<$nopage>[document:aa]

The text in brackets at the end of the entry controls where Adobe
FrameMaker displays the text in the entry. In this example, the aa text
ensures Adobe FrameMaker displays the entry as the first subentry
under document.

5. Click New Marker.

6. After you insert you index entries, save your Adobe FrameMaker source
document.

7. Generate output for your project. For more information, see “Generating
Output”.

8. In Output Explorer, verify ePublisher created the index correctly by clicking
on the page or tab that displays the index and then clicking on the index
entries. For more information about viewing output files in Output Explorer,
see “Viewing Output in Output Explorer”.

Using Variables in FrameMaker
A variable serves as a placeholder for information that may change frequently.
Using variables in source documents allows you to quickly and easily control the
content in your generated output. When you change the value of a variable in an
ePublisher project, it changes the value in only your generated output. The variable
value does not change in your source document.

Once you insert variables into your source documents, whenever the value of a
item defined by a variable needs to change, you can make the change in a single
location, rather than searching and replacing for all instances of the item. For
example, you can use variables in the following ways:

If you have publication dates or release dates in your source documents that
you need to update periodically, you can set up the date as a variable.

386 | Using Variables in FrameMaker

If you work with products that have names or versions that frequently
change, you can set up variables for product names and versions.

If you need to produce documentation sets for a product with multiple brands,
you can use variables to help you produce documentation for each different
brand using the same set of source files.

Importing or Creating Variables in
FrameMaker
When you work with Adobe FrameMaker source documents, typically you
import variables into your Adobe FrameMaker source documents from an Adobe
FrameMaker template. The Adobe FrameMaker template contains variables defined
by the Stationery designer.

Typically you should not need to create variables in your Adobe FrameMaker source
files if you use an Adobe FrameMaker template created by a Stationery designer.
However, in some cases you may need to create a variable in an Adobe FrameMaker
source document if you do not have an Adobe FrameMaker template that includes a
variable you need for your project.

The following procedure provides an example of how to import or create variables in
Adobe FrameMaker source documents using unstructured Adobe FrameMaker 7.2.
Steps for importing or creating variables in Adobe FrameMaker may be different in
other versions of Adobe FrameMaker.

To import variables or create a variable in an Adobe FrameMaker source
document

1. Open your Adobe FrameMaker source file.

2. If you want to import variables into your Adobe FrameMaker source
file from an Adobe FrameMaker template, complete the following steps:

a. Open the Adobe FrameMaker template that contains the variables you
want to import.

b. On the File menu, click Import > Formats.

c. In the Import from Document field, select the Adobe FrameMaker
template that contains the variables you want to import from the list.

d. In the Import and Update field, select only the Variable Definitions
check box.

e. Click Import.

f. Click OK to confirm the operation.

Imporng or Creang Variables in FrameMaker | 387

3. If you want to create a variable in your Adobe FrameMaker source
file, complete the following steps:

a. On the Special menu, click Variables.

b. Click Create Variable.

c. In the Name field, type a name for the variable. Variable names are
case sensitive. For example, VariableName and variablename are
different variables.

d. Insert your cursor in the Definition field.

e. In the Character Formats field, select a character format for the
variable and then type a value for the variable. For more information
about specifying character formats for variables, see the Adobe
FrameMaker Help.

f. Click Add. Adobe FrameMaker adds the variable to the list of variables.
The variable is the value that Adobe FrameMaker displays in your Adobe
FrameMaker source document.

g. Click Done.

4. Save your Adobe FrameMaker source file.

Inserting Variables into FrameMaker
You can insert a variable into a source document after you import the variables into
your source document. If you want to use a variable that is not defined in an Adobe
FrameMaker template, you must create the variable in your source document before
you can insert it. For more information about importing or creating variables, see
“Importing or Creating Variables in FrameMaker”.

The following procedure provides an example of how to insert variables in Adobe
FrameMaker source documents using unstructured Adobe FrameMaker 7.2. Steps
for inserting variables in Adobe FrameMaker may be different in other versions of
Adobe FrameMaker.

To insert a variable into an Adobe FrameMaker source document

1. Open the Adobe FrameMaker source document into which you want to insert a
variable.

2. Place your cursor in the location where you want to insert the variable.

3. On the Special menu, click Variable.

388 | Inserng Variables into FrameMaker

4. In the Variable field, select the variable you want to insert from the list, and
then click Insert. Adobe FrameMaker inserts the variable.

Changing Variable Values in FrameMaker
You can change the value assigned to a variable in an Adobe FrameMaker source
document.

The following procedure provides an example of how to change variable values in
Adobe FrameMaker source documents using unstructured Adobe FrameMaker 7.2.
Steps for changing variable values in Adobe FrameMaker may be different in other
versions of Adobe FrameMaker.

To change a variable value in an Adobe FrameMaker source document

1. Open the Adobe FrameMaker source document that contains the variable with
a value you want to change.

2. On the Special menu, click Variable.

3. In the Variable field, select the variable with the value you want to change.

4. Click Edit Definition.

5. In the Definition field, edit the variable value.

6. Click Done. Adobe FrameMaker updates the variable value in each place in
your source document where you inserted the variable.

7. Click Done again to close the window.

Deleting Variables in FrameMaker
Delete a variable in an Adobe FrameMaker source document when you no longer
want to use the variable. Before you delete a variable, ensure you search for
the variable and delete or replace all references to the variable. If your source
document still contains a reference to a variable after you delete it, Adobe
FrameMaker prompts you to convert references to the variable in your source
document to editable text.

The following procedure provides an example of how to delete variables in Adobe
FrameMaker source documents using unstructured Adobe FrameMaker 7.2. Steps
for deleting variables in Adobe FrameMaker may be different in other versions of
Adobe FrameMaker.

To delete a variable in an Adobe FrameMaker source document

Deleng Variables in FrameMaker | 389

1. Open the Adobe FrameMaker source document that contains the variable you
want to edit.

2. Search for and replace all references to the variable you want to delete in the
source document by completing the following steps:

a. On the Edit menu, click Find/Change.

b. In the Find field, select Variable of Name from the list.

c. In the field next to the Find field, type the name of the variable you
want to delete.

d. Click Find.

e. Delete each variable you find or replace the variable with a different
variable as appropriate.

3. On the Special menu, click Variable.

4. In the Variable field, select the variable you want to delete.

5. Click Edit Definition.

6. In the User Variables field, ensure the variable you want to delete is
selected, and then click Delete.

7. Click Done.

8. Click OK to confirm the operation.

Using Conditions in FrameMaker
Conditions allow you to show or hide information in your source documents and in
your online output. You apply conditions to the content in your source documents,
and then you set the visibility for those conditions either in your source documents
or in your ePublisher project.

For example, your source documents might contain some content that should be
displayed in only the printed version and other content that should be displayed
in only the online version. You can use the same set of source documents for both
printed and online versions through the use of conditions. You can create one
condition called PrintOnly specifically for printed content, and then you can create
another condition called OnlineOnly specifically for online content. After you create
the PrintOnly and OnlineOnly conditions, you can apply them to the appropriate
content in your source documents.

390 | Using Condions in FrameMaker

After you apply conditions in your source documents, ePublisher can use the
conditions defined in your source document to control the visibility of content when
it generates output. You can also change the visibility specified for any condition in
your ePublisher project. Changing the visibility specified for any condition in your
ePublisher project does not change the visibility specified for the condition in your
source documents.

Creating Conditions in FrameMaker
When you work with Adobe FrameMaker source documents, typically you import
conditions into your Adobe FrameMaker source documents from an Adobe
FrameMaker template. The Adobe FrameMaker template contains conditions defined
by the Stationery designer.

Typically you should not need to create conditions in your Adobe FrameMaker
source files if you use an Adobe FrameMaker template created by a Stationery
designer. However, in some cases you may need to create a condition in your
Adobe FrameMaker source documents if you do not have an Adobe FrameMaker
template that includes a condition you need for a project. If you need to create
a condition that is not available in your Adobe FrameMaker template, use native
Adobe FrameMaker functionality to create the condition.

The following procedure provides an example of how to create conditions in Adobe
FrameMaker source documents using unstructured Adobe FrameMaker 7.2. Steps
for creating conditions in Adobe FrameMaker may be different in other versions of
Adobe FrameMaker.

To create a condition in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, on the Special menu, click
Conditional Text.

2. Click Edit Condition Tag.

3. In the Tag field, type a name for the condition.

For example, if you want to create a condition for content that you want to
display in only online content, type OnlineOnly . If you want to create a
condition for content that you want to display in only printed content, type
PrintOnly .

4. If you want to specify a style for the condition, in the Style field, select
the style you want to use for the condition from the drop-down list. Specifying
a style for the condition allows you to more easily see the content tagged with
the condition in your Adobe FrameMaker source documents. If you do not
want to use a style for the condition, select As Is.

Creang Condions in FrameMaker | 391

5. If you want to specify a color for the condition, in the Color field, select
a color for the condition from the drop-down list. Specifying a color for the
condition allows you to more easily see the content tagged with the condition
in your Adobe FrameMaker source documents. If you do not want to use a
color for the condition, select As Is.

6. Click the Set to create the condition.

Applying Conditions in FrameMaker
After you have imported conditions from your Adobe FrameMaker template or
created conditions in your Adobe FrameMaker source document, you can apply
conditions to content in your Adobe FrameMaker source documents. For more
information about creating conditions in Adobe FrameMaker source documents, see
“Creating Conditions in FrameMaker”.

The following procedure provides an example of how to apply conditions in Adobe
FrameMaker source documents using unstructured Adobe FrameMaker 7.2. Steps
for applying conditions in Adobe FrameMaker may be different in other versions of
Adobe FrameMaker.

To apply a condition to content in an Adobe FrameMaker source document

1. In your Adobe Framemaker source document, select the content to which you
want to apply the condition.

2. On the Special menu, click Conditional Text.

3. In the Not In list, select the condition you want to apply to the content.

4. Click the left arrow to move the condition from the Not In list to the In list.

5. Click Apply button to apply the condition.

Removing Conditions in FrameMaker
If you no longer want to apply a condition to content in an Adobe FrameMaker
source document, you can remove the applied condition from the content.

The following procedure provides an example of how to remove conditions from
content in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for removing conditions from content in Adobe FrameMaker
may be different in other versions of Adobe FrameMaker.

To remove a condition from content in an Adobe FrameMaker source
document

392 | Removing Condions in FrameMaker

1. In your Adobe FrameMaker source document, select the content with the
condition you want to remove.

2. On the Special menu, click Conditional Text.

3. Click Unconditional.

4. Click Apply.

Modifying Conditions in FrameMaker
You can edit the name of a condition and change the color or style assigned to a
condition in an Adobe FrameMaker source document.

The following procedure provides an example of modify conditions in Adobe
FrameMaker source documents using unstructured Adobe FrameMaker 7.2. Steps
for modifying conditions in Adobe FrameMaker may be different in other versions of
Adobe FrameMaker.

To modify a condition in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, on the Special menu, click
Conditional Text.

2. Select the condition you want to modify.

3. Click Edit Condition Tag.

4. If you want to modify the name of the condition, in the Tag field, type
the new name for the condition.

5. If you want to modify the style specified for the condition, in the Style
field, select the style you want to apply to the condition from the drop-down
list. If you do not want to use a style, select As Is.

6. If you want to modify the color specified for the condition, in the Color
field, select a color for the condition from the drop-down list. If you do not
want to use a color, select As Is

7. Click Set to modify the condition.

Showing and Hiding Conditions in
FrameMaker
You can show and hide conditions you applied in your Adobe FrameMaker source
document. You can also show all of the conditions you applied in your Adobe
FrameMaker source document. Showing all of the conditions applied allows you

Showing and Hiding Condions in FrameMaker | 393

to see where all of the conditional content is in your Adobe FrameMaker source
document.

The following procedure provides an example of how to show and hide conditions in
Adobe FrameMaker source documents using unstructured Adobe FrameMaker 7.2.
Steps for showing and hiding conditions in Adobe FrameMaker may be different in
other versions of Adobe FrameMaker.

To show and hide conditions in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, on the Special menu, click
Conditional Text.

2. Click Show/Hide.

3. If you want to show all conditions, click Show All. Showing all conditions
is helpful when you are working with a document and you want to be sure you
can see all of the content in the document.

4. If you want to show a specific condition, select it, and then click the left
arrow to move it to the Show list on the left.

5. If you want to hide a specific condition, select it, and then click the right
arrow to move it to the Hide list on the right.

6. Click Set.

Using Passthrough Conditions in
FrameMaker
A passthrough condition is a condition you apply to content that you do not
want ePublisher to process when you generate output. For example, if you have
embedded multimedia files in your source documents, such as Audio Video
Interleave files (.avi) or Adobe Software Flash files (.swf), you can apply a
passthrough condition to the code so that ePublisher does not process the code.

The following example shows .avi code to which you can apply a passthrough
condition.

<embed src="sample.avi" width="400"
 height="300" pluginspage=";>
</embed>

The following example shows .swf code to which you can apply a passthrough
condition.

<embed src="sample.swf" width="400"
 height="300" pluginspage="

394 | Using Passthrough Condions in FrameMaker

http://www.macromedia.com/shockwave/download/index.cgi?
P1_Prod_Version=ShockwaveFlash";>

</embed>

If you have code in your Adobe FrameMaker source documents that you do not
want ePublisher to process, create a passthrough condition and then apply the
passthrough condition to the code.

Typically you use a passthrough condition defined in an Adobe FrameMaker
template by a Stationery designer. You import this condition into your Adobe
FrameMaker source document from an Adobe FrameMaker template. After you
import the passthrough condition into your source document from the template,
you apply the passthrough condition to the content as appropriate.

Typically you should not need to create a passthrough condition in your Adobe
FrameMaker source file if you use an Adobe FrameMaker template created by a
Stationery designer. However, in some cases you may need to create a passthrough
condition in your Adobe FrameMaker source document if you do not have an
Adobe FrameMaker template that includes a passthrough condition you need for
a project. If you need to create a passthrough condition that is not available in
your Adobe FrameMaker template, use native Adobe FrameMaker functionality to
create the condition. For more information about creating a condition and applying
a condition, see “Creating Conditions in FrameMaker” and “Removing Conditions in
FrameMaker”.

You can also use Passthrough markers and the Passthrough paragraph styles and
character styles options to insert content directly into your output without being
transformed and coded for your output.

Deleting Conditions in FrameMaker
Delete a condition in an Adobe FrameMaker source document when you no longer
want to apply the condition to content in the source document.

The following procedure provides an example of how to delete conditions in Adobe
FrameMaker source documents using unstructured Adobe FrameMaker 7.2. Steps
for deleting conditions in Adobe FrameMaker may be different in other versions of
Adobe FrameMaker.

To delete a condition in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, on the Special menu, click
Conditional Text.

2. Select the condition you want to delete.

3. Click Edit Condition Tag.

4. Click Delete.

Deleng Condions in FrameMaker | 395

Conditional Output Using Expressions in
FrameMaker
Adobe FrameMaker 8.0 introduced ways to use Boolean Expressions (using the
terms AND, OR, or Not) in condional text, for exmaple WebHelp AND PDF. To do
this, you first create the conditions, and then use the Build Expression button to
create this.

The following procedure provides an example of how to use Expressions in Adobe
FrameMaker source documents using unstructured Adobe FrameMaker 9. Steps
for deleting conditions in Adobe FrameMaker may be different in other versions of
Adobe FrameMaker.

To build an Expression in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, on the Special menu, click
Conditional Text -> Show/Hide Conditional Text

2. Click button Build Expression

3. Click desired condition and the arrow button to add it to the Expression

4. Separate the conditions by clicking the buttons for “AND” “OR” or “NOT”

5. When finished select Set so that this Expression will be able to be selected
in the Expression dropdown located in the Show/Hide Conditional Text
window

6. Go to Special -> Conditional Text -> Show/Hide Conditional Text and
select the Show as per Expression radio button

7. Select the desired text you want to apply the expression and hit Apply

8. Save your source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. In Output Explorer, verify ePublisher created an output file using the file name
you specified. For more information, see “Viewing Output in Output Explorer”.

Specifying Output File Names in
FrameMaker
By default, ePublisher automatically assigns file names to your generated output
files for topics (pages) and for embedded image (graphic) output files.

396 | Specifying Output File Names in FrameMaker

Note: If you insert your images by reference in Adobe FrameMaker, ePublisher
preserves the original file names. For more information, see “Working with
Images in FrameMaker”.

You can customize this naming convention using one of the following methods:

Inserting Filename markers into your source documents

Specifying the topic (page) and image (graphic) naming patterns for
ePublisher to use in the target settings for your output

This section explains how you can specify output file names in your FrameMaker
source documents using Filename markers. For more information about using target
settings to specify output file names using page and image naming patterns, see
“Specifying Page, Image, and Table File Naming Patterns”.

To specify a file name for a page or image output file using Filename markers,
your Stationery and FrameMaker template must have the Filename marker type
configured.

The following procedure provides an example of how to specify page and
embedded image output file names in Adobe FrameMaker source documents using
unstructured Adobe FrameMaker 7.2. Steps for specifying page and embedded
image output file names in Adobe FrameMaker may be different in other versions of
Adobe FrameMaker.

To specify page and embedded image output file names in an Adobe
FrameMaker source document

1. If you want to insert a Filename marker for a page output file,
complete the following steps:

a. In your Adobe FrameMaker source document, locate the page for
the topic to which you want to assign a specific filename. For more
information about creating pages using page breaks, see “Specifying
Page Breaks Settings”.

b. Insert your cursor at the beginning of the first paragraph on the page.

2. If you want to insert a Filename marker for an embedded image
output file, complete the following steps:

a. In your Adobe FrameMaker source document, locate the embedded
image for which you want to assign the output graphic file.

b. On the Graphics menu, click Tools to display the graphic tools palette.

c. Click the Text Frame icon.

Specifying Output File Names in FrameMaker | 397

d. Drag the cursor across the image to draw a text frame over the image.

e. In the Create New Text Frame window, in the Number field, type 1 , and
then click Set.

f. Click outside of the image, and then insert your cursor in the text frame.

3. In Adobe FrameMaker, on the Special menu, click Marker.

4. In the Marker Type field, select Filename from the drop-down list.

5. If the Filename marker type is not on the list, check with the Stationery
designer to obtain the name of the marker type the Stationery designer
created to support this functionality and then use the marker type specified by
the Stationery designer. For more information, refer to “Implementing Online
Features in FrameMaker”.

6. In the Marker Text field, type the file name you want to assign to the output
file. Do not include the output file extension when you type the Filename
marker text.

7. Click New Marker.

8. Save your source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. In Output Explorer, verify ePublisher created an output file using the file name
you specified. For more information, see “Viewing Output in Output Explorer”.

Creating Context-Sensitive Help in
FrameMaker
This section explains how you can use ePublisher to create links to context-sensitive
help content in Adobe FrameMaker source documents.

Context-Sensitive Help in FrameMaker
Context-sensitive help links provide content based on the context of what the user
is doing. In many cases, this help content is based on the window that is open and
active. For example, the Help button on a window in a software product can open a
specific Help topic that provides important information about the window:

What the window allows you to do

Brief concepts needed to understand the window

398 | Context-Sensive Help in FrameMaker

Guidance for how to use the window

Descriptions about each field on the window, valid values, and related fields

Links to related topics, such as concepts and tasks related to the window

The Help topic can also be embedded in the window itself, such as an HTML pane
that displays the content of the Help topic. Providing this content when and where
the user needs it, without requiring the user to search through the help, keeps
the user productive and focused. This type of help also makes the product more
intuitive by providing answers when and where needed.

There are several methods for creating context-sensitive Help. In addition, output
formats use different mechanisms to support context-sensitive Help. You can
reference a topic in the following ways:

File name

Use a Filename marker to assign a file name to a topic. Each topic can have
no more than one Filename marker by default. However, you can create a
custom mapping mechanism using file names. Then, you can open the specific
topic with that file name. However, if your file naming changes, you need
to change the link to the topic. This file naming approach delivers context-
sensitive help capabilities in output formats that do not provide a mapping
mechanism.

Internal identifier (topic alias)

Use a TopicAlias marker to define an internal identifier for each topic. The
benefit of using an internal identifier is that it allows file names to change
without impacting the links from the product. The writer inserts this marker
in a topic and specifies a unique value for that topic. Then, the mapping
mechanism of your output format determines how that internal identifier is
supported. Some output formats, such as HTML Help, use a mapping file that
defines these topic aliases.

To simplify the coding of your source documents, the Stationery designer can also
configure your Stationery to define both the file name and the topic alias for each
topic file.

Before you begin to insert Filename markers or TopicAlias markers into your source
documents, consult with your Stationery designer. Confirm that your Stationery
supports context-sensitive help links, and discuss with your Stationery designer the
type of marker you should use to define context-sensitive help link in your source
documents.

If you generate Eclipse Help output, you also can choose the topic description
you want to display for each context-sensitive link. When you use a TopicAlias
marker to create context-sensitive links, Eclipse creates a contexts.xml file

Context-Sensive Help in FrameMaker | 399

that lists all of the context IDs for the Eclipse Help system you created using
TopicAlias markers. In the contexts.xml file, Eclipse also provides a description
of the context-sensitive link. By default, the description Eclipse provides for the
context-sensitive link is the text of the first paragraph of the topic. However, if
you want to specify a different description for the context-sensitive link, you can
do this by using the TopicDescription marker. For more information about using
the TopicDescription marker, see “Specifying Context-Sensitive Help Links in
FrameMaker”.

Planning for Context-Sensitive Help in
FrameMaker
Creating context-sensitive help requires you to collaborate with application
developers. Because topic IDs and map numbers must be embedded in both
the software application and in your source documents, you and the application
developers must agree in advance on the values to use.

Before you create context-sensitive help topics, first confirm with your application
developers that the application supports context-sensitive help. Then work with
your application developers to decide how to choose the topic ID for each context-
sensitive help topic:

You choose the topic IDs

You can choose a set of topic IDs and embed them in your source documents
using TopicAlias markers. When you generate output, ePublisher can generate
a mapping file using those topic IDs and assign a unique number to each topic
ID. You can provide the generated mapping file to your application developers,
who can embed the topic IDs in the application code. You can then manually
maintain this mapping file, or you can allow ePublisher to generate a new file
each time you generate the help. Remember to give the updated help system
and mapping file to your application developers each time.

Your developers choose the topic IDs

Your application developers can choose a set of topic IDs and embed them in
the application code. Then, you can get a copy of the mapping file from your
application developers, specify this mapping file in your project settings, and
embed the topic IDs in your source documents using TopicAlias markers. In
this case, ePublisher does not generate the mapping file.

Before you begin to implement context-sensitive help, meet with your application
developers to select one of these methods for assigning the topic IDs to use for
context-sensitive help links. Once you choose a set of topic IDs, embed them in
your source documents using TopicAlias markers and do not change them.

400 | Planning for Context-Sensive Help in FrameMaker

Specifying Context-Sensitive Help Links in
FrameMaker
You can use TopicAlias markers that contain topic IDs, or Filename markers that
specify file names, to create context-sensitive help. If your output format supports
the use of mapping files and topic IDs, typically you use TopicAlias markers to
create context-sensitive help. If your output format does not support the use of
mapping files and topic IDs, typically you use Filename markers to create context-
sensitive help.

If you are generating Eclipse Help, you can also choose to specify a topic
description for each context-sensitive help link your created using a TopicAlias
marker by using a TopicDescription marker in conjunction with the TopicAlias
marker. For more information about how TopicAlias markers and TopicDescription
markers can work together when generating Eclipse Help, see “Context-Sensitive
Help in FrameMaker”.

To specify a context-sensitive help link, your Stationery and template must have a
TopicAlias or Filename marker type configured. If you are generating Eclipse Help
and you want to be able to specify topic descriptions for your context-sensitive help
links, your Stationery and template must also have a TopicDescription marker type
configured. Consult with the Stationery designer to determine which marker type
you should use to create context-sensitive help links and topic descriptions in your
source documents.

The following procedure provides an example of how to create context-sensitive
help links and topic descriptions in Adobe FrameMaker source documents using
unstructured Adobe FrameMaker 7.2. Steps for creating context-sensitive help links
in Adobe FrameMaker may be different in other versions of Adobe FrameMaker.

To create a context-sensitive help link in an Adobe FrameMaker source
document

1. Open the Adobe FrameMaker source document that contains the context-
sensitive topic you want to link to when users click a help button or help icon
from within an application.

2. Insert your cursor at the beginning of the topic or paragraph in which you
want to link.

3. On the Special menu, click Marker.

4. In the Marker Type field, select the marker type the Stationery designer
configured your Stationery to support from the drop-down list. For example,
select TopicAlias or Filename.

Specifying Context-Sensive Help Links in FrameMaker | 401

5. If the TopicAlias or Filename marker type is not on the list, check
with the Stationery designer to obtain the name of the marker type the
Stationery designer created to support this functionality and then use the
marker type specified by the Stationery designer. For more information, refer
to “Implementing Online Features in FrameMaker”.

6. In the Marker Text field, type the topic ID or file name you want to use for
the context-sensitive help link. Specify topic IDs or file names that met the
following guidelines:

Must be unique

Must begin with an alphabetical character

May contain alphanumeric characters

May not contain special characters or spaces, with the exception of
underscores (_)

7. Click New Marker.

8. If you are generating Eclipse Help and you want to specify topic
descriptions for each context-sensitive help link you are creating,
complete the following steps:

a. Insert your cursor in the topic after the TopicAlias marker you inserted
for the Eclipse context-sensitive help topic.

b. On the Special menu, click Marker.

c. In the Marker Type field, select TopicDescription marker type from
the drop-down list.

a. If the TopicDescription marker type is not on the list, check
with the Stationery designer to obtain the name of the marker type
the Stationery designer created to support this functionality and then
use the marker type specified by the Stationery designer. For more
information, refer to “Implementing Online Features in FrameMaker”.

b. In the Marker Text field, type the topic description you want to use.

c. Click New Marker.

9. Save your source Adobe FrameMaker source document.

10. Generate output for your project. For more information, see “Generating
Output”.

11. In Output Explorer, complete the following steps:

402 | Specifying Context-Sensive Help Links in FrameMaker

a. Verify that ePublisher inserted the topic ID into the map file when it
generated output.

b. If you generated Eclipse Help and specified topic descriptions for
your context-sensitive help topics, verify that the contents.xml
file for your Eclipse Help system contains the topic descriptions you
specified for context-sensitive help topics.

c. Test the generated output using the application and verify that the
application links to the appropriate context-sensitive help topic. This
testing ensures the context-sensitive help link you created displays
correctly within the application.

Creating Popup Windows in
FrameMaker
A popup window is a window that is smaller than standard windows and typically
does not contain some of the standard window features such as tool bars or status
bars. Popup windows display when users hover over or click on a link. The popup
window closes automatically as soon as the users click somewhere else.

A typical use of popup windows is to display glossary terms. For example, in printed
documentation, terms and definitions are typically grouped in a separate glossary
document. However, in online content, you can display glossary definitions in popup
windows. With glossary popup windows, users can choose whether or not they want
to view the definition of a term.

You create popup windows by creating a link between the word or phrase in a topic
and the content you want to display in the popup window. After you create the
link, you then insert Popup markers or apply Popup paragraph styles to define the
content you want to display in the popup window.

If the Stationery designer configured the Stationery to support popup windows
using markers, you use the following Popup markers to create popup windows:

Popup

Specifies the start of the content to include in a popup window. The content
displays in a popup window when users hover over or click on the link. In
some output formats users can also view the content in a standard help
topic window in addition to viewing the content in a popup window. For
example, if you insert a Popup marker in front of a glossary definition, the
glossary definition displays in both a popup window and in a glossary topic
that contains the definition.

PopupEnd

Creang Popup Windows in FrameMaker | 403

Specifies the end of the content to display in the popup window.

PopupOnly

Specifies that the popup content displays only through a popup window. For
example, if you insert a PopupOnly marker in front of a glossary definition,
the glossary definition displays only in a popup window.

If the Stationery designer configured the Stationery to support popup windows
using paragraph formats, you use the following paragraph formats to create popup
windows:

Popup and Popup Append paragraph behaviors

Specifies that content displays both in popup windows and in standard
help topics. You apply the Popup paragraph format to the first paragraph of
content you want displayed in the popup window. If you have more than one
paragraph of content you want to display, you apply the Popup Append format
to the additional paragraphs.

For example, if you apply a glossary term and glossary definitions format for a
glossary using the Popup and Popup Append format, the terms and definitions
in your output display in both a popup window and in a glossary topic that
contains the definitions.

Popup Only and Popup Only Append paragraph behaviors

Specifies that content displays only in popup windows. You apply the Popup
Only paragraph format to the first paragraph of content you want displayed
in the popup window. If you have more than one paragraph of content you
want to display, you apply the Popup Only Append format to the additional
paragraphs.

For example, if you apply a glossary term and glossary definition format for
a glossary using the Popup Only and Popup Only Append paragraph format,
the terms and definitions in your output display in only popup windows. The
content is not displayed in an additional glossary topic that contains the
definitions.

Creating Popup Window Links in
FrameMaker
Your first step in creating a popup window is to create a link between a word or
phrase in a topic and the popup content you want to display when users hover
over or click the link. Use native Adobe FrameMaker functionality to create a link
between the word or phrase in a topic and the content you want to display in

404 | Creang Popup Window Links in FrameMaker

a popup window. You can create a link in Adobe FrameMaker by using a cross-
reference or by using hypertext markers.

Before you create popup window links, verify that your output format supports this
feature.

The following procedure provides an example of how to create a popup window
link in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for creating links in Adobe FrameMaker may be different in
other versions of Adobe FrameMaker.

To create a link between a word or phrase and popup content in an Adobe
FrameMaker source document

1. In you Adobe FrameMaker source document, locate the text you want to
create a link to and display in the popup window.

2. If you want to create a link that includes the link target text, create the
link using a cross-reference by completing the following steps:

a. Select the text for which you want to create a link.

b. On the Special menu, click Cross-Reference.

c. In the Document field, select the document that contains the content to
which you want to link.

d. In the Paragraph Tags field, select the paragraph tag used for the
content to which you want to link.

e. In the Paragraphs field, select the paragraph to which you want to link.

f. In the Format field, select the appropriate format for the link. For
example, if you are creating a link to a glossary term, select a glossary
term cross-reference format.

g. Click Replace.

3. If you want to create a link that does not include the link target text,
create the link using a hypertext marker by completing the following steps:

a. Insert your cursor in front of the link target text.

b. On the Special menu, click Marker.

c. In the Marker Type field, click Hypertext.

d. In the Marker Text field, newlink linkname or newlink
filename:linkname, where linkname is the name of the named
destination for the link, and filename is the name of the file that

Creang Popup Window Links in FrameMaker | 405

contains the link, if the link is in a different Adobe FrameMaker source
document. To make maintenance easy, create short link names that use
alphanumeric, lowercase characters.

e. Click New Marker.

f. Insert your cursor in front of the word or phrase for which you want to
create a link.

a. On the Special menu, click Marker.

b. In the Marker Type field, select Hypertext from the list.

c. In the Marker Text field, type gotolink linkname or gotolink
filename:linkname, where linkname is the name of the named
destination you created for the link, and filename is the name of the
file that contains the link, if the link is in a different Adobe FrameMaker
source document.

d. Click New Marker.

e. Select the word or phrase for which you want to create a link. The
selected area must contain the both text and the hypertext marker you
created.

f. Apply a link character format to the word or phrase. If you do not know
which character format to use for links, consult the Stationery designer.

4. Save your Adobe FrameMaker source document.

After you create a link between a word or phrase in a topic and the popup content
you want to display in the popup window, define the content you want to display in
the popup window using one of the following methods:

Create popup windows using Popup markers. For more information, see “Using
Markers to Create Popup Windows in FrameMaker”.

Create popup windows using Popup paragraph formats. For more information,
see “Using Paragraph Formats to Create Popup Windows in FrameMaker”.

Using Markers to Create Popup Windows in
FrameMaker
You can insert Popup markers into your Adobe FrameMaker source documents
to create popup windows. To use Popup markers to create popup windows, your
Stationery and FrameMaker template must have the following items configured:

Popup marker type

406 | Using Markers to Create Popup Windows in FrameMaker

PopupEnd marker type

PopupOnly marker type

Your output format must also support this feature.

The following procedure provides an example of how to insert Popup markers in
Adobe FrameMaker source documents using unstructured Adobe FrameMaker 7.2.
Steps for inserting Popup markers in Adobe FrameMaker may be different in other
versions of Adobe FrameMaker.

Note: Popup content is created from whole paragraphs. You cannot include a
subset of a paragraph in a popup.

To use popup markers to create popup windows in an Adobe FrameMaker
source document

1. In your Adobe FrameMaker source document, create a link between a word or
phrase in the topic and the content you want to display in the popup window.
For more information, see “Creating Popup Window Links in FrameMaker”.

2. Insert your cursor in front of the text you want to display in the popup
window.

3. On the Special menu, click Marker.

4. If you want the popup content to display in both a popup window and
in a standard help topic, in the Marker Type field select Popup from the
drop-down list.

5. If you want the popup content to display only in a popup window, in
the Marker Type field select PopupOnly from the drop-down list.

6. If the Popup or PopupOnly marker type is not on the list, check with
the Stationery designer to obtain the name of the marker type the Stationery
designer created to support this functionality and then use the marker
type specified by the Stationery designer. For more information, refer to
“Implementing Online Features in FrameMaker”.

7. In the Marker Text field, do not enter any text. You do not need to enter any
text in this field when you insert a Popup or PopupOnly marker.

8. Click New Marker.

9. Specify where you want the popup content to end by completing the following
steps:

a. Insert your cursor at the end of the content you want to display in the
popup window.

Using Markers to Create Popup Windows in FrameMaker | 407

b. On the Special menu, click Marker.

c. In the Marker Type field, select PopupEnd from the drop-down list.

d. If the PopupEnd marker type is not on the list, check with
the Stationery designer to obtain the name of the marker type the
Stationery designer created to support this functionality and then
use the marker type specified by the Stationery designer. For more
information, refer to “Implementing Online Features in FrameMaker”.

e. In the Marker Text field, do not enter any text. You do not need to
enter any text in this field when you insert a PopupEnd marker.

f. Click New Marker.

10. Save your Adobe FrameMaker source document.

11. Generate output for your project. For more information, see “Generating
Output”.

12. In Output Explorer, go to the page where you created the popup window and
verify that ePublisher created the popup window and that the popup window
displays the content you specified. For more information, see “Viewing Output
in Output Explorer”.

Using Paragraph Formats to Create Popup
Windows in FrameMaker
You can use Popup paragraph formats in your Adobe FrameMaker source documents
to create popup windows. To use Popup paragraph formats to create popup
windows, your Stationery and FrameMaker template must have the following items
configured:

Popup and Popup Append paragraph formats if you want your content to
display both in popup windows and in standard help topics.

Popup Only and Popup Only Append paragraph formats if you want your
content to display only in popup windows.

Your output format must also support this feature.

The following procedure provides an example of how to use Popup paragraph
formats to create popup windows in Adobe FrameMaker source documents using
unstructured Adobe FrameMaker 7.2. Steps for using Popup paragraph formats to
create popup windows in Adobe FrameMaker may be different in other versions of
Adobe FrameMaker.

408 | Using Paragraph Formats to Create Popup Windows in FrameMaker

To create popup windows using Popup paragraph formats in an Adobe
FrameMaker source document

1. In your Adobe FrameMaker source document, create a link between a word or
phrase in the topic and the content you want to display in the popup window.
For more information, see “Creating Popup Window Links in FrameMaker”.

2. Apply the appropriate Popup paragraph format to the popup content you want
to display in the popup window.

3. Save your Adobe FrameMaker source document.

4. Generate output for your project. For more information, see “Generating
Output”.

5. In Output Explorer, go to the page where you created the popup window and
verify that ePublisher created the popup window and that the popup window
displays the content you specified. For more information, see “Viewing Output
in Output Explorer”.

Creating Expand/Collapse Sections
(Drop-Down Hotspots) in FrameMaker
You can create sections of content that expand and collapse when you click a link
or hot spot. This structure allows you to create items, such as tasks with numbered
procedures, bulleted lists, or definitions, that are easy to scan. Users can then
expand individual items to display additional information.

Hot spots for expand/collapse sections initially display in one of the following states:

The content is initially collapsed and will expand beneath the hotspot when
the user clicks the hotspot. Clicking the hotspot a second time causes the
expanded content to return to its original collapsed state.

The content is initially expanded and will collapse or disappear from beneath
the hotspot when the user clicks the hotspot.

You use an Expand/Collapse paragraph or table format to start expand/collapse
sections and a DropDownEnd marker to specify where the content in the expand/
collapse section ends. The Stationery defines whether the sections should initially
be expanded (shown) or collapsed (hidden) and the image used to show the state
of the section.

To create expand/collapse sections, your Stationery and FrameMaker template must
have the following items configured:

An Expand/Collapse paragraph or table format

Creang Expand/Collapse Secons (Drop-Down Hotspots) in FrameMaker | 409

A DropDownEnd marker

Your output format must also support this feature.

The following procedure provides an example of how to create expand/collapse
sections in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for creating expand/collapse sections in Adobe FrameMaker
may be different in other versions of Adobe FrameMaker.

To create an expand/collapse section in an Adobe FrameMaker source
document

1. In your Adobe FrameMaker source document, identify a topic that contains
text for which you want to create an expand/collapse section.

2. Apply an Expand/Collapse paragraph format to the text you want users to
click to expand or collapse content.

For example, in the following sample procedure, you could apply the Expand/
Collapse paragraph format to the To open a project text.

To open a project

a. On the File menu, click Open.

b. Browse to the location of the project on your local computer.

c. Select the project, and then click Open.

3. Insert your cursor at the end of the content you want to display in the
expand/collapse section.

For example, in the following sample procedure, you would insert your cursor
after the period in the last sentence of the procedure, Select the project, and
then click Open.

To open a project

a. On the File menu, click Open.

b. Browse to the location of the project on your local computer.

c. Select the project, and then click Open.

4. On the Special menu, click Marker.

5. In the Marker Type field, select DropDownEnd from the drop-down list.

410 | Creang Expand/Collapse Secons (Drop-Down Hotspots) in FrameMaker

6. If the DropDownEnd marker type is not on the list, check with the
Stationery designer to obtain the name of the marker type the Stationery
designer created to support this functionality and then use the marker
type specified by the Stationery designer. For more information, refer to
“Implementing Online Features in FrameMaker”.

7. In the Marker Text field, do not enter any text. You do not need to enter any
text in this field when you insert a DropDownEnd marker.

8. Click New Marker.

9. Save your Adobe FrameMaker source document.

10. Generate output for your project. For more information, see “Generating
Output”.

11. In Output Explorer, go to the page where you created the expand/collapse
section and verify that ePublisher created the expand/collapse section and
that the expand/collapse section displays the content you specified. For more
information, see “Viewing Output in Output Explorer”.

Creating Related Topics in FrameMaker
Related topics provide a list of other topics that may be of interest to the user
viewing the current topic. For example, you could have a section called Creating
Web Pages in your help. You may also have many other topics, such as HTML Tags
and Cascading Style Sheets, that related to creating Web pages. Identifying these
related topics for users can help them find the information they need and identify
additional topics to consider. However, providing these types of links as cross-
references within the content itself may not be the most efficient way to present the
information. By utilizing related topics links, you combine the capabilities of cross-
references with the efficiency of a related topics button.

Related topics and See Also links provide similar capabilities, but there are several
important differences:

Related topics can link to headings in a Help system that do not start a new
page.

Relate topics links are static and defined in the source documents as links.
You must have all the source documents to create the link and generate the
output.

If a related topics list contains a broken link in the source document, that link
is broken in the generated output. In a See Also link list, the broken link is not
included in the output.

Creang Related Topics in FrameMaker | 411

The Stationery designer can configure related topics to display in the following
ways:

Included as a list in the topic itself.

Displayed in a popup window when the user clicks a button, as show in the
following figure.

Note: If a related topic link is broken in the source document, in most cases that
link is broken in the generated output. WebWorks Help and WebWorks Reverb
provide an additional feature by removing broken links from related topics
lists that are displayed in a popup window when a user clicks the Related
Topics button.

To create related topics links, your Stationery and FrameMaker template must have
a Related Topics paragraph style configured. Your output format must also support
this feature.

The following procedure provides an example of how to create related topics links in
Adobe FrameMaker source documents using unstructured Adobe FrameMaker 7.2.

412 | Creang Related Topics in FrameMaker

Steps for creating related topics links in Adobe FrameMaker may be different in
other versions of Adobe FrameMaker.

To create a related topics list in an Adobe FrameMaker source document

1. Identify the topic in which you would like to insert a related topics list.

2. Identify the different topics you want to link to from this topic.

Note: Generally, you should only create one related topics list for each section
of your source document that corresponds to a help topic. For example,
if the Stationery designer specified in your Stationery that there will be
a page break at each Heading 1 section, then you should only create
one related topics list for each Heading 1 section within your source
document.

3. Create a cross-reference to each topic you want to include in the related
topics list by completing the following steps:

a. Insert your cursor in the location in your Adobe FrameMaker source
document where you want to insert the link to the related topic.

b. On the Special menu, click Cross-Reference.

c. In the Document field, select the source document that contains the
topic to which you want to link.

d. In the Source Type field, click Paragraphs.

e. In the Paragraph Tags field click the paragraph tag used by the topic
to which you want to link.

f. In the Paragraphs field, select the topic to which you want to link.

g. In the Format field, select the format you want to use for the cross-
reference.

h. Click Insert.

4. Apply the Related Topic paragraph format to the cross-references in your
related topics list.

5. If you want to display the list of related topics in only your generated
output, apply an OnlineOnly condition to the list of related topics. For more
information about applying conditions, refer to “Applying Conditions in
FrameMaker”.

6. Save your Adobe FrameMaker source document.

Creang Related Topics in FrameMaker | 413

7. Generate output for your project. For more information, see “Generating
Output”.

8. In Output Explorer, go to the page where you created the related topics list
and verify that ePublisher created the related topics and that the related
topics list displays the topics you specified. For more information, see
“Viewing Output in Output Explorer”.

Creating See Also Links in FrameMaker
See Also links, also known as ALinks, or associative links, are links that may be of
interest to the user viewing the current topic. These links use internal identifiers to
specify the links and the link list is built dynamically based on the topics available
when the user clicks to display the links. See Also links are important to use with
larger help sets and merged help sets.

Related topics and See Also links provide similar capabilities, but there are several
important differences:

See Also links must link to formats that start a new topic, such as a heading.

See Also links are dynamic and the lists of links are built at display time
instead of during help generation.

Since see Also link lists are dynamically built, they do not include links to
topics that are not available when the user displays the links. If a related
topics list contains a broken link in the source document, that link is broken in
the generated output for most output formats.

See Also links are useful if you plan to merge help systems. For example, if you
have a multiple help systems that you merge into one main help system at run time
and if your topics in the merged help systems contain See Also keywords that are
also used in the main help system, links to those topics are included in the See Also
lists in the main project.

You can create See Also links as buttons or as inline text links in Microsoft HTML
Help and WebWorks Help. The following example shows how the two different types
of See Also links display in a Microsoft HTML Help system.

414 | Creang See Also Links in FrameMaker

Create See Also links by applying the See Also paragraph format or character
format to text in your Adobe FrameMaker source documents and inserting markers
into your Adobe FrameMaker source documents. To create See Also links, your
Stationery and template must have the following items configured:

See Also paragraph format if you want to create See Also links with buttons

See Also paragraph format if you want to create see Also links as inline text
links

SeeAlsoKeyword marker type

SeeAlsoLink marker type

SeeAlsoLinkDisplay marker type if you generate Microsoft HTML Help and you
want to display the target topics in a popup menu

SeeAlsoLinkWindowType marker type if you generate Microsoft HTML Help and
you want to display the target topics in a custom window

The following procedure provides an example of how to create See Also links in
Adobe FrameMaker source documents using unstructured Adobe FrameMaker 7.2.
Steps for creating See Also links in Adobe FrameMaker may be different in other
versions of Adobe FrameMaker.

To create a See Also link in an Adobe FrameMaker source document

1. Identify each topic to which you want to link from a See Also link, and then
complete the following steps for each topic:

a. Insert your cursor into the topic to which you want to link.

b. On the Special menu, click Marker.

Creang See Also Links in FrameMaker | 415

c. In the Marker Type field, select SeeAlsoKeyword from the drop-down
list.

2. If the SeeAlsoKeyword marker type is not on the list, check with the
Stationery designer to obtain the name of the marker type the Stationery
designer created to support this functionality and then use the marker
type specified by the Stationery designer. For more information, refer to
“Implementing Online Features in FrameMaker”.

3. In the Marker Text field, type a text string that is a unique identifier for the
topic.

For example, if you have a unique topic called About WebWorks Help, type
AboutWebWorks help in the Marker Text field.

4. Click New Marker.

5. Identify the topic where you want to insert a list of See Also links.

6. Enter the text you want to display for the See Also button or for the See Also
inline text link on a separate line in the source document where you want the
See Also button or inline text link to display.

For example, if you want to create a button with the text See Also on the
button, type See Also . If you want to create inline text with the text
Additional Information for the link, type Additional Information .

7. If you want to create a See Also button for your See Also links, apply
the See Also paragraph format to the text you want to display in the See Also
button.

8. If you want to create a See Also inline text link for your See Also
links, apply the See Also character format to the text you want to display for
the See Also inline text link.

9. Apply an OnlineOnly condition to the See Also text. Applying an OnlineOnly
condition to the See Also button or See Also inline text displays the See Also
link in your generated output, but does not display the See Also button or link
in your printed content.

10. Insert your cursor inside the text you specified for the See Also button or See
Also inline text link.

11. On the Special menu, click Marker.

12. In the Marker Type field, select SeeAlsoLink from the drop-down list.

13. If the SeeAlsoLink marker type is not on the list, check with the
Stationery designer to obtain the name of the marker type the Stationery

416 | Creang See Also Links in FrameMaker

designer created to support this functionality and then use the marker
type specified by the Stationery designer. For more information, refer to
“Implementing Online Features in FrameMaker”.

14. In the Marker Text field, type the text string that is a unique identifier for
the topic to which you want to link. This text string is the text string you
typed when you created the SeeAlsoKeyword marker for the topic.

For example, if you have a unique topic called About WebWorks Help, type
AboutWebWorks help in the Marker Text field.

15. Click New Marker.

16. Continue to insert SeeAlsoLink markers for each topic you want display when
users click the See Also button or inline text link.

17. If you generate Microsoft HTML Help output and you want to display
the target topics in a popup menu, complete the following steps:

a. Insert your cursor inside the text you specified for the See Also button
or inline text link.

b. In the Marker Type field, select SeeAlsoLinkDisplayType from the
drop-down list.

Note: This marker type is supported only in Microsoft HTML Help.

c. If the SeeAlsoLinkDisplayType marker type is not on the list,
check with the Stationery designer to obtain the name of the marker
type the Stationery designer created to support this functionality and
then use the marker type specified by the Stationery designer. For more
information, refer to “Implementing Online Features in FrameMaker”.

d. In the Marker Text field, type menu . By default, Microsoft HTML Help
displays See Also links in the Topics Found window. To display See Also
links in a popup menu, specify menu for the marker value.

e. Click New Marker.

18. If you generate Microsoft HTML Help output and you want to display
the target topics in a custom window, complete the following steps:

a. Insert your cursor inside the text you specified for the See Also button
or inline text link.

b. In the Marker Type field select SeeAlsoLinkWindowType from the
drop-down list.

Note: This marker type is supported only in Microsoft HTML Help.

Creang See Also Links in FrameMaker | 417

c. If the SeeAlsoWindowType marker type is not on the list, check
with the Stationery designer to obtain the name of the marker type
the Stationery designer created to support this functionality and then
use the marker type specified by the Stationery designer. For more
information, refer to “Implementing Online Features in FrameMaker”

d. In the Marker Text field, type menu . By default, Microsoft HTML Help
displays See Also links in the Topics Found window. To display See Also
links in a popup menu, specify menu for the marker value.

e. Click New Marker.

19. Save your Adobe FrameMaker source document.

20. Generate output for your project. For more information, see “Generating
Output”.

21. In Output Explorer, go to the page where you created the See Also links and
verify that ePublisher created the See Also button or See Also inline text and
that the See Also button or inline text displays the links you specified. For
more information, see “Viewing Output in Output Explorer”.

Creating Meta Tag Keywords in
FrameMaker
Meta tags are lines of code placed between the <head> and </head> tags in HTML
pages. Meta tags give web search engines information about the content of the
web page and how search engines should treat the web page. Users viewing web
pages do not see the meta tags, but meta tags can be used to influence the way
web pages on a web site appear in web search engine results. Users also see the
text you specify for meta tags right following the title of your page when your page
comes up in search results.

In help systems, search ranking works like ranking in an Internet search engine. If
you generate help system output, you can use meta tag keywords to specify terms
for pages for help topics where you want to improve searchability. For example,
assume that in your help system you have a topic called See Also links. However,
you know that See Also links are also sometimes referred to as ALinks, and you
think that some users of your help system may search for information about See
Also links by typing ALinks into the Search field for your help system. In this
example, you can insert ALinks as a meta tag keyword for each page that discusses
See Also links, so users who search your system for information about ALinks can
find the information they are looking for in your See Also link topics.

To assign meta tag keywords, your Stationery and template must have the
Keywords marker type configured. Your output format must also support this
feature.

418 | Creang Meta Tag Keywords in FrameMaker

The following procedure provides an example of how to create meta tag
keywords in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for creating meta tag keywords in Adobe FrameMaker may
be different in other versions of Adobe FrameMaker.

To create meta tag keywords for a page in an Adobe FrameMaker source
document

1. In your Adobe FrameMaker source document, find the first paragraph in the
page for the page for which you want to create a meta tag keyword.

2. Insert your cursor into the paragraph.

3. On the Special menu, click Marker.

4. In the Marker Type field, select Keywords from the drop-down list.

5. If the Keywords marker type is not on the drop-down list, check
with the Stationery designer to obtain the name of the marker type the
Stationery designer created to support this functionality and then use the
marker type specified by the Stationery designer. For more information, refer
to “Implementing Online Features in FrameMaker”.

6. In the Marker Text field, type the comma-delimited list of keywords that you
want search engines to use.

For example, type keyword1 , keyword2 , keyword3 , where keyword is the
keyword you want search engines to use.

7. Click New Marker.

8. Save your Adobe FrameMaker source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. In Output Explorer, verify that ePublisher inserted your meta tag keywords
correctly by completing the following steps:

a. On the View menu, click Output Explorer.

b. In the TargetName\ProjectName folder, open the page to which you
assigned meta tag keywords in Notepad, where TargetName is the name
of your target and ProjectName is the name of your project.

c. Verify that the text you specified for your meta tag displays in the meta
name attribute between in the <head> and </head> tags section of your
web page. For example, if you typed keyword1 , keyword2 , keyword3 ,

Creang Meta Tag Keywords in FrameMaker | 419

for your meta tag keywords, your meta tags in for the page should be
similar to the following entry:

<meta name="keywords" content="keyword1, keyword2,
keyword3" />

Assigning Custom Page Styles in
FrameMaker
By default, each page generated by ePublisher is associated with the default page
style defined in the Stationery used by your ePublisher project. This means that
typically you do not need to specify a page style for pages when you generate
output. However, if you want to change the page style of one page or a smaller set
of pages, you can specify the page style you want to use for a page in your Adobe
FrameMaker source document using the PageStyle marker.

For example, you may want to use one page style in your help system for all
concept and procedure topic pages, and another page style for all context-sensitive
window description topic pages in your help system. In this example, you can use
the default page style for all of your concept and procedure topic pages, and then
you can use a second custom page style defined in your Stationery for all context-
sensitive window description topic pages in your help system.

To assign custom page styles, your Stationery and template must have the
following items configured:

Custom page styles defined for your Stationery by the Stationery designer

PageStyle marker type

Your output format must also support this feature.

The following procedure provides an example of specifying custom page styles
for pages in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for specifying custom page styles for pages in Adobe
FrameMaker may be different in other versions of Adobe FrameMaker.

To specify a custom page style for a page in an Adobe FrameMaker source
document

1. In your Adobe FrameMaker source document, locate the page for the topic to
which you want to assign a page style.

2. Insert your cursor in the location on the page where you want to insert the
PageStyle marker.

420 | Assigning Custom Page Styles in FrameMaker

3. On the Special menu, click Marker.

4. In the Marker Type field, select PageStyle from the drop-down list.

5. If the PageStyle marker type is not on the list, check with the Stationery
designer to obtain the name of the marker type the Stationery designer
created to support this functionality and then use the marker type specified by
the Stationery designer. For more information, refer to “Implementing Online
Features in FrameMaker”.

6. In the Marker Text field, type the name of the custom page style the
Stationery designer configured for your Stationery.

For example, if the Stationery designer configured an page style called
BluePage in your Stationery, type BluePage .

7. Click New Marker.

8. Save your Adobe FrameMaker source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. In Output Explorer, verify ePublisher created the page using the page style
you specified by clicking on the page and verifying ePublisher applied the
page style you specified in the generated output. For more information
about viewing output files in Output Explorer, see “Viewing Output in Output
Explorer”.

Opening Topics in Custom Windows in
FrameMaker
You can open topics in custom windows in Microsoft HTML Help and Oracle Help. By
default, Microsoft HTML Help displays content in the standard Microsoft HTML Help
tri-pane window. The Stationery designer can modify the size, position, and other
characteristics of the tri-pane window in your Microsoft HTML Help project. The
Stationery designer can also define custom windows for you to use in a Microsoft
HTML Help project. If the Stationery designer defines custom windows in a Microsoft
HTML Help project, you can specify which topics you want to display in the custom
window using the WindowType marker.

By default, Oracle Help displays content in the standard Oracle Help viewer. The
Stationery designer can modify the size, position, and other characteristics of Oracle
Help windows. The Stationery designer can also define custom windows for you to
use in an Oracle Help project. If the Stationery designer defines custom windows
in an Oracle Help project, you can specify which topics you want to display in the
custom window using the WindowType marker.

Opening Topics in Custom Windows in FrameMaker | 421

For example, if you want your context-sensitive help topics to display in a different
type of window than other content, after you create a context-sensitive help topic
you can use the WindowType marker to specify that you want the context-sensitive
help topics to display in a custom window. After you assign a custom window to
a topic using the WindowType marker, the help system displays the topic in your
generated output in the custom window whenever users access the topic from the
table of contents, index, a standard hyperlink, a related topics list, or a See Also
link.

To open topics in custom windows, your Stationery and template must have the
following items configured:

Custom window styles defined for your Stationery by the Stationery designer

PageStyle marker type

Your output format must also support this feature.

The following procedure provides an example of how to specify topics open in
custom Microsoft HTML Help or Oracle Help windows in Adobe FrameMaker source
documents using unstructured Adobe FrameMaker 7.2. Steps for specifying topics
open in custom Microsoft HTML Help or Oracle Help windows in Adobe FrameMaker
may be different in other versions of Adobe FrameMaker.

To specify topics open in a custom window in an Adobe FrameMaker source
document

1. Obtain the names of custom windows configured in the Stationery you use for
your ePublisher project from the Stationery designer.

2. In your Adobe FrameMaker source document, locate the topic that you want
to open in a custom window.

3. Insert your cursor into the topic.

4. On the Special menu, click Marker.

5. In the Marker Type field, select WindowType from the drop-down list.

6. If the WindowType marker type is not on the list, check with the
Stationery designer to obtain the name of the marker type the Stationery
designer created to support this functionality and then use the marker
type specified by the Stationery designer. For more information, refer to
“Implementing Online Features in FrameMaker”.

7. In the Marker Text field, type the name of the custom window configured by
the Stationery designer that you want to specify for the topic.

8. Click New Marker.

422 | Opening Topics in Custom Windows in FrameMaker

9. Save your Adobe FrameMaker source document.

10. Generate output for your project. For more information, see “Generating
Output”.

11. In Output Explorer, verify the topic displays in the custom window you
specified for the topic. For more information about viewing output files in
Output Explorer, see “Viewing Output in Output Explorer”.

Customizing TOC Entry in FrameMaker
Use these steps to customize a TOC entry in your Reverb 2.0 output. Your
FrameMaker file must have a nested heading structure for TOC Icons to appear.

1. Right-click at the end the heading. Select Marker.

2. Select Edit from the Marker Type dropdown.

3. Type in TOCEntryClass. Click Add, then click Done.

Customizing TOC Entry in FrameMaker | 423

4. In the Marker Text window, type in the name of your custom class. In the
example, folder_icon is the class name.

424 | Customizing TOC Entry in FrameMaker

5. Save the FrameMaker document.

6. Scan the document in ePublisher Designer.

7. Open the Style Designer.

8. Open Marker Styles.

9. Locate the Marker Type Option from the Options tab and set its value to
TOC Entry Class .

10. In this example, the assigned class for the Menu TOC entry will be the value
of the marker: folder_icon.

11. Add the following to a target override of _icons.scss . Notice how the CSS
class is the name of the value given in the Marker Text Window. In this
example we change the icon color and the icon of the TOC entry. You are
able to make other customizations such as adding a border, or changing the
background color.

Customizing TOC Entry in FrameMaker | 425

 .folder_icon {

 > div > span > i {

 color: black;

 &:before {

 content: $folder_icon;

 }

 }

 }

12. Save your project and generate the output.

426 | Customizing TOC Entry in FrameMaker

Customizing Table of Contents Icons in
FrameMaker
By default, the Contents tab in a Microsoft HTML Help, Oracle Help, and WebWorks
Help uses book and page icons to identify entries. By default, the Contents tab in
Sun JavaHelp uses folder and page icons to identify entries. You can also customize
the table of contents icons.

For example, if you want to make new topics stand out by using a unique icon
specific to new books, pages, or folders, you can insert a marker into a topic and
specify the icon you want to display for the book, page, or folder in your help
system table of contents.

To customize a table of contents icon, your Stationery and template must have the
following items configured:

TOCIconHTMLHelp for Microsoft HTML Help

TOCIconOracleHelp for Oracle Help

TOCIconJavaHelp for Sun JavaHelp

TOCIconWWHelp for WebWorks Help

You can customize the appearance of table of contents icons for topics in Microsoft
HTML Help, Sun JavaHelp, Oracle Help, and WebWorks help.

The following procedure provides an example of how to customize table of contents
icons for topics in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for customizing table of contents icons for topics in Adobe
FrameMaker may be different in other versions of Adobe FrameMaker.

To specify a custom table of contents icon in an Adobe FrameMaker source
document

1. If you want to specify a custom table of contents icon for Microsoft
HTML Help, identify the number of the image you want to use for the table
of contents image for the topic in the .hhp file for your Microsoft HTML Help
project by completing the following steps:

a. On the View menu, click Output Directory.

b. Open the ProjectName folder, where ProjectName is the name of your
project.

c. Open the ProjectName.hhp file where ProjectName is the name of your
project.

Customizing Table of Contents Icons in FrameMaker | 427

d. On the Contents tab, select a table of contents entry, and then click the
Pencil icon.

e. On the Advanced tab, in the Image index field, use the up and down
arrows to identify the table of contents image you want to use for the
topic.

f. Note the number of the image you want to use for the table of contents
image for the topic.

For example, if you want to use a question mark icon with a red star for
the table of contents icon for new topics, note that the number for this
icon is 10.

g. Close HTML Help Workshop.

2. If you want to specify a custom table of contents icon for Oracle Help
or Sun JavaHelp, create the graphic file for the custom table of contents icon
in .gif format. The default graphics used as Sun JavaHelp or Oracle Help
table of contents icons are 17 x 17 pixels. The custom graphics you create for
Sun JavaHelp or Oracle Help table of contents icons should also be 17 x 17
pixels. You can assign any name to the graphic files.

3. If you want to specify a custom table of content icon for WebWorks
help, create graphics files containing the collapsed and expanded versions
of the icons you want to use, then save the graphic files in .gif format. The
default graphics used as WebWorks Help table of contents icons are 17 x 17
pixels. The custom graphics you create for WebWorks Help table of contents
icons should also be 17 x 17 pixels. You can assign any name to the graphic
files.

4. Copy the graphic files you want to use as icons in the table of contents into
the following folder:

Note: If the folder does not exist, first create the folder using the specified
folder structure and then copy the graphic files you want to use as icons
into the folder. You do not need to perform this step when specifying
custom table of contents icons for Microsoft HTML Help.

If you are generating Oracle Help, copy the graphic files you want to
use into the following folder:

ProjectName\Formats\Oracle Help\Files\images folder, where
ProjectName is the name of your project.

If you are generating Sun JavaHelp 1.1.3, copy the graphic files you
want to use into the following folder:

428 | Customizing Table of Contents Icons in FrameMaker

ProjectName\Formats\Sun Java Help 1.1.3\Files\images folder,
where ProjectName is the name of your project.

If you are generating Sun JavaHelp 2.0, copy the graphic files you
want to use into the following folder:

ProjectName\Formats\Sun Java Help 2.0\Files\images folder,
where ProjectName is the name of your project.

If you are generating WebWorks Help, in your ProjectName\Files
folder, where ProjectName is the name of your project, create a wwhelp
\images subfolder and copy the graphic files you want to use into this
folder. Your project file structure should be similar to the following
structure:

ProjectName\Files\wwhelp\images, where ProjectName is the name
of your project.

5. In your Adobe FrameMaker source document, locate the topic where you want
to use the custom table of contents icon.

6. Insert your cursor into the heading for the topic.

7. On the Special menu, click Marker.

8. In the Marker Type field, select the appropriate TOCIcon marker type from
the drop-down list.

9. If the appropriate TOCIcon marker type is not on the list, check with
the Stationery designer to obtain the name of the marker type the Stationery
designer created to support this functionality and then use the marker
type specified by the Stationery designer. For more information, refer to
“Implementing Online Features in FrameMaker”.

10. In the Marker Text field, type the following text:

If you are generating Microsoft HTML Help, type the number of the
icon that you want to use for the table of contents image.

For example, if you want to use a question mark icon with a red star for
the table of contents icon for new topics, type 10 .

If you are generating Oracle Help or Sun JavaHelp, type the
following text:

images/TOCIcon.gif

where TOCIcon.gif is the name of the table of contents icon you want
to display for the topic.

Customizing Table of Contents Icons in FrameMaker | 429

If you are generating WebWorks Help, type the following text:

c=” collapsed. gif ” e=”expanded.gif”

where collapsed. gif is the name of the icon you want to use
when the table of contents entry is collapsed, and expanded. gif
is the name of the icon you want to use when the table of contents
entry is expanded. If the table of contents entry is for a page instead
of a book, the entry will never be expanded, so you can omit the
e=”expanded.gif” portion of the entry for pages.

For example, you might create a special icon to highlight books that
are new for a particular release of your WebWorks Help system. If you
named these icons newbookopen.gif and newbookclosed.gif , you
would type the following text into the Value field:

c=”newbookclosed.gif” e=”newbookopen.gif”

11. Click New Marker.

12. Save your Adobe FrameMaker source document.

13. Generate output for your project. For more information, see “Generating
Output”.

14. In Output Explorer, verify ePublisher created the table of contents using
the table of contents icon you specified for the topic. For more information
about viewing output files in Output Explorer, see “Viewing Output in Output
Explorer”.

Specifying Context Plug-ins in
FrameMaker
You can specify Eclipse Help context plug-ins by using Context Plugin markers in
your source documents. ePublisher places the context plug-ins you specify in your
source documents in the plugin.xml file generated for each source document
group you have in Document Manager. You can then have developers use the
context plug-ins defined in plugin.xml files to call your Eclipse Help system as
appropriate from Eclipse plug-ins.

For example, assume you have the following three top-level groups in Document
Manager for your Eclipse Help system target:

Component A group - contains the source documents for ComponentA
Feature1 and ComponentA Feature2

430 | Specifying Context Plug-ins in FrameMaker

Component B group - contains the source documents for ComponentB
Feature1 and ComponentB Feature 2

Component C group - contains the source documents for ComponentC
Feature1 and ComponentC Feature 2

You insert the following Context Plugin markers into the source documents for each
group:

ComponentAFeature1 and ComponentAFeature2 Context Plugin markers in
source documents contained in the ComponentA group

ComponentBFeature1 and ComponentBFeature2 Context Plugin markers in
source documents contained in the ComponentB group

ComponentCFeature1 and ComponentCFeature2 Context Plugin markers in
source documents contained in the ComponentC group

When you generate your Eclipse Help system, ePublisher creates the following
folder structure in the ProjectName\Output\TargetName folder, where
ProjectName is the name of your ePublisher project, and TargetName is the name
of your target:

ComponentA folder, which contains a plugin.xml file with the following
entries:

plugin="ComponentAFeature1ContextPlugin"

plugin="ComponentAFeature2ContextPlugin"

ComponentB folder, which contains a plugin.xml file with the following
entries:

plugin="ComponentBFeature1ContextPlugin"

plugin="ComponentBFeature2ContextPlugin"

ComponentC folder, which contains a plugin.xml file with the following
entries:

plugin="ComponentCFeature1ContextPlugin"

plugin="ComponentCFeature2ContextPlugin"

You can then provide the context plug-in IDs in your plugin.xml files to the
appropriate Eclipse developers to use. The Eclipse developers use the context plug-
ins defined in plugin.xml files to call your Eclipse Help system as appropriate
from Eclipse plug-ins.

Specifying Context Plug-ins in FrameMaker | 431

To specify a context plug-in in an Adobe FrameMaker source document

1. Identify a topic in a source document where you want to insert the context
plug-in.

2. On the Special menu, click Marker.

3. In the Marker Type field, select Context Plugin from the drop-down list.

4. If the Context Plugin marker type is not on the list, check with the
Stationery designer to obtain the name of the marker type the Stationery
designer created to support this functionality and then use the marker
type specified by the Stationery designer. For more information, refer to
“Implementing Online Features in FrameMaker”.

5. In the Marker Text field, type the appropriate ID for the context plug-in.

Note: If you are responsible for defining the ID, ensure you supply the context
plug-in ID to your developers to use as appropriate for their Eclipse
plug-ins. If your developers define the ID, use the context plug-in ID you
obtained from your developers.

6. Click New Marker.

7. Save your Adobe FrameMaker source document.

8. Generate output for your project. For more information, see “Generating
Output”.

9. In Output Explorer, verify ePublisher generated a plugin.xml file that
contains the context plug-in IDs you specified by completing the following
steps:

a. On the View menu, click Output Directory.

b. Open the ProjectName folder, where ProjectName is the name of your
project.

c. Open the group folder for a group that contains the source documents
where you specified your context plug-in ID.

d. Open the plugin.xml file in Notepad and verify that the context plug-in
IDs you specified in your source documents are listed in the plugin.xml
file. Your context plug-in IDs should be listed in the Contexts area of
the file. Following is an example of the how the context plug-in IDs
you specified in your source documents should be displayed in the
plugin.xml file:

<!-- Contexts -->

432 | Specifying Context Plug-ins in FrameMaker

<!-- -->

<extension point="org.eclipse.help.contexts">

<contexts file="contexts.xml"
plugin="ComponentAFeature1ContextPlugin" />

</extension>

<extension point="org.eclipse.help.contexts">

<contexts file="contexts.xml"
plugin="ComponentAFeature2ContextPlugin" />

</extension>

Creating Accessible Online Content in
FrameMaker
Accessible content is content that can be easily accessed by users with certain
disabilities. This section explains how you can prepare your Adobe FrameMaker
source documents to ensure your content is accessible to users using assistive
technologies.

Accessible Content in FrameMaker
Images and tables are helpful ways to convey information to end users. However,
users with disabilities often cannot access the important information provided by
images and table layouts in online content. You should document images and other
non-text items such as table layouts so that users using assistive technologies to
access online content can access the information these items provide.

Content that must easily be accessed by people with disabilities must conform to
certain guidelines published by both the W3C and the United States government
in order to produce accessible online output, also known as Section 508 compliant
output. These guidelines are intended to help writers produce accessible content.

You can use ePublisher to help you produce online content that conforms to the
W3C Web Content Accessibility Guidelines 1.0 (WCAG), Section 508 of the U.S.
Rehabilitation Act of 1998, and the Americans with Disabilities Act (ADA). If you are
required to generate accessible content, typically you provide the following items in
your online content:

Accessible Content in FrameMaker | 433

Alternate text and descriptions for all images and image maps. For more
information, see “Assigning Alternate Text to Images and Image Maps in
FrameMaker”.

Long descriptions for all images. For more information, see “Assigning Long
Descriptions to Images in FrameMaker”.

Summaries for all tables. For more information, see “Assigning Alternate Text
(Summaries) to Tables in FrameMaker”.

You may also choose to provide the following items in your online content:

Alternate text for abbreviations. For more information, see “Assigning
Alternate Text to Abbreviations in FrameMaker”.

Alternate text for acronyms. For more information, see “Assigning Alternate
Text to Acronyms in FrameMaker”.

Citations for quotes. For more information, see “Providing Citations for Quotes
in FrameMaker”

You must prepare source documents and configure your ePublisher project in order
to create accessible content. You prepare your source documents by inserting
markers into your source documents and by applying character formats and
paragraph formats. You configure accessibility settings in your ePublisher project.
ePublisher uses the information in your source documents and your ePublisher
project to generate accessible online output.

For more information about producing accessible content and to check your content
further for compliance, see the following Web sites:

For the complete W3C note on the WCAG, visit http://www.w3c.org/TR/
WCAG10-CORE-TECHS.

For information about the related Web Accessibility Initiative, visit http://
www.w3.org/WAI.

For information about Section 508 of the U.S. Rehabilitation Act of 1998, visit
http://www.w3.org/WAI/Policy/#508.

Accessible Content Navigation in
FrameMaker
Users can navigate through the accessible content using keys on the keyboard. The
following output formats support navigation keys:

Dynamic HTML

434 | Accessible Content Navigaon in FrameMaker

http://www.w3c.org/TR/WCAG10-CORE-TECH
http://www.w3c.org/TR/WCAG10-CORE-TECH
http://www.w3.org/WAI
http://www.w3.org/WAI
http://www.w3.org/WAI/Policy/#508

Microsoft HTML Help

Oracle Help

WebWorks Help

Note: For the Dynamic HTML, navigation key behavior may vary based on the
browser the user uses. For example, in Netscape and Mozilla, users must
hold down the Alt key while pressing the navigation keys. In Internet
Explorer, users must first hold down the Alt key while pressing the
navigation key, and then press Enter.

The following table lists the how each output format supports navigation keys.

Accessible Content Navigaon in FrameMaker | 435

Navigation Key Function Format

1 Display the TOC Dynamic HTML

WebWorks Help 5.0

2 Display the Index Dynamic HTML

WebWorks Help 5.0

3 Display the Search tab WebWorks Help 5.0

4 Go to the previous page Dynamic HTML

Microsoft HTML Help

Oracle Help

WebWorks Help 5.0

If you are using
Microsoft HTML Help,
Alt+4 works only if the
topic pane has the focus.
If the topic pane does not
have the focus, you must
press Alt+0 and then Alt
+4 .

If you are using Oracle
Help, you must press
Enter after pressing Alt
+4 .

5 Go to the next page Dynamic HTML

Microsoft HTML Help
1.x

Oracle Help

WebWorks Help 5.0

436 | Accessible Content Navigaon in FrameMaker

Navigation Key Function Format

If you are using
Microsoft HTML Help,
the Alt+5 key works only
if the topic pane has the
focus. If the topic pane
does not have the focus,
you must press Al+ 0 and
then Alt +5 .

If you are using Oracle
Help, you must press
Enter after pressing Alt
+5 .

6 Shift the focus to the
related topics list displayed
at the bottom of the
current page

WebWorks Help 5.0

After you press the 6 key,
you can press Tab to cycle
through the entries in the
related topics list.

7 Display a blank feedback
e-mail (equivalent to
clicking the e-mail button
in the toolbar frame)

WebWorks Help 5.0

8 Print the current page
(equivalent to clicking the
Print button in the toolbar
frame)

WebWorks Help 5.0

9 Bookmark the current page
(equivalent to clicking the
Bookmark button in the
toolbar frame)

WebWorks Help 5.0

10 Shift the focus to the
topic frame (equivalent to
clicking within the topic
frame)

WebWorks Help 5.0

Accessible Content Navigaon in FrameMaker | 437

Validating Accessible Content in
FrameMaker
After you configure your source documents and configure the appropriate settings,
ePublisher uses Accessibility conformance reports to perform the following checks to
verify that the generated output conforms to accessibility standards:

Alternate text for all images

Alternate text for all clickable regions in all image maps

Long descriptions for all images

Summaries for all tables

ePublisher does not verify that you have provided alternate text for abbreviations
or acronyms or verify that you have included citations for quotes. For more
information about understanding and using the Accessibility conformance reports
ePublisher provides, see “Configuring Reports”, and “Generating Reports”.

Assigning Alternate Text to Images and
Image Maps in FrameMaker
This section provides information about how to create accessible images and image
maps in your generated output by assigning alternate text to images.

Image and Image Map Alternate Text in
FrameMaker
One of the largest accessibility challenges with online content today is the lack of
alternative text for images and image maps. Sight-impaired users often use screen
readers or refreshable Braille devices to read online content. However, when these
assistive technologies come across images or image maps without alternative text,
also known as alternate text, they are unable to provide users with information
about the image or image map and its meaning.

The Web Content Accessibility Guidelines require that alternate text be provided for
all images and image maps in online content. The alternate text is an image label
that describes the image or each area of the image map. Online content should
display alternate text for images and image maps when users perform the following
actions:

The user hovers the mouse pointer over an image or section of an image map.

The user browser has been configured to disable display of images and image
maps.

438 | Image and Image Map Alternate Text in FrameMaker

The user browser is a text-only browser such as Lynx.

The user uses assistive technology such as a screen reader.

The alternate text you assign to an image or sections of an image map should be
as accurate and as succinct as possible and provide users with a brief description of
the image and how the image relates to the page they are viewing. Make sure that
your alternate text conveys all of the important information related to the image
or image map section, but do not burden users with excessively long alternative
text. Screen readers or refreshable Braille devices always read the alternative text,
so if your page has several images or complex image maps with long descriptions,
it can take a long time for the assistive devices to read image-heavy pages with
long descriptions. If you need to provide a description of the image or image map
section that is more than a few words or a few short sentences, you should provide
a brief alternate text description of the image or image map section and then
assign a longer description the image using either the longdesc attribute or a
description. Once you specify a long description using the longdesc attribute, you
can also optionally display a D link next to the image. For more information about
assigning long descriptions to images, see “Assigning Long Descriptions to Images
in FrameMaker”.

Assigning Alternate Text to Images in
FrameMaker
To assign alternate text to an image, your Stationery and template must have the
ImageAltText marker type configured. Your output format must also support this
feature.

The following procedure provides an example of how to assign alternate text to
images in the most current version of FrameMaker. The Object Attribute method can
be used with newer versions of FrameMaker.

To assign alternate text to an image in an Adobe FrameMaker source
document using object attributes

1. In your Adobe FrameMaker source document, locate the anchored frame for
the image to which you want to assign alternate text.

2. In the anchored frame that contains the image to which you want to assign
alternate text, and complete the following:

a. Select the anchored frame that contains the image to which you want to
assign an alternate name.

b. On the Graphics menu, click Object Properties.

c. Click Object Attributes.

Assigning Alternate Text to Images in FrameMaker | 439

d. In the New or Changed Attribute area, in the Name field, type
ImageAltText.

e. In the Definition field, type the alternate text you want to assign to the
image. Your text cannot exceed 255 characters.

f. Click Add.

g. Click Set.

h. Click Set again to close the window.

To assign alternate text to an image in an Adobe FrameMaker source
document

1. In your Adobe FrameMaker source document, locate the anchored frame for
the image to which you want to assign alternate text.

2. In the anchored frame that contains the image to which you want to assign
alternate text, insert a text frame by completing the following steps:

a. On the Graphics menu, click Tools to display the graphic tools palette.

b. Click the Text Frame icon.

c. Drag the cursor over the portion of the image where you want to insert
the text frame that will contain the ImageAltText marker.

d. In the Create New Text Frame window, in the Number field, type 1 , and
then click Set.

e. Click outside the image, and then insert your cursor in the text frame.

3. On the Special menu, click Marker.

4. In the Marker Type field, select ImageAltText from the drop-down list.

5. If the ImageAltText marker type is not on the list, check with the
Stationery designer to obtain the name of the marker type the Stationery
designer created to support this functionality and then use the marker
type specified by the Stationery designer. For more information, refer to
“Implementing Online Features in FrameMaker”.

6. In the Marker Text field, type the alternate text you want to assign to the
image.

7. Click New Marker.

8. Save your Adobe FrameMaker source document.

440 | Assigning Alternate Text to Images in FrameMaker

9. Generate output for your project. For more information, see “Generating
Output”.

10. Verify ePublisher assigned the alternate text you specified to the image when
it generated output by completing the following steps:

a. On the View menu, click Output Directory.

b. In the TargetName folder, open the page that has the image to which
you assigned alternate text in Notepad, where TargetName is the name
of your target.

c. Verify that the alternate text you specified is included in the alt tag for
the image.

Assigning Alternate Text to Image Maps in
FrameMaker
To assign alternate text to an image, your Stationery and template must have the
ImageAreaAltText marker type configured. Your output format must also support
this feature.

The following procedure provides an example of how to assign alternate text to
an image map in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for assigning alternate text to an image map in Adobe
FrameMaker may be different in other versions of Adobe FrameMaker.

To assign alternate text for an image map in an Adobe FrameMaker source
document

1. In your Adobe FrameMaker source document, locate the anchored frame for
the image map to which you want to assign alternate text.

2. In the anchored frame that contains the image map to which you want to
assign alternate text, complete the following steps for each area of an image
map:

a. Insert your cursor into the text frame that defines a clickable region on
the image map.

b. On the Special menu, click Marker.

c. In the Marker Type field, select ImageAreaAltText from the drop-
down list.

d. If the ImageAreaAltText marker type is not on the list, check
with the Stationery designer to obtain the name of the marker type
the Stationery designer created to support this functionality and then

Assigning Alternate Text to Image Maps in FrameMaker | 441

use the marker type specified by the Stationery designer. For more
information, refer to “Implementing Online Features in FrameMaker”.

e. In the Marker Text field, type the alternate text you want to assign to
the image map area.

f. Click New Marker.

3. Save your Adobe FrameMaker source document.

4. Generate output for your project. For more information, see “Generating
Output”.

5. Verify ePublisher assigned the alternate text you specified to each area of the
image map when it generated output by completing the following steps:

a. On the View menu, click Output Directory.

b. In the TargetName folder, open the page that has the image map to
which you assigned alternate text in Notepad, where TargetName is the
name of your target.

c. Verify that the alternate text you specified is included in the alt tag for
each area of the image map.

Assigning Long Descriptions to Images in
FrameMaker
This section explains how to create accessible images in your generated output by
assigning long descriptions to images.

Image Long Descriptions in FrameMaker
The Web Content Accessibility Guidelines and Section 508 guidelines require you
to include long descriptions for each image in an HTML document. You can use the
longdesc attribute and a long descriptions stored in an external .txt file to assign
a long description to an image. When you use this approach, the long descriptions
are referenced in the HTML tag in the longdesc attribute as shown in the
following example:

<img src=“mission.gif” height=“240” width=“386” alt=“The Mission”
longdesc=“mission.txt” />

The longdesc attribute in the tag provides a link to a separate page where
a long description is available. The link is invisible to sighted users, but when a
conformant screen reader application reads the longdesc attribute, it loads the
file referenced in the longdesc attribute and reads it. In the previous example, the
screen reader would load and read the mission.txt file.

442 | Image Long Descripons in FrameMaker

ePublisher provides the following options for assigning long descriptions to images:

You can use the ImageLongDescText marker to assign a long description
to an image. With this method, you assign a long description to an image
using a description you include in a marker you insert into your source
document. For more information, see “Assigning Long Descriptions to Images
in FrameMaker”.

You can use the ImageLongDescByRef marker to assign a long description to
an image by referencing a long description saved in an external text (.txt)
file. With this method, you specify the path to the external text file in a
marker. For more information, see “Using Text in External Files to Assign Long
Descriptions to Images in FrameMaker”.

If you assign long descriptions to some, but not all of you images, you can use the
ImageLongDescNotReq marker. Use this marker when you use accessibility reports
to verify that all images have long description but you have certain images in your
source document that do not require a long description. For more information, see
“Excluding Images from Accessibility Report Checks in FrameMaker”.

Although using the longdesc attribute is recommended in the Web Content
Accessibility Guidelines and in 508 guidelines, older screen readers and many
current browsers do not support this attribute and few online content developers
use this attribute. As a result, the longdesc attributed benefits a only a small
number of users. Only users who use modern screen readers can access the
longdesc attribute easily. Older screen readers did not support this attribute. In
addition, even users who use the latest version of screen reader may be unfamiliar
with the longdesc attribute and may not know how to access long descriptions
using their screen reader because the longdesc attribute is used so infrequently in
online content.

If you use the ImageLongDescText marker to assign long descriptions to images, as
an interim solution ePublisher allows you to display a D link immediately after the
image. The D link is an upper case letter D link that directs users to another page
that contains the text you specified in the ImageLongDescText marker. Although
a D link is not required for accessible Web pages, it can be used in addition to the
longdesc attribute. The D link technique works in all browsers, but it is less elegant
than using the londesc attribute. Some users may be confused when they see a D
link on the page, while other users will ignore the D link.

If you want to use D links in addition to the longdesc attribute when you
generate output, your Stationery must have the D link option enabled. If you have
permissions to modify target settings in ePublisher Express, you can enable the D
link option setting in an ePublisher Express project. For more information about
enabling the D link option in an ePublisher project, see “Specifying Accessibility
Settings”. For more information about permissions required to modify target
settings using ePublisher Express, see “Working with Target Settings”.

Image Long Descripons in FrameMaker | 443

Specifying Long Descriptions for Images in
FrameMaker
To assign a long description to an image, your Stationery and template must have
the ImageLongDescText marker type configured. Your output format must also
support this feature.

When you use the ImageLongDescText marker to assign long descriptions to
images, ePublisher generates an external text file that contains the long description
you specify. When a conformant screen reader application reads the generated
page, it loads the .txt file referenced in the longdesc attribute on the page and
reads the file.

You can use the ImageLongDescText marker to assign long descriptions to images
if your image descriptions do not exceed 255 characters. If your image long
descriptions are longer than 255 characters, you must use an external .txt file and
the ImageLongDescByRef marker to assign long descriptions to images, because
Adobe FrameMaker limits the length of marker text to 255 characters. For more
information, see “Using Text in External Files to Assign Long Descriptions to Images
in FrameMaker”.

In addition, Adobe FrameMaker ignores carriage returns in marker text when
generating MIF files. As result, if you use ImageLongDescText markers, each long
description will be generated as a single paragraph.

The steps you use to assign long descriptions to images varies based on the version
of Adobe FrameMaker you use. If you use Adobe FrameMaker 6.0, you use the
ImageLongDescText marker. If you use Adobe FrameMaker 7.0 or later, you can
use either the ImageLongDescText marker or an object attribute you create for
the anchored frame to assign a long description to an image. For more information
about long descriptions and D links, see “Specifying Long Descriptions for Images in
FrameMaker”.

To assign a long description to an image using marker text in an Adobe
FrameMaker source document

1. In your Adobe FrameMaker source document, locate the anchored frame for
the image to which you want to assign a long description.

2. If you are using Adobe FrameMaker 6.0, complete the following steps:

a. On the Graphics menu, click Tools to display the graphic tools palette.

b. Click the Text Frame icon.

c. Drag the cursor over the portion of the image where you want to insert
the text frame that will contain the ImageLongDescText marker.

444 | Specifying Long Descripons for Images in FrameMaker

d. In the Create New Text Frame window, in the Number field, type 1 , and
then click Set.

e. Click outside the image, and then insert your cursor in the text frame.

f. On the Special menu, click Marker.

g. In the Marker Type field, select ImageLongDescText from the drop-
down list.

h. If the ImageLongDescText marker type is not on the list, check
with the Stationery designer to obtain the name of the marker type
the Stationery designer created to support this functionality and then
use the marker type specified by the Stationery designer. For more
information, refer to “Implementing Online Features in FrameMaker”.

i. In the Marker Text field, type the long description you want to assign
to the image. Your description cannot exceed 255 characters.

j. Click New Marker.

3. If you are using Adobe FrameMaker 7.0, complete the following steps:

a. Select the anchored frame that contains the image to which you want to
assign a long description using an external file.

b. On the Graphics menu, click Object Properties.

c. Click Object Attributes.

d. In the New or Changed Attribute area, in the Name field, type
ImageLongDescText.

e. In the Definition field, type the long description you want to assign to
the image. Your description cannot exceed 255 characters.

f. Click Add.

g. Click Set.

h. Click Set again to close the window.

4. Save your Adobe FrameMaker source document.

5. Generate output for your project. For more information, see “Generating
Output”.

6. Verify ePublisher assigned the long description to the image by completing the
following steps:

Specifying Long Descripons for Images in FrameMaker | 445

a. On the View menu, click Output Directory.

b. In the TargetName\images folder, verify that ePublisher created
a .txt file that contains the long description you specified in the
ImageLongDescText marker, where TargetName is the name of your
target.

For example, if you specified a long description for ImageName.png ,
verify that ePublisher created an ImageName.txt file in the images
folder, where ImageName is the name of the image to which you
assigned a long description.

c. In the TargetName\ProjectName folder, open the page that contains
the image to which you assigned the long description in Notepad and
verify that the longdesc attribute references the ImageName.txt file
ePublisher created for the image, where TargetName is the name of
your target, ProjectName is the name of your project, and ImageName
is the name of the image to which you assigned a long description.

d. If you used the ImageLongDescText marker and the Stationery
designer configured your Stationery to support D links, open the
page in a browser, verify that the D link displays in the browser, and
then click the D link and verify that a page opens that displays the long
description that you specified in the ImageLongDescText marker.

Using Text in External Files to Assign Long
Descriptions to Images in FrameMaker
Assign long descriptions to images using external files when you have image
descriptions that exceed 255 characters or if you want to use image descriptions in
external text files to assign long descriptions to images.

To assign a long description to an image, your Stationery and template must have
the ImageLongDescText marker type configured. Your output format must also
support this feature.

The steps you use to assign long descriptions to image varies based on the version
of Adobe FrameMaker you use. If you use Adobe FrameMaker 6.0, you use the
ImageLongDescByRef marker. If you use Adobe FrameMaker 7.0 or later, you use
an object attribute you create for the anchored frame to assign a long description to
an image.

To assign a long description to an image using an external file in an Adobe
FrameMaker source document

1. Create a .txt file that contains each image long description.

446 | Using Text in External Files to Assign Long Descripons to Images in FrameMaker

2. Place each image long description text file in a folder in the
ProjectName\Formats\TargetName\Files folder for your project, where
ProjectName is the name of your ePublisher project and TargetName is the
name of your target.

For example, place the each image long description in the following location:

ProjectName\Formats\TargetName\Files
\ longdescriptions\ imagelongdescription.txt

where ProjectName is the name of your ePublisher project, TargetName is
the name of your target, longdescriptions is the name of the folder where you
placed the image long description, and imagelongdescription is the name of
the .txt file that contains the image long description.

3. In your Adobe FrameMaker source document, locate the anchored frame for
the image to which you want to assign a long description.

4. Complete the following steps:

a. Select the anchored frame that contains the image to which you want to
assign a long description using an external file.

b. On the Graphics menu, click Object Properties.

c. Click Object Attributes.

d. In the New or Changed Attribute area, in the Name field, type
ImageLongDescByRef.

e. In the Definition field, type the path to the .txt file that contains the
long description you want to assign to the image.

For example, type:

./ longdescriptions/ imagelongdescription.txt

where longdescriptions is the name of the folder where you placed the
image long description, and imagelongdescription is the name of the
.txt file that contains the image long description.

f. Click Add.

g. Click Set.

h. Click Set again to close the window.

5. Save your Adobe FrameMaker source document.

Using Text in External Files to Assign Long Descripons to Images in FrameMaker | 447

6. Generate output for your project. For more information, see “Generating
Output”.

7. In Output Explorer, verify ePublisher assigned the long description to the
image using the long description in the external file when it generated output
by completing the following steps:

a. On the View menu, click Output Directory.

b. In the TargetName\ProjectName folder, open the page that contains
the image to which you assigned the long description using an external
file in Notepad and verify that the longdesc attribute references the
external text file that contains the long description for the image, where
TargetName is the name of your target, and ProjectName is the name of
your project.

Excluding Images from Accessibility Report
Checks in FrameMaker
In some instances, alternate text is sufficient for an image, and assigning a long
description to an image in addition to alternate text would be redundant. However,
you may have configured Accessibility reports to check for images without long
descriptions and notify you when an image does not have a long description.

In this scenario, while you want an Accessibility report to notify you when you
have an image without a long description, you do not want to be notified when
you deliberately did not assign a long description to an image because assigning
a both a long description and alternative text would be redundant. To address
this issue, you can use the ImageLongDescNotReq marker to exclude an image
that deliberately does not have a long description from validation when you
generate Accessibility reports. For more information about Accessibility reports
and configuring and generating Accessibility reports, see “Accessibility Reports”,
“Configuring Reports”, and “Generating Reports”.

To exclude images without long descriptions from Accessibility reports, your
Stationery and template must have the ImageLongDescNotReq marker type
configured. Your output format must also support this feature.

The following procedure provides an example of how to exclude images without
long descriptions from Accessibility report checks in Adobe FrameMaker source
documents using unstructured Adobe FrameMaker 7.2. Steps for excluding images
without long descriptions from Accessibility report checks in Adobe FrameMaker
may be different in other versions of Adobe FrameMaker.

To exclude an image without a long description from Accessibility report
checks in an Adobe FrameMaker source document

448 | Excluding Images from Accessibility Report Checks in FrameMaker

1. In your Adobe FrameMaker source document, locate the anchored frame
for the image without a long description that you want to exclude from an
Accessibility report check.

2. On the Graphics menu, click Tools to display the graphic tools palette.

3. Click the Text Frame icon.

4. Drag the cursor over the portion of the image where you want to insert the
text frame that will contain the ImageLongDescNotReq marker.

5. In the Create New Text Frame window, in the Number field, type 1 , and then
click Set.

6. Click outside the image, and then insert your cursor in the text frame.

7. On the Special menu, click Marker.

8. In the Marker Type field, select ImageLongDescNotReq from the drop-
down list.

9. If the ImageLongDescNotReq marker type is not on the list, check
with the Stationery designer to obtain the name of the marker type the
Stationery designer created to support this functionality and then use the
marker type specified by the Stationery designer. For more information, refer
to “Implementing Online Features in FrameMaker”.

10. In the Marker Text field, do not enter any text. You do not need to enter any
text in this field when you insert a ImageLongDescNotReq marker.

11. Save your Adobe FrameMaker source document.

12. Generate output for your project. For more information, see “Generating
Output”.

13. Generate an Accessibility report and confirm that ePublisher did not generate
an Image is missing a long description message for the image. For
more information about generating Accessibility reports and Accessibility
report messages, see “Generating Reports” and “Accessibility Report
Messages”.

Assigning Alternate Text (Summaries) to
Tables in FrameMaker
Tables, just like images, are a way to visually display information. Although tables
typically contain text, the purpose of the table is often not evident from text alone.
The organization and display of the table may contain information that is not
evident to assistive technologies. However, through the use of table summaries,

Assigning Alternate Text (Summaries) to Tables in FrameMaker | 449

assistive technologies can convey useful information to users about tables. The Web
Content Accessibility Guidelines recommend that you provide summary text for
each table in an HTML document. Table alternate text, or table summaries, provide
users with information about what type of information the table contains.

You can create accessible tables by typing the table summary into a TableSummary
marker. When ePublisher generates content, ePublisher puts the table summary you
specify into the table in the summary attribute.

To assign alternate text to tables, your Stationery and template must have the
TableSummary marker type configured. Your output format must also support this
feature.

The following procedure provides an example of how to assign alternate text
to tables in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for assigning alternate text to tables in Adobe FrameMaker
may be different in other versions of Adobe FrameMaker.

To assign table summaries in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, locate the table to which you
want to assign a table summary.

2. Insert your cursor in front of the table.

3. On the Special menu, click Marker.

4. In the Marker Type field, select TableSummary from the drop-down list.

5. If the TableSummary marker type is not on the list, check with the
Stationery designer to obtain the name of the marker type the Stationery
designer created to support this functionality and then use the marker
type specified by the Stationery designer. For more information, refer to
“Implementing Online Features in FrameMaker”.

6. In the Marker Text field, type the table summary you want to assign to the
table.

7. Click New Marker.

8. Save your Adobe FrameMaker source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. Verify ePublisher assigned the table summary you specified to the table when
it generated output by completing the following steps:

a. On the View menu, click Output Directory.

450 | Assigning Alternate Text (Summaries) to Tables in FrameMaker

b. In the TargetName folder, open the page that has the table to which you
assigned a table summary in Notepad, where TargetName is the name
of your target.

c. Verify that the table summary you specified is included in the summary
attribute for the table.

Excluding Tables from Accessibility Report
Checks in FrameMaker
Tables used specifically for layout may not need a table summary. For example,
if you use a table for layout, you probably would not assign a table summary to
the table. However, you may have configured Accessibility reports to check for
tables without table summaries and notify you when a table does not have a table
summary.

In this scenario, while you want an Accessibility report to notify you when you
have a table without a table summary, you do not want to be notified when you
deliberately did not assign a table summary to a table because a table summary is
not required. To address this issue, you can use the TableSummaryNotReq marker
to exclude a table that deliberately does not have a table summary from validation
when you generate Accessibility reports. For more information about Accessibility
reports and configuring and generating Accessibility reports, see “Accessibility
Reports”, “Configuring Reports”, and “Generating Reports”.

To exclude tables from Accessibility report checks, your Stationery and FrameMaker
template must have the TableSummaryNotReq marker type configured. Your output
format must also support this feature.

The following procedure provides an example of how to exclude tables without
table summaries from Accessibility report checks in Adobe FrameMaker source
documents using unstructured Adobe FrameMaker 7.2. Steps for excluding tables
without table summaries from Accessibility report checks in Adobe FrameMaker may
be different in other versions of Adobe FrameMaker.

To exclude a table without a table summary from Accessibility report
checks in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, locate the table without a table
summary that you want to exclude from an Accessibility report check.

2. Insert your cursor in front of the table.

3. On the Special menu, click Marker.

4. In the Marker Type field, select TableSummaryNotReq from the drop-
down list.

Excluding Tables from Accessibility Report Checks in FrameMaker | 451

5. If the TableSummaryNotReq marker type is not on the list, check
with the Stationery designer to obtain the name of the marker type the
Stationery designer created to support this functionality and then use the
marker type specified by the Stationery designer. For more information, refer
to “Implementing Online Features in FrameMaker”.

6. In the Marker Text field, do not enter any text. You do not need to enter any
text in this field when you insert a TableSummaryNotReq marker.

7. Click New Marker.

8. Save your Adobe FrameMaker source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. Generate the Accessibility report and confirm that ePublisher did not generate
an Table is missing a table summary message for the table. For more
information about generating Accessibility reports and Accessibility report
messages, see “Generating Reports” and “Accessibility Report Messages”.

Assigning Alternate Text to Abbreviations
in FrameMaker
Abbreviations are often used in written communication. Using an Abbreviation
character format and an AbbreviationTitle marker, you can specify alternate text
for abbreviations. For example, if your source document includes an abbreviation
such as SS#, you can specify Social Security Number as alternate text for the
abbreviation. When you use an AbbreviationTitle marker and Abbreviation
character format to specify alternate text for an abbreviation, ePublisher adds the
abbreviation alternate text you specify to the title attribute of the abbr tag in
the output.

Following is an example of the HTML code produced when you specify Social
Security Number as alternate text for SS#.
<th>First name</th>
<th><abbr title="Social Security Number">SS#</abbr></th>

To assign alternate text to abbreviations, your Stationery and template must have
the following items configured:

Abbreviation character format

AbbreviationTitle marker type

Your output format must also support this feature.

452 | Assigning Alternate Text to Abbreviaons in FrameMaker

The following procedure provides an example of how to specify alternate text for
abbreviations in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for specifying alternate text for abbreviations in Adobe
FrameMaker may be different in other versions of Adobe FrameMaker.

To specify alternate text for an abbreviation in an Adobe FrameMaker
source document

1. In your Adobe FrameMaker source document, locate the abbreviation for
which you want to specify alternate text.

2. Apply the Abbreviation character format to the abbreviation text.

3. Insert your cursor anywhere inside the abbreviation.

4. On the Special menu, click Marker.

5. In the Marker Type field, select AbbreviationTitle from the drop-down list.

6. If the AbbreviationTitle marker type is not on the list, check with the
Stationery designer to obtain the name of the marker type the Stationery
designer created to support this functionality and then use the marker
type specified by the Stationery designer. For more information, refer to
“Implementing Online Features in FrameMaker”.

7. In the Marker Text field, type the abbreviation alternate text.

8. Click New Marker.

9. Save your Adobe FrameMaker source document.

10. Generate output for your project. For more information, see “Generating
Output”.

11. Verify ePublisher assigned the abbreviation alternate text you specified when
it generated output by completing the following steps:

a. On the View menu, click Output Directory.

b. In the TargetName folder, open the page that has the abbreviation to
which you assigned alternate text in Notepad, where TargetName is the
name of your target.

c. Verify that the alternate text you specified for the abbreviation is
included in the abbr tag in the title attribute.

Assigning Alternate Text to Acronyms in
FrameMaker

Assigning Alternate Text to Acronyms in FrameMaker | 453

Acronyms are often used in written communication. Using an Acronym character
format and an AcronymTitle marker, you can specify alternate text for acronyms.
For example, if your document includes an acronym like NATO you can specify
North Atlantic Treaty Organization as alternate text for the acronym. When you
use an AcronymTitle marker and an Acronym character format to specify alternate
text for an acronym, ePublisher adds the acronym alternate text you specify to the
title attribute of the acronym tag in the output.

Following is an example of the HTML code produced when you specify North Atlantic
Treaty Organization as alternate text for NATO.
<p><acronym title=”North Atlantic Treaty Organization”>NATO</acronym>
 is a military alliance.<p>

To assign alternate text to acronyms, your Stationery and template must have the
following items configured:

Acronym character format

AcronymTitle marker type

Your output format must also support this feature.

The following procedure provides an example of how to specify alternate text for
acronyms in Adobe FrameMaker source documents using unstructured Adobe
FrameMaker 7.2. Steps for specifying alternate text for acronyms in Adobe
FrameMaker may be different in other versions of Adobe FrameMaker.

To specify alternate text for an acronym in an Adobe FrameMaker source
document

1. In your Adobe FrameMaker source document, locate the acronym for which
you want to specify alternate text.

2. Apply the Acronym character format to the acronym text.

3. Insert your cursor anywhere inside the acronym.

4. On the Special menu, click Marker.

5. In the Marker Type field, select Acronym from the drop-down list.

6. If the Acronym marker type is not on the list, check with the Stationery
designer to obtain the name of the marker type the Stationery designer
created to support this functionality and then use the marker type specified by
the Stationery designer. For more information, refer to “Implementing Online
Features in FrameMaker”.

7. In the Marker Text field, type the acronym alternate text.

454 | Assigning Alternate Text to Acronyms in FrameMaker

8. Click New Marker.

9. Save your Adobe FrameMaker source document.

10. Generate output for your project. For more information, see “Generating
Output”.

11. Verify ePublisher assigned the acronym alternate text you specified when it
generated output by completing the following steps:

a. On the View menu, click Output Directory.

b. In the TargetName folder, open the page that has the acronym to which
you assigned alternate text in Notepad, where TargetName is the name
of your target.

c. Verify that the alternate text you specified for the acronym is included in
the acronym tag in the title attribute.

Providing Citations for Quotes in
FrameMaker
A citation is a reference or footnote to a book, article, or other material that
specifies the source from which a quotation was borrowed. A citation contains
all the information necessary to identify and locate the work. Using a Citation
character format and the Citation marker, you can specify citations for quotes that
enable users to go to a Web site that contains additional information about the
quote.

Following is an example of the HTML code produced when you specify a citation for
a quote.
<blockquote cite="http://shakespeare.mit.edu/lll/full.html">
 <p>Remuneration! O! that's the Latin word for three farthings.
--- William Shakespeare (Love's Labor Lost).</p> </blockquote>

To provide citations for quotes, your Stationery and template must have the
following items configured:

Citation character format

Citation marker type

Your output format must also support this feature.

The following procedure provides an example of how to specify citations for
quotes in Adobe FrameMaker source documents using unstructured Adobe

Providing Citaons for Quotes in FrameMaker | 455

FrameMaker 7.2. Steps for specifying citations for quotes in Adobe FrameMaker
may be different in other versions of Adobe FrameMaker.

To specify citations for quotes in an Adobe FrameMaker source document

1. In your Adobe FrameMaker source document, locate the quotation for which
you want to specify a citation.

2. If the quotation is a phrase within a paragraph, complete the following
steps:

a. Apply the Citation character format to the quotation phrase.

b. Insert your cursor anywhere inside the quotation phrase.

c. On the Special menu, click Marker.

3. If the quotation is a full paragraph, complete the following steps:

a. Insert your cursor into the paragraph.

b. On the Special menu, click Marker.

4. In the Marker Type field, select Citation from the drop-down list.

5. If the Citation marker type is not on the list, check with the Stationery
designer to obtain the name of the marker type the Stationery designer
created to support this functionality and then use the marker type specified by
the Stationery designer. For more information, refer to “Implementing Online
Features in FrameMaker”.

6. In the Marker Text field, type the URL for the citation.

7. Click New Marker.

8. Save your Adobe FrameMaker source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. Verify ePublisher created the citation you specified when it generated output
by completing the following steps:

a. On the View menu, click Output Directory.

b. In the TargetName folder, open the page that has the quotation for
which you specified a quotation in Notepad, where TargetName is the
name of your target.

456 | Providing Citaons for Quotes in FrameMaker

c. Verify that the citation you specified for the quotation is included in the
cite attribute.

Troubleshooting FrameMaker issues
Occasionally there might be issues with the source documents you are using. Below
is a list linking to the wiki solutions website that will help you troubleshoot each
one:

Troubleshoong FrameMaker issues | 457

Issue For more information, see...

If you are trying to use
smart quotes

Character Mapping in mapentrysets.xml

If you are trying to turn
off auto-hyphenation

Turning off Auto-hyphenation

If you are using
autonumbering in
anchored frames

Autonumbered Paragraphs

If you receive a “Cannot
Duplicate Document”
upon generation

Cannot Duplicate Document

If you receive a “Cannot
Initialize API” message
opening FrameMaker

Cannot Initialize API

If you are working with
Change Bars

Change Bars

If you receive the “Error
Communicating with
FrameMaker” message
upon generating

Error Communicating with FrameMaker

If you are not seeing
your filename Markers in
ePublisher

Filename markers are not working

If you are seeing
unwanted files in the
temp directory upon
generating

Files being created in Temp directory

If you are trying to use
an image as a bullet

Using an image and text together as a paragraph bullet

458 | Troubleshoong FrameMaker issues

http://wiki.webworks.com/Permalinks/Solutions/Overrides/CharacterMapping
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/Auto-Hyphenation
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/AutonumberedParagraphs
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/CannotDuplicateDocument/
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/CannotIntializeAPI
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/ChangeBars
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/ErrorCommunicating
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/FilenameMakerNotWorking
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/FrmFilesInTempDirectory
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/ImagesAndTextAsBulle

Issue For more information, see...

If you are trying to
import an XLS file into
FrameMaker

Problems with Imported Excel files

If you are trying to link
to an external PDF

Creating links outside of project structure

If you are using multiple
TOC files in FrameMaker

FrameMaker books with multiple TOC, Index, or Front-
matter files

If your title page material
is not ordered properly

Title page material not ordered properly

If you are having
unexpected paragraph
ordering with multiple
text flows

FrameMaker paragraphs in different text flows have
unexpected order in HTML

If you are wanting to
turn unbulleted text
to bulleted text in the
output

How do I turn regular FrameMaker text into bulleted
text in my output?

If you are working with
structured content in
text-boxes

Structured Elements in Text Boxes

If you notice that some
paragraphs in your
output are formatting
differently than others
bearing the same style
name

Unexpected changes in font size or other formatting for
certain paragraphs

If you notice a few lines
of code that are very
small at the end of the

Unexpected Code from FrameMaker plugin

Troubleshoong FrameMaker issues | 459

http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/ImportedXLSFilesAreBlackBoxes
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/LinkingToExternalPDF
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/MultipleTOCFiles
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/MultipleTOCFiles
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/MultipleTOCFiles
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/ObjectsDontOrderProperly
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/ParagraphsInTextFlows
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/ParagraphsInTextFlows
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/ParagraphsInTextFlows
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/RegularTextIntoBulletedText
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/RegularTextIntoBulletedText
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/RegularTextIntoBulletedText
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/StructuredElementsInTextBoxes
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/UnexpectedChangesInStyles
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/UnexpectedChangesInStyles
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/UnexpectedChangesInStyles
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/UnwantedOutput

Issue For more information, see...
HTML page from the FM
document,

460 | Troubleshoong FrameMaker issues

Microsoft Word
Microsoft Word Templates and Standards
Implementing Online Features in Word
Working with the WebWorks Transit Menu for Word
Working with Tables in Word
Working with Images in Word
Creating Index Entries in Word
Using Variables in Word
Using Conditions in Word
Specifying Output File Names in Word
Creating Context-Sensitive Help in Word
Creating Popup Windows in Word
Creating Expand/Collapse Sections (Drop-Down Hotspots) in Word
Creating Related Topics in Word
Creating Links to PDF in Word
Creating See Also Links in Word
Creating Meta Tag Keywords in Word
Assigning Custom Page Styles in Word
Creating What’s This (Field-Level) Help in Word
Opening Topics in Custom Windows in Word
Customizing TOC Entry in Word
Customizing Table of Contents Icons in Word
Specifying Context Plug-ins in Word
Creating Accessible Online Content in Word
Troubleshooting Word issues

If you want to implement online content features in your generated output, you
need to prepare your Microsoft Word source documents for output generation. This
section explains how to prepare your Microsoft Word source documents.

Microsoft Word Templates and
Standards
Microsoft Word is a powerful authoring tool that allows you to quickly create
professional content. You can develop templates with the styles and other standard
elements you need to deliver polished technical documentation. Microsoft Word
provides many automation features to streamline the content development process.
The new XML-based formats allow Microsoft Word to integrate content with other
Microsoft Office products.

This section describes the design considerations for a Microsoft Word template. By
effectively designing your Microsoft Word template, and by consistently applying
styles throughout your source documents, you can streamline single-sourcing
processes and reduce your production and maintenance costs. This section does not
describe all Microsoft Word processes, but it focuses on the design considerations
related to ePublisher.

Word Standards to Support Single-Sourcing

Word Standards to Support Single-Sourcing | 461

To define your Microsoft Word standards, create a template .dot file with all the
elements you need in it, including styles, variables, autotext, toolbars, macros,
and page layouts. You can use this file to create all new source documents and to
update the styles, autotext, toolbars, and macros in existing source documents.
You can also use this file to create a source document to include in your Stationery
design project.

The following sections describe various template areas and considerations, and how
to effectively design your Microsoft Word template to support single-sourcing with
ePublisher.

Microsoft Word Template File
The template .dot file defines the default styles, autotext, toolbars, and macros
for documents attached to that template. You can also define the starting variables,
properties, content, sections, and page layouts for new documents created from the
template. The existing bulleted and numbered list items in the template file preload
the bullet and number gallery in Microsoft Word, which can cause inconsistencies on
multiple computers when these items are not properly defined in the template.

When you create a new document based on a template, the contents of the
template file, including text, paragraphs, sections, headers, and footers are copied
to the new document. In addition, the new document is attached to the template
and uses the styles, autotext, toolbars, and macros defined in the template.

You can also attach an existing document to a template. The document can then
use the autotext, toolbars, and macros defined in the template. If you select the
Automatically update document styles option, the style definitions in the
template overwrite the style definitions in the document. The existing document
content is not changed, including the headers, footers, and page layout. Style
modifications on individual paragraphs, such as the Keep with Next setting, are
also not changed or reset. You can create a macro to find each style and reset the
paragraph to the default style, which removes the modifications.

Creating a Clean Base Template File
When you create custom styles and macros in Microsoft Word, these customizations
are often stored in the default Normal.dot file on your computer. In addition,
when you use Microsoft Word as your email editor in Microsoft Outlook, some other
customizations can be stored in the default Normal.dot file. When you create
a new Microsoft Word template, you want to use a clean Normal.dot file as the
starting point for your template. Save the template file with a new name, and then
customize the template as needed. To simplify your template use and maintenance,
delete the unneeded styles, variables, autotext, and macros.

To create a clean base template file

462 | Creang a Clean Base Template File

1. On the Tools menu in Microsoft Word, click Options.

2. On the File Locations tab, find where the User Templates are stored.

3. Close Microsoft Word and all other Microsoft Office products.

4. Open the folder where the User Templates are stored and rename the
Normal.dot file in that location in case you later need any customizations
stored in that file.

5. Open Microsoft Word.

6. On the File menu, click Save As.

7. In Save as type, select Document Template (*.dot).

8. Specify the name and location for your new template, and then click Save.

You can customize the new template to meet your specific needs. To create a new
tab in the Template Selection window in Microsoft Word, you can create a folder
within the User Templates location. Then, you can store your new template in that
folder.

Paragraph Styles in Word
Create paragraph styles for items based on function, not based on formatting. This
approach allows you to modify formatting over time and the style names continue
to apply. It also prepares you for structured writing in the future.

Name your paragraph styles starting with naming conventions that group styles
by function. For example, group procedure-related styles together by starting
the style names with Procedure, such as ProcedureIntro, ProcedureStep, and
ProcedureSubstep.

Note: Style names should not include a period in their name. The period can cause
display issues when ePublisher creates the cascading style sheet entry that
defines the appearance of the style.

To simplify formatting and save time for future maintenance and customization,
set the default paragraph font and spacing for a base style, such as Normal. Then,
base other styles on this base style to inherit the default formatting settings. This
process allows you to quickly modify fonts and spacing across styles by modifying
only the base style. You can customize settings for each style as needed. The
customized settings are not affected when you modify those settings in the base
style. To simplify maintenance for heading styles, which often use a different font
than your content styles, you may want to base all heading styles on the Heading 1
style to define the font for all headings.

Paragraph Styles in Word | 463

In ePublisher, you can scan the source documents to list all the paragraph styles.
Then, you can organize them in ePublisher to allow property inheritance and to
streamline the customization process for your generated output.

You may need multiple paragraph styles to define functions that support pagination
settings, such as a BodyListIntro format that has Keep with next set. To reduce
the number of paragraph styles, you can customize paragraphs to add the Keep
with next setting as needed. Customizing this setting on a paragraph does not
affect the ability for the paragraph to receive the other formatting settings from the
style definition.

To automate and simplify template use, define the paragraph style that follows
each paragraph style. This process allows the writer to press Enter after writing
a paragraph and the template creates the next paragraph with the style most
commonly used next. For example, after a Heading style, the writer most often
writes a body paragraph of content.

Common paragraph styles include:

Figure paragraphs. You may need multiple indents, such as Figure,
FigureInList, and FigureInList2.

Body paragraphs. You may need multiple indents, such as Body, BodyInList,
and BodyInList2. To reduce training needs, you can use the default style
names, such as Body Text, Body Text Indent, and Body Text Indent 2.

Headings, such as Heading 1, Heading 2, Heading 3, and Heading 4. You may
also need specialized headings, such as Title, Subtitle, FrontMatterHeading1,
FrontMatterHeading2, and FrontMatterHeading3. The cross-reference feature
in Microsoft Word allows you to create cross references to headings that use
the default Heading styles named Heading X, where X is a number. To create
cross references to other styles, use bookmarks. Do not paste content at the
beginning of a heading. Existing cross references to that heading may include
the pasted content when the cross references are updated.

Bulleted lists. You may need multiple bullet levels, such as Bullet, Bullet2,
Bullet3. You may also need a bullet item within a procedure, such as a
ProcedureBullet and a bullet item within a table, such as a CellBullet. For more
information, see “Bulleted and Numbered Lists in Word”.

Numbered lists. You may need multiple levels, such as ProcedureStep that
uses numbers and ProcedureSubstep that uses lowercase letters. You may
also need numbered list items in tables, such as CellStep. Be sure to consider
related supporting formats, such as ProcedureIntro. For more information, see
“Bulleted and Numbered Lists in Word”.

Examples, such as code or command syntax statements, usually in a fixed
font. To keep the lines of a code example together, you can set the Keep with
next setting for the Example style and use an ExampleLast style to identify

464 | Paragraph Styles in Word

the end of the example. You may also need multiple example levels, such as
ExampleInList and ExampleInListLast.

Paragraphs in tables, such as CellHeading, CellBody, CellBody2, CellStep, and
CellBullet.

Legal notice and copyright or trademark styles for inside the cover page.

Table of contents and Index styles.

Definition lists, such as term and definition or description. You can use a two-
column table for this purpose, but a definition list allows long terms, such as
field labels in a user interface, to run across the page without wrapping. Then,
the definition or description are indented below the term.

Header and footer styles to control formatting.

Notes, cautions, tips, and warnings.

ePublisher projects use custom field code markers, paragraph styles, and character
styles to define online features. You need to give the list of markers and styles to
the writers so they know how to implement each online feature. The writers use the
markers and styles you create to define online features.

The Stationery defines the custom markers and styles. To reduce complexity, you
can use the style names defined in the documentation, or you can define the online
feature to a different style. The following list identifies additional paragraph styles
you may need to support ePublisher online content features:

Paragraph or character styles to support multiple languages, such as
bidirectional languages and text.

Dropdown paragraph style that identifies the start of an expand/collapse
section. You can end the section with a paragraph style defined to end the
section, or with a DropDownEnd marker.

Popup paragraph styles that define several aspects of popup window content:

Popup paragraph style identifies the content to display in a popup
window and in a standard help topic. This style is applied to the first
paragraph of popup content.

Popup Append paragraph style identifies the content to display in a
popup window and in a standard help topic. This style is applied to
additional popup paragraphs when you have more than one paragraph of
content to include in a popup window.

Popup Only paragraph style identifies the content to display only in
a popup window. This style is applied to the first paragraph of popup
content.

Paragraph Styles in Word | 465

Popup Only Append paragraph style identifies the content to display only
in a popup window. This style is applied to additional popup paragraphs
when you have more than one paragraph of content to include in a
popup window.

Related topics paragraph style that identifies a link to a related topic, such as
a concept topic related to a task or a task related to a concept.

See Also paragraph style that identifies the text you want to include in an
inline See Also link.

For more information about enabling a specific online feature, see “Designing,
Deploying, and Managing Stationery”.

Character Styles in Word
Create character styles for items based on function, not based on formatting or
appearance. This approach allows you to modify formatting over time and the style
names continue to apply. It also prepares you for structured writing in the future.

You can apply only one character style to a set of text. If you apply a second
character style to that text, it replaces the initial character style. Therefore, you
may need more character styles to address all the possible combinations, such as
variables in a paragraph and variables in a code sample.

Common character styles include:

Book titles in cross references

Emphasized text

Command names

File and folder names

User interface items

Optional steps or if clauses used to introduce optional steps

Links

New terms

Step numbers, which allows you to apply formatting to the step number
defined with a sequence field code

Text the user must type

Variables

466 | Character Styles in Word

ePublisher projects use custom field code markers and styles to define online
features. You need to give the list of markers and styles to the writers so they know
how to implement each online feature. The writers use the markers and styles you
create to define online features.

The Stationery defines the custom markers and styles. To reduce complexity, you
can use the style names defined in the documentation, or you can define the online
feature to a different style. The following list identifies additional character styles
you may need to support ePublisher online content features:

Multiple language support, such as bidirectional languages and text, can
require a paragraph or character style with Bidi support enabled.

Abbreviation character style identifies abbreviation alternate text for browsers
to display for abbreviations, such as SS#, when a user hovers over the
abbreviation in output. Screen readers also can read the abbreviation
alternate text. This character style is used in combination with the
AbbreviationTitle marker type.

Acronym character style identifies acronym alternate text for browsers to
display for acronyms, such as HTML, when a user hovers over the acronym
in output. Screen readers can also read the acronym alternate text. This
character style is used in combination with the AcronymTitle marker type.

Citation character style identifies the source of a quote using a fully-qualified
Uniform Resource Identifier (URI) when a user hovers over the quote in
output. Screen readers can also read the URI for the quote. This character
style is used in combination with the Citation marker type.

See Also character style identifies the text you want to include in a See Also
button. This style controls the appearance of the text on the button.

For more information about enabling a specific online feature, see “Designing,
Deploying, and Managing Stationery”.

Bulleted and Numbered Lists in Word
ePublisher uses a table-like structure with two columns to display any paragraph
style with a hanging indent, such as bulleted and numbered list items, in generated
output. ePublisher uses the numbers, characters, and fonts from the source
documents for the bullets or numbers. Since some fonts are not available on all
computers, you should use character styles in ePublisher to override the formatting
of the bullets or numbers. You can also use an image in ePublisher for bullets.

Bulleted and numbered list items can have inconsistent formatting from one
computer to another. The formatting is defined by the Bullets and Numbering style
gallery. To correctly populate the style gallery, the source document must have an
example of each type of bulleted and numbered item. Leave the correct example

Bulleted and Numbered Lists in Word | 467

of each item in the document until that style type is used. If a correctly formatted
item does not exist in the document, copy the correct style from the template and
paste it in the document to create the first item with that style.

Note: Be aware of paragraphs that have a hanging indent. The hanging indent can
cause incorrect alignment of text on the first line of your generated output.
For more information see “Defining the Appearance of Numbered Lists”.

Bulleted Lists in Word
For bulleted lists, you may need multiple bullet levels, such as Bullet, Bullet2, and
Bullet3. You may also need a format for a bullet within a procedure, such as a
ProcedureBullet, and a bullet within a table, such as a CellBullet. Make sure you
consider all supporting formats you may need, such as a ListIntro format for the
paragraph that introduces the bulleted list, which should be set to stay with the list
(Keep with Next).

Do not base two bulleted items with different bullets on the same base style.
Otherwise, when you modify the bullet for one bulleted item style, the bullet on the
other item is also affected.

Numbered Lists in Word
For numbered lists, you may need multiple levels, such as a ProcedureStep that
uses numbers and a ProcedureSubstep that uses lowercase letters. You may also
need a numbered list item in tables, such as CellStep. Make sure you consider all
supporting formats you may need, such as a ProcedureIntro format.

Microsoft Word can have issues with the built-in autonumbering when restarting
the numbering in lists. To avoid these issues, you can use sequence field codes
to completely control numbering in your source documents. You can define a
paragraph style with a hanging indent for each numbered step item. Define a
character style and apply it to the sequence field code to control how the numbered
list appears both in print and in your generated output. Autotext can help you
automate list creation. You can also create a macro to quickly number a set of
paragraphs. To restart a field code, add the \r1 option.

Image Styles and Considerations in Word
If ePublisher cannot use an original image in the output, or if ePublisher determines
it needs to modify the image based on how it is included in the source document,
ePublisher rasterizes the image using the options you define for your graphic styles
in Style Designer. For example, you can define the dots per inch (DPI) and format
for the final images. Rasterization of an image can cause the image to be less clear
in the output.

To avoid reduced image quality in your output, and to avoid an extended
transformation time during the Image stage and pipeline, review the following
considerations:

468 | Image Styles and Consideraons in Word

When ePublisher encounters an image in your Microsoft Word source
documents, ePublisher checks for the following conditions:

Is the frame a different size than the original image?

Is there white space in the frame with the image?

Is the image copied into the document, rather than imported by
reference?

Is the original image a file format other than .jpg , .gif , .png , or
.svg?

Are there additional elements in the frame, such as text boxes, multiple
images, or callouts?

If ePublisher determines that any of these conditions apply, ePublisher
rasterizes the entire frame and applies the options you defined in Style
Designer.

To display images at full size in online output and avoid resizing, which
can cause the image to be rasterized, set the By reference graphics use
document dimensions option for your graphic styles to Disabled.

If you want ePublisher to rasterize all images according to your Style Designer
options, set the By reference graphics option to Disabled for all graphic
styles.

When ePublisher finds an image included by-reference that is the original size
and contains no callouts, ePublisher copies the image directly into the output
folder in most cases, bypassing the graphic style options.

To improve the image quality in your output, resize your images as needed
using an image editing application before importing them, rather than
adjusting the size in Microsoft Word. Otherwise, an image included by
reference retains its original file size, and it is either scaled by the browser or
rasterized according to the size in the source document, which can result in a
distorted image.

For the best compatibility with most computer monitors, save and import your
images at 96 DPI using a format that ePublisher does not rasterize.

Image callouts are useful in many publications. However, text boxes and line
drawings cause images to be rasterized, which can make images less clear in
your output. Add and edit callouts in your image editing application and then
import the single, final image to avoid the rasterization process.

Image Styles and Consideraons in Word | 469

You can add text boxes with GraphicStyle markers to your images without
causing the image to be rasterized, since markers do not affect the
appearance of the image.

Store image files and source documents on the local computer when
generating output.

To achieve the best results when inserting images in Microsoft Word

1. Create a unique paragraph style for images. Use the paragraph alignment
properties to control the position of your images.

2. Import your image file by reference onto the unique paragraph rather than
copying it into the document. ePublisher supports only .jpg , .gif , .png ,
and .svg files. ePublisher rasterizes all other formats.

3. Do not resize the image in Microsoft Word.

Table Styles in Word
Table styles, which are available in recent versions of Microsoft Word, allow you to
define standard tables and quickly create tables with those standards in your source
documents. If your version of Microsoft Word does not support table styles, use
the TableStyle marker to specify the style to apply in ePublisher that defines the
appearance of the table.

Table styles are often overlooked in Microsoft Word. The default template provides
many default table styles, such as Table Grid and Table Normal. You can create
custom table styles for your specific requirements. Define table header rows for
each table that repeat when the table splits across pages, and do not allow rows to
break across pages, which can create awkward breaks within tables in your printed
content. You can use autotext to quickly create standard tables in your source
documents.

When you define your table styles, be sure to consider the various types of tables
you may need, such as with lines, without lines, checklists, and action/result tables.
You can use a table without lines to layout content within an area on a page, such
as a definition list with short terms. You can also create a table style for each indent
position needed. For example, you can create a table style to use for tables within a
bulleted list that is indented to align with the text of each bulleted list item.

ePublisher allows you to define how the header, footer, and main rows of a table
appear in your generated output. To support these formatting properties, your
tables must have each of these parts defined in your source documents. If a table
does not have a header defined, ePublisher cannot apply the formatting defined
for the header row. Microsoft Word does not support table footers, so the footer
formatting settings in ePublisher do not apply to Microsoft Word source documents.

470 | Table Styles in Word

ePublisher applies the paragraph and character styles you define for content within
each cell. You can also configure ePublisher to ignore character styles in a table.
You may need additional paragraph styles to use in tables, such as CellBody and
CellBullet, so you can define the proper margins and appearance for your generated
output.

Field Codes
Microsoft Word uses field codes to implement standard features, such as index
entries and variables. You can use sequence field codes for numbering, such
as numbering chapters, steps, figure captions, and table captions. ePublisher
recognizes many of the standard field codes and uses them to implement these
standard features in your generated output.

ePublisher projects also use custom field codes (markers) and styles to define
online features. The toolbar provided by ePublisher in Microsoft Word allows you to
quickly insert the custom markers. You need to give the list of markers and styles
to the writers so they know how to implement each online feature. The writers use
the markers and styles you create to define online features.

The Stationery defines the custom markers and styles. Markers with reserved
names have their functions defined by default. You can use these default names,
or you can create your own markers. To reduce complexity, use the default marker
names, which are also used throughout the documentation. You can also use the
style names defined in the documentation to reduce complexity. The following table
lists the default custom marker types used to implement online features.

Field Codes | 471

Marker Type Description

AbbreviationTitle Specifies abbreviation alternate text for browsers to
display for abbreviations such as SS# when a user
hovers over the abbreviation in output. Screen readers
also can read the abbreviation alternate text. Used in
combination with the Abbreviation character format.

AcronymTitle Specifies acronym alternate text for browsers to display
for acronyms such as HTML when a user hovers over
the acronym in output. Screen readers can also read
the acronym alternate text. Used in combination with
the Acronym character format.

Citation Specifies the source of a quote using a fully qualified
Uniform Resource Identifier (URI) when a user hovers
over the quote in output. Screen readers can also read
the URI for the quote. Used in combination with the
Citation character format.

Context Plugin Specifies context plug-ins for Eclipse help systems.
Other Eclipse plug-ins can use the context plug-in IDs
to call the Eclipse help system. For more information,
see “Using Markers to Specify Context Plug-ins in
Eclipse Help”.

DropDownEnd Marks the end of an expand/collapse section. Used in
conjunction with an Expand/Collapse paragraph format.

Filename Specifies the name of an output file for a page or an
image.

GraphicScale Specifies a percentage to use to resize an image, such
as 50 or 75 percent, in generated output.

GraphicStyle Specifies the name of a graphic style defined in a
project to apply to an image. This marker type is an
internal marker type that is not displayed in Stationery
Designer. You cannot create a marker type with a
different name and assign it this functionality.

472 | Field Codes

Marker Type Description

Hypertext Specifies a link using the newlink and gotolink
commands in Adobe FrameMaker. This marker type is
a default Adobe FrameMaker marker type ePublisher
automatically maps.

ImageAltText Specifies alternate text for an image.This text is added
to the alt attribute of the img tag in the output.
Screen readers use this text when you create accessible
content.

ImageAreaAltText Specifies alternate text for clickable regions in an image
map. This text is added to the alt attribute of the img
tag in the output. Screen readers use this text when
you create accessible content.

ImageLongDescByRef Specifies the path to the file that contains the long
description for an image. This text is added to the
longdesc attribute of the img tag in the output.
Screen readers read this description when you create
accessible content.

ImageLongDescNotReq Specifies that a long description is not required for an
image, which bypasses this accessibility check for the
image when you create accessible content.

ImageLongDescText Specifies the long description for an image. This text is
added to the longdesc attribute of the img tag in the
output. Screen readers read this description when you
create accessible content.

Keywords Specifies the keywords to include in the meta tag for
the topic. The meta tag improves searchability on the
Web.

PageStyle Specifies the name of a page style defined in the
project to apply to a topic. This marker type is an
internal marker type that is not displayed in Stationery
Designer. You cannot create a marker type with a
different name and assign it this functionality.

Field Codes | 473

Marker Type Description

PassThrough Specifies that ePublisher place the contents of the
marker directly into the generated output without
processing the content in any way. For example, you
could use a PassThrough marker if you wanted to
embed HTML code within your generated output.

Popup Specifies the start of the content to include in a popup
window. The content is displayed in a popup window
when you hover over the link. When you click the link
in some output formats, the topic where the popup text
is stored, such as the glossary, is displayed.

PopupEnd Marks the end of the content to include in a popup
window.

PopupOnly Specifies the start of the content to include in only a
popup window. Browsers display the content in a popup
window when you hover over or click the link.

RubiComposite No longer supported.

SeeAlsoKeyword Specifies an internal identifier for a topic. SeeAlsoLink
markers in other topics can list this identifier to create
a link to this topic. Used in conjunction with a See Also
paragraph format or character format.

SeeAlsoLink Identifies an internal identifier from another topic to
include in the list of See Also links in this topic. Used
in conjunction with a See Also paragraph format or
character format.

SeeAlsoLinkDisplayType Specifies whether to display the target topics on a
popup menu or in a window. By default, the links are
displayed in the Topics Found window. To display a
popup menu, set the value to menu . This marker type is
supported only in HTML Help.

SeeAlsoLinkWindowType Specifies the name of the window defined in the .hhp
file, such as TriPane or Main, that the topic opens

474 | Field Codes

Marker Type Description
in when the user clicks the link. This marker type is
supported only in HTML Help.

TableStyle Specifies the name of a table style defined in the
project to apply to a table in versions of Microsoft
Word that did not support table styles. This marker
type is an internal marker type that is not displayed
in Stationery Designer. This marker type is supported
only for Microsoft Word documents. You cannot create
a marker type with a different name and assign it this
functionality.

TableSummary Specifies an alternate text summary for a table, which
is used when you create accessible content. This text is
added to the summary attribute of the table tag in the
output. Screen readers read this description when you
create accessible content.

TableSummaryNotReq Specifies that a summary is not required for a table,
which bypasses this accessibility check for that table.

TOCIconHTMLHelp Identifies the image to use as the table of contents icon
for a topic in the HTML Help output format.

TOCIconJavaHelp Identifies the image to use as the table of contents icon
for a topic in the Sun JavaHelp output format.

TOCIconOracleHelp Identifies the image to use as the table of contents icon
for a topic in the Oracle Help output format.

TOCIconWWHelp Identifies the image to use as the table of contents icon
for a topic in the WebWorks Help output format.

TopicAlias Specifies an internal identifier for a topic that can be
used to create a context-sensitive link to that topic.

TopicDescription Specifies a topic description for a context-sensitive help
topic in Eclipse help systems. For more information,
see “Using Markers to Specify Topic Descriptions for
Context-Sensitive Help Topics in Eclipse Help”.

Field Codes | 475

Marker Type Description

WhatIsThisID Identifies a What Is This help internal identifier for
creating context-sensitive What Is This field-level help
for Microsoft HTML Help.

WindowType Specifies the name of the window defined in the
help project that the topic should be displayed in. In
Microsoft HTML Help, the window names are defined
in the .hhp file. This marker type is supported in
Microsoft HTML Help and Oracle Help.

AutoText, AutoCorrect, and User-Defined
Hotkeys
Autotext improves consistency and efficiency for your writing team. Writers can
quickly create items, such as tables and lists, with the correct styles applied by
default. You can create autotext for many common items:

2-, 3-, 4-, and 5-column tables

Checklists

Notes, tips, cautions, and warnings

Cross reference introductory phrases, such as For more information, see

New chapters and standard topics, such as tasks or command reference topics

AutoCorrect allows you to automatically fix common typing mistakes, including
two capital letters in a row and misspelled words. You can also use autocorrect
to define some shorthand character sequences that automatically insert longer
common phrases. For example, you can define acl to be replaced with access
control list . When you type acl and a space, Microsoft Word changes it to
access control list .

Microsoft Word also allows you to define hot keys for common tasks, such as
applying a style, inserting autotext, or running a macro. With hotkeys, autotext,
and autocorrect, you can create content more efficiently.

Toolbars and Menus in Word
Create custom toolbars with the options you use most often. You can copy toolbar
buttons from the Transit menu and other toolbars to create one combined toolbar

476 | Toolbars and Menus in Word

with drop-down menus and selections based on your specific requirements. Helpful
commands to include on your toolbars are Default Paragraph Font, Keep with Next,
and Show/Hide field codes.

Variables and Conditions in Word
On the Properties tab, you can define custom variables to use throughout your
source documents. To insert a variable in your content, create field code that
references the custom property you created. You can also use field codes to display
the contents of a specific style type, such as the previous Heading 1.

For conditions in your generated output, you can use the field codes (markers)
supported by ePublisher. You can also use paragraph and character styles to identify
conditional content. With this style approach, you need to create extra styles for
each condition you need. Then, you can create multiple templates that show or hide
specific styles. By attaching the appropriate template, you can include or exclude
the appropriate content in your printed output. You can also include or exclude
content from your generated output based on styles.

Page Layouts and Sections in Word
You should define all the sections you need in your template. Each section is
separated by a section break and has its own page setup. The table of contents
and index often have multiple section breaks to customize the page layout in those
sections and correctly generate the lists based on field codes. You need to be
careful when working around section breaks. If you delete a section break, the page
layout for the section, including the headers and footers, may be changed.

In the headers and footers, use field codes to display the contents of a specific style
from the associated section, such as the Title style from the title page to include
the book title in the footer. This type of field code is automatically maintained and
updated. If you use a variable field code in the headers or footers, you need to
manually update those field codes. Variable field codes in headers and footers are
not updated automatically with the rest of the document content.

Table of Contents and Index in Word
Since the appearance of online table of contents and indexes often differ from
printed versions, you need to be able to deliver customized table of contents and
indexes in your online content. Therefore, ePublisher does not need the table
of contents and index formatting defined in your source documents. ePublisher
allows you to define the table of contents levels and appearance, as well as the
appearance of the index in your generated output. ePublisher uses the index field
codes throughout your source documents to build the online index. This support
allows you to deliver the online content you require.

Automation with Macros in Word

Automaon with Macros in Word | 477

Macros allow you to automate, customize, and extend the default Microsoft Word
capabilities, including some common tasks and maintenance operations:

Deleting hidden table of contents bookmarks that build up over time

Production book tasks, such as updating fields and paginating multiple files

Attaching different templates for conditional text implementations

This automation can streamline the content authoring process and save you
valuable time and effort. Microsoft Word provides a VBA (Visual Basic for
Applications) environment for macros to give you the automation capabilities you
need. To enable macros, set the security level to medium. You can record steps to
perform a specific task, and then copy and edit the generated code to do exactly
what you need.

Implementing Online Features in Word
Implement online features in your output by preparing your Microsoft Word source
documents with custom marker types, paragraph styles, and character styles
defined by the Stationery designer for your Stationery. These markers and styles
define the presentation and behavior or your online content. For example, markers
can define the name of the file generated for a topic. Formats can define how
content displays online.

Custom Marker Types in Word
ePublisher projects use the custom marker types to implement online features
when generating output. Custom markers are created using custom marker types
available in the WebWorks Transit menu for Microsoft Word. ePublisher inserts
markers based on marker types as field codes in your Microsoft Word source
documents.

Before you begin using custom marker types to implement online features, talk to
the Stationery designer and verify which online features your Stationery supports.
Your Stationery only recognizes the custom marker types defined by the Stationery
designer in your Stationery. If you try to implement online features using custom
marker types not supported in your Stationery, ePublisher does not recognize these
items when generating output.

When the Stationery designer creates the Stationery, the Stationery designer can
use the default name for a custom marker type or the Stationery designer can
use a different name for the customer marker type. The following table lists the
default names of custom marker types used to implement online features. Always
verify with the Stationery designer the names of the custom marker types you
should use when implementing online features before you use these items in your
source documents. If you need to create a custom marker type to implement an

478 | Custom Marker Types in Word

online feature, verify with the Stationery designer that your Stationery supports
the custom marker type before you create the custom marker type and insert and
use the custom marker in a source document. For more information about creating
custom marker types, see “Creating Custom Marker Types Using the WebWorks
Transit Menu in Word”.

Custom Marker Types in Word | 479

Marker Type Description

AbbreviationTitle marker
type

Specifies abbreviation alternate text for browsers to
display for abbreviations such as SS# when a user
hovers over the abbreviation in output. Screen readers
also can read the abbreviation alternate text. Used
in combination with the Abbreviation character style.
For more information, see “Assigning Alternate Text to
Abbreviations in Word”

AcronymTitle marker
type

Specifies acronym alternate text for browsers to display
for acronyms such as HTML when a user hovers over
the acronym in output. Screen readers can also read
the acronym alternate text. Used in combination with
the Acronym character style. For more information, see
“Assigning Alternate Text to Acronyms in Word”.

Citation marker type Specifies the source of a quote using a fully qualified
Uniform Resource Identifier (URI) when a user hovers
over the quote in output. Screen readers can also read
the URI for the quote. Used in combination with the
Citation character style. For more information, see
“Providing Citations for Quotes in Word”.

Context Plugin marker
type

Specifies context plug-ins for Eclipse help systems.
Other Eclipse plug-ins can use the context plug-in IDs
to call the Eclipse help system. For more information,
see “Specifying Context Plug-ins in Word”.

DropDownEnd marker
type

Marks the end of an expand/collapse section. Used in
conjunction with an Expand/Collapse paragraph style.
For more information, see “Creating Expand/Collapse
Sections (Drop-Down Hotspots) in Word”.

Filename marker type Specifies the name of an output file for a page or an
image. For more information, see “Specifying Output
File Names in Word”.

GraphicScale marker type Specifies a percentage to use to resize an image, such
as 50 or 75 percent, in generated output. For more
information, see “Assigning Image Scales in Word”.

480 | Custom Marker Types in Word

Marker Type Description

GraphicStyle marker type Specifies the name of a image style defined in a
project to apply to an image. This marker type is an
internal marker type that is not displayed in Stationery
Designer. You cannot create a marker type with a
different name and assign it this functionality. For more
information, see “Assigning Image Styles in Word”.

ImageAltText marker
type

Specifies alternate text for an image.This text is added
to the alt attribute of the img tag in the output.
Screen readers use this text when you create accessible
content. For more information, see “Assigning Alternate
Text to Images in Word”.

ImageAreaAltText marker
type

Specifies alternate text for clickable regions in an image
map. This text is added to the alt attribute of the img
tag in the output. Screen readers use this text when
you create accessible content. For more information,
see “Assigning Alternate Text to Image Maps in Word”.

ImageLongDescByRef
marker type

Specifies the path to the file that contains the long
description for an image. This text is added to the
longdesc attribute of the img tag in the output.
Screen readers read this description when you
create accessible content. For more information, see
“Assigning Long Descriptions to Images in Word”.

ImageLongDescNotReq
marker type

Specifies that a long description is not required for an
image, which bypasses this accessibility check for the
image when you create accessible content. For more
information, see “Excluding Images from Accessibility
Report Checks in Word”.

ImageLongDescText
marker type

Specifies the long description for an image. This text is
added to the longdesc attribute of the img tag in the
output. Screen readers read this description when you
create accessible content. For more information, see
“Specifying Long Descriptions for Images in Word”.

Keywords marker type Specifies the keywords to include in the meta tag for
the topic. The meta tag improves searchability on the

Custom Marker Types in Word | 481

Marker Type Description
Web. For more information, see “Creating Meta Tag
Keywords in Word”.

PageStyle marker type Specifies the name of a page style defined in the
project to apply to a topic. This marker type is an
internal marker type that is not displayed in Stationery
Designer. You cannot create a marker type with a
different name and assign it this functionality. For more
information, see “Assigning Custom Page Styles in
Word”.

PassThrough Specifies that ePublisher place the contents of the
marker directly into the generated output without
processing the content in any way. For example, you
could use a PassThrough marker if you wanted to
embed HTML code within your generated output.

Popup marker type Specifies the start of the content to include in a popup
window. The content is displayed in a popup window
when you hover over the link. When you click the link
in some output formats, the topic where the popup
text is stored, such as the glossary, is displayed. For
more information, see “Using Markers to Create Popup
Windows in Word”.

PopupEnd marker type Marks the end of the content to include in a popup
window. For more information, see “Using Markers to
Create Popup Windows in Word”.

PopupOnly marker type Specifies the start of the content to include in only
a popup window. Browsers display the content in a
popup window when you hover over or click the link.
For more information, see “Using Markers to Create
Popup Windows in Word”.

RubiComposite marker
type

No longer supported.

SeeAlsoKeyword marker
type

Specifies an internal identifier for a topic. SeeAlsoLink
markers in other topics can list this identifier to create
a link to this topic. Used in conjunction with a See

482 | Custom Marker Types in Word

Marker Type Description
Also paragraph style or character style. For more
information, see “Creating See Also Links in Word”.

SeeAlsoLink marker type Identifies an internal identifier from another topic to
include in the list of See Also links in this topic. Used
in conjunction with a See Also paragraph style or
character style. For more information, see “Creating
See Also Links in Word”.

SeeAlsoLinkDisplayType
marker type

Specifies whether to display the target topics on a
popup menu or in a window. By default, the links are
displayed in the Topics Found window. To display a
popup menu, set the value to menu . This marker type is
supported only in HTML Help. For more information, see
“Creating See Also Links in Word”.

SeeAlsoLinkWindowType
marker type

Specifies the name of the window defined in the .hhp
file, such as TriPane or Main, that the topic opens
in when the user clicks the link. This marker type is
supported only in HTML Help. For more information, see
“Creating See Also Links in Word”.

TableStyle marker type Specifies the name of a table style to apply to a table.
This marker type is an internal marker type that is not
displayed in the Style Designer as a marker. You cannot
create a marker type with a different name and assign
it this functionality. For more information, see “Applying
Table Styles in Word”

TableSummary marker
type

Specifies an alternate text summary for a table, which
is used when you create accessible content. This text
is added to the summary attribute of the table tag in
the output. Screen readers read this description when
you create accessible content. For more information,
see “Assigning Alternate Text (Summaries) to Tables in
Word”.

TableSummaryNotReq
marker type

Specifies that a summary is not required for a table,
which bypasses this accessibility check for that table.
For more information, see “Excluding Tables from
Accessibility Report Checks in Word”.

Custom Marker Types in Word | 483

Marker Type Description

TOCIconHTMLHelp
marker type

Identifies the image to use as the table of contents icon
for a topic in the HTML Help output format. For more
information, see “Customizing Table of Contents Icons
in Word”.

TOCIconJavaHelp marker
type

Identifies the image to use as the table of contents icon
for a topic in the Sun JavaHelp output format. For more
information, see “Customizing Table of Contents Icons
in Word”.

TOCIconOracleHelp
marker type

Identifies the image to use as the table of contents icon
for a topic in the Oracle Help output format. For more
information, see “Customizing Table of Contents Icons
in Word”.

TOCIconWWHelp marker
type

Identifies the image to use as the table of contents icon
for a topic in the WebWorks Help output format. For
more information, see “Customizing Table of Contents
Icons in Word”.

TopicAlias marker type Specifies an internal identifier for a topic that can be
used to create a context-sensitive link to that topic. For
more information, see “Specifying Context-Sensitive
Help Links in Word”.

Topic Description marker
type

Specifies a topic description for a context-sensitive help
topic in Eclipse help systems. For more information, see
“Creating Context-Sensitive Help in Word”.

WhatIsThisID marker
type

Identifies a What’s This help internal identifier for
creating context-sensitive What’s This field-level help
for Microsoft HTML Help. For more information, see
“Creating What’s This (Field-Level) Help in Word”.

WindowType marker type Specifies the name of the window defined in the
Help project that the topic should be displayed in. In
Microsoft HTML Help, the window names are defined
in the .hhp file. This marker type is supported in
Microsoft HTML Help and Oracle Help. For more

484 | Custom Marker Types in Word

Marker Type Description
information, see “Opening Topics in Custom Windows in
Word”.

Paragraph and Character Formats in Word
ePublisher projects use the paragraph styles and character styles defined by the
Stationery designer to implement online features when generating output. Before
you begin using paragraph styles and character styles to implement online features,
talk to the Stationery designer and verify which online features your Stationery
supports. Your Stationery only recognizes the paragraph styles and character styles
defined by the Stationery designer in your Stationery. If you try to implement
online features using paragraph styles and character styles not supported in your
Stationery, ePublisher does not recognize these items when generating output.

When the Stationery designer creates the Stationery, the Stationery designer
specifies the names of paragraph styles and character styles used to implement
an online feature. Consult with the Stationery designer to obtain the names of the
paragraph styles and character styles defined by the Stationery designer to support
each online feature you want to implement.

The following table lists the default names of paragraph styles and character
styles used to implement online features. Always verify with the Stationery
designer the names of the styles formats and character styles you should use when
implementing online features before you use these items in your source documents.

Paragraph and Character Formats in Word | 485

style Description

AbbreviationTitle
character style

Specifies abbreviation alternate text for browsers to
display for abbreviations such as SS# when a user
hovers over the abbreviation in output. Screen readers
also can read the abbreviation alternate text. Used in
combination with the AbbreviationTitle marker type.
For more information, see “Assigning Alternate Text to
Abbreviations in Word”.

AcronymTitle character
style

Specifies acronym alternate text for browsers to display
for acronyms such as HTML when a user hovers over
the acronym in output. Screen readers can also read
the acronym alternate text. Used in combination with
the AcronymTitle marker type. For more information,
see “Assigning Alternate Text to Acronyms in Word”.

Citation character style Specifies the source of a quote using a fully qualified
Uniform Resource Identifier (URI) when a user hovers
over the quote in output. Screen readers can also
read the URI for the quote. Used in combination with
the Citation marker type. For more information, see
“Providing Citations for Quotes in Word”.

Expand/Collapse
paragraph style

Specifies the content you want to include in an
expand/collapse section. Used in conjunction with a
DropDownEnd marker type. For more information,
see “Creating Expand/Collapse Sections (Drop-Down
Hotspots) in Word”.

Popup paragraph style Specifies the popup content to display in both a popup
window and in a standard help topic. Applied to the
first paragraph of popup content. For more information,
see “Creating Expand/Collapse Sections (Drop-Down
Hotspots) in Word”.

Popup Append paragraph
style

Specifies the popup content to display in a popup
window and in a standard help topic. Applied to
additional popup paragraphs when you have more than
one paragraph of popup content. For more information,
see “Creating Expand/Collapse Sections (Drop-Down
Hotspots) in Word”.

486 | Paragraph and Character Formats in Word

style Description

Popup Only paragraph
style

Specifies the popup content to display in only a popup
window. Applied to the first paragraph of popup
content. For more information, see “Creating Expand/
Collapse Sections (Drop-Down Hotspots) in Word”.

Popup Only Append
paragraph style

Specifies the popup content to display in only a popup
window. Applied to additional popup paragraphs when
you have more than one paragraph of popup content.
For more information, see “Creating Expand/Collapse
Sections (Drop-Down Hotspots) in Word”.

Related Topic paragraph
style

Specifies related topics links. For more information, see
“Creating Related Topics in Word”.

See Also character style Specifies the text you want to include in a See Also
button. For more information, see “Creating See Also
Links in Word”.

See Also paragraph style Specifies the text you want to include in a See Also
inline text link. For more information, see “Creating See
Also Links in Word”.

Obtaining and Applying the Latest
Microsoft Word Template
An efficient, effective, and consistent ePublisher online content generation process
relies upon the use of templates. Templates define paragraph, character, and table
styles and standards. Templates may also contain standard variables and cross-
reference definitions that you can use when creating and working with source
documents used to generate online content. Templates help control the look and
feel of source documents and generated output across multiple writers, multiple
projects, and multiple types of generated output.

The ePublisher content generation process assumes that you use marker types
and paragraph, character, and table styles defined in a Microsoft Word template
prepared by a Stationery designer as you create content and format your source
documents. Using Microsoft Word templates and the marker types and paragraph,
character, and table styles and other layout styles and characteristics defined in
templates ensures that you format content in your source documents consistently

Obtaining and Applying the Latest Microso Word Template | 487

and also ensures ePublisher can use your source documents effectively to generate
output.

If your source documents do not use templates or do not use the same marker
types, styles and standards defined in your Stationery by the Stationery designer,
your generated output may not conforms to the styles and standards defined by the
Stationery designer for output. You may also not be able to implement some online
features if you do not use the correct templates or the correct marker types and
styles defined in the templates.

As a part of preparing your Microsoft Word source documents for output generation,
ensure your source documents use the correct Microsoft Word templates from the
Stationery designer and you have applied all paragraph, character, and table styles
specified in the template correctly.

Working with the WebWorks Transit
Menu for Word
This section explains how to work with the WebWorks Transit menu for Microsoft
Word. For more information about using the WebWorks Transit menu to prepare
Microsoft Word documents for output generation, see “Implementing Online
Features in Word”.

WebWorks Transit Menu for Word
The WebWorks Transit menu for Microsoft Word allows you to insert the following
items into your Microsoft Word source documents:

Markers, including filename markers and TopicAlias markers. For more
information about markers in Microsoft Word, see “Custom Marker Types in
Word”.

Conditions. For more information about conditions in Microsoft Word, see
“Using Conditions in Word”.

Note: Writers authoring content in non-Word formats do not use the WebWorks
Transit menu for Microsoft Word.

Installing the WebWorks Transit Menu for
Word
If you have Microsoft Word installed on you computer, running the ePublisher
Express installer will automatically install the WebWorks Transit plug-in.

If you did not have installed Microsoft Word before installing ePublisher Express,
you can do a repair installation after installing Word.

488 | Installing the WebWorks Transit Menu for Word

Make sure every time you run the ePublisher Express installer, to close and save
your Word documents.

Running Transit Menu in Secure
Environments
Thankfully, Microsoft eventually got serious about security. Office 2003 added
a macro security level feature. By default, only macros signed with a trusted
certificate could run. And guess what!!! Now Quadralay Corporation has a trusted
certificate for macro documents.

Modern versions of Microsoft Office are even more restrictive. Office 2013 is set to
disable all macros by default, providing a notification that the macro wasn’t allowed
to run. That’s why after you install ePublisher Express you still need to say Microsoft
Word that you do trust in us.

If you need to know a little bit more on how macros work and what are them, you
can go to https://www.howtogeek.com/171993/macros-explained-why-microsoft-
office-files-can-be-dangerous/.

To run the WebWorks Transit menu for Microsoft Word in a Secure
Environment

1. Open a Microsoft Word document, or even a Blank document.

2. On the Word menu, click File and then Options.

3. In the window that pops out in the left side menu click on Trust Center, and
on the right side select Trust Center Settings. You should see a window
similar to the following figure.

Running Transit Menu in Secure Environments | 489

https://www.howtogeek.com/171993/macros-explained-why-microsoft-office-files-can-be-dangerous/
https://www.howtogeek.com/171993/macros-explained-why-microsoft-office-files-can-be-dangerous/

4. After selecting Trust Center Settings you’ll see a new window, click on the
left side on Macro Settings and on the right panel check Disable all macros
except digitally signed macros and Trust access to the VBA project
object model. You should see a window similar to the following figure.

5. Then you can click OK to close all your opened windows and go again to
the Word menu, click File and then Info. I you get the Security Warning

490 | Running Transit Menu in Secure Environments

then click on the Enable Content button and then Advanced Options.
On the right side you’ll see a window similar to the next one before clicking
Advanced Options.

6. On the Microsoft Office Security Options check Trust all documents
from this publisher. As you can see in the following figure: The digital
signature is valid, but the signature is from a publisher whom you
have not yet chosen to trust.

Running Transit Menu in Secure Environments | 491

7. Finally you can double check going through Step 2 and 3 above, and
then click on the left side Trusted Publishers and you’ll see Quadralay
Corporation there, as the next figure shows.

Initializing the WebWorks Transit Menu for
Microsoft Word
After you install the WebWorks Transit menu for Microsoft Word, you must initialize
the WebWorks Transit menu before you can use it. For more information about

492 | Inializing the WebWorks Transit Menu for Microso Word

installing the WebWorks Transit Menu for Microsoft Word, see “Installing the
WebWorks Transit Menu for Word”.

To initialize the WebWorks Transit menu for Microsoft Word

1. Open Microsoft Word.

2. Verify that Microsoft Word displays the WebWorks menu on the Microsoft
Word menu bar. Your Microsoft Word menu should be similar to the following
figure.

3. If you do not have the WebWorks Transit menu for Microsoft Word
installed, install it. For more information, see “Installing the WebWorks
Transit Menu for Word”.

4. If this is the first time you are using the WebWorks Transit menu for
Microsoft Word, on the WebWorks menu, click Initialize Menu. WebWorks
initializes the WebWorks Transit menu for Microsoft Word and displays the
WebWorks Transit menu in the Microsoft Word window. Your Microsoft Word
Window should be similar to the following figure.

Displaying and Hiding the WebWorks
Transit Menu in Word
You can choose to display or hide the WebWorks Transit menu in Microsoft Word.

For example, you may want to display the WebWorks Transit menu when you
are working in Microsoft Word documents that you will use to generate output.

Displaying and Hiding the WebWorks Transit Menu in Word | 493

However, you may want to hide the WebWorks Transit menu when you are working
in Microsoft Word source documentation that you will not use to generate output.

To display or hide the WebWorks Transit menu for Microsoft Word

1. Open Microsoft Word.

2. On the WebWorks menu, click Preferences.

3. If you want to display the WebWorks Transit menu for Microsoft Word
in Microsoft Word, select the Enable Toolbar check box.

4. If you do not want to display the WebWorks Transit menu for
Microsoft Word in Microsoft Word, clear the Enable Toolbar check box.

5. Click OK.

Creating Custom Marker Types Using the
WebWorks Transit Menu in Word
Typically your Stationery designer will provide the list of markers, which are a type
of private or custom Microsoft Word field codes, that you can use in Microsoft Word
source documents to create online features. In most cases, you should not need to
create a custom marker type for use in Microsoft Word source documents. However,
if you need to create a custom marker type to implement an online feature, verify
with the Stationery designer that your Stationery supports the custom marker type
before you create the custom marker and insert and use the custom marker in a
source document.

Occasionally your Stationery may also support a custom marker type that is not
defined in the WebWorks Transit menu for Microsoft Word. In this situation, first
confirm with the Stationery designer that your Stationery supports the custom
marker type. After confirming your project supports the custom marker type, you
can create the custom marker type using the WebWorks Transit menu for Word.

To create a custom marker type using the WebWorks Transit menu for
Word

1. In your Microsoft Word source document, on the WebWorks menu, click
Markers.

2. Click the plus (+) icon.

3. In the Type field, type CustomMarkerTypeName to create a custom marker
type, where CustomMarkerTypeName is the name of the custom marker type
you want to create.

Note: The custom marker type name you type must match the name of
the custom marker type supported in your ePublisher Stationery. If

494 | Creang Custom Marker Types Using the WebWorks Transit Menu in Word

you specify a name for the custom marker type that is different than
the name of the custom marker type supported in your ePublisher
Stationery, ePublisher will not be able to recognize and use the custom
marker type when generating output.

4. Click OK.

5. Click OK again to close the window.

The WebWorks Transit menu for Word saves the custom marker you specified in the
marker list and inserts the marker in your Microsoft Word source document.

Creating a Passthrough Marker in Word
A passthrough marker is a marker that allows you to insert content that you do
not want ePublisher to process when you generate output. For example, if you
have embedded multimedia files in your source documents, such as Audio Video
Interleave files (.avi) or Adobe Software Flash files (.swf), you can insert a
passthrough marker with a value that is set to the HTML code that you do not want
ePublisher to process.

The following example shows .avi code to which you could insert using a
passthrough marker.
<embed src="sample.avi" width="400"
 height="300" pluginspage=";>
</embed>

To create a passthrough marker in a Microsoft Word source document

1. In your Microsoft Word source document, locate the paragraph in which you
want to insert the passthrough marker.

2. Insert your cursor in the location on the page where you want to insert the
Passthrough marker.

3. On the WebWorks menu, click Markers.

4. In the Marker field, select Passhtrough from the list of markers.

5. In the Value field, type the html code that you would like to not be processed
by ePublisher such as the Flash embed code indicated in the previous topic.r

6. Click OK. ePublisher inserts the Passthrough marker into your source
document.

7. Save your Microsoft Word source document.

8. Generate output for your project. For more information, see “Generating
Output”.

Creang a Passthrough Marker in Word | 495

9. In Output Explorer, verify ePublisher created the appropriate result for your
embedded html code. For more information about viewing output files in
Output Explorer, see “Viewing Output in Output Explorer”.

Working with Tables in Word
This section explains how to prepare tables in source documents for output
generation. Obtain your latest templates and apply the latest table formats from
the template to tables in your source documents. If your tables do not have header
rows, create a header row for each table.

Applying Table Styles in Word
Table styles define the appearance of your tables, and ePublisher uses table styles
to define the appearance of tables in generated output. When you work with tables
in your Microsoft Word source documents, ensure you apply the correct table
styles to your tables. The Stationery designer defines the table styles you can use
in your Microsoft Word source documents in the Microsoft Word templates you
associate with your Microsoft Word source documents. If you want to specify a
different table styles for sets of tables in your generated output, first ensure the
different table styles you want to apply are available in your Microsoft Word source
document. Then apply the different table styles to tables in your Microsoft Word
source documents as appropriate.

For example, you may have a small set of tables that contain information about a
specific component in a product. If you decide you want to modify the appearance
of these tables in your generated output by specifying that the tables associated
with this component display with a yellow background in your generated output,
apply a table style available in your Microsoft Word source document that the
Stationery designer created to meet this requirement. When you generate output,
the Stationery designed by the Stationery designer specifies that any tables created
with a table style configured to display tables with a yellow background display in
your output with a yellow background.

If you are working in Microsoft Word 2000 or earlier, Microsoft did not
provide support for named tabled styles in these versions of Word. You can use
TableStyle markers to manually assign table style names to tables. To use the
TableStyle marker, insert the TableStyle marker using the WebWorks Transit menu
for Word into a cell in the table header row, then save your document, generate
output, and verify in Output Explorer that ePublisher applied the table style you
specified correctly.

If you are working in Microsoft Word XP (2002) or later, you may use
TableStyle markers to assign table styles if you prefer that approach to using
Microsoft’s available table style assignment controls.

496 | Applying Table Styles in Word

Note: TableStyle markers take precedence over table style names derived from
Word assigned table styles.

Because of the ambiguity between the different table styles present in the Microsoft
Word ribbon for the versions of 2007 and beyond, a recommended approach would
be to use the TableStyle marker in lieu of assigning table styles,

To set a TableStyle marker in a Microsoft Word source document
(instructions for Word 2007 or higher)

1. In your Microsoft Word source document, locate the table for which you want
to assign a tablestyle marker

2. Insert cursor any where inside the table cells.

3. Click the Add-Ins tab to access the WebWorks Transit menu

4. Select the Markers option from the menu

5. In the Configure Markers dialog box, select the TableStyle marker from the
list

6. In the text box for Value:, enter in desired name of the TableStyle

7. Click OK

For more information about generating output and using Output Explorer to view
output files, see “Generating and Regenerating Output” and “Viewing Output in
Output Explorer”.

Creating Table Header Rows in Word
Header rows are rows that contain information that help identify the content of a
particular column. If the table spans several pages of a print layout, the header row
will usually repeat itself at the beginning of each new page.

When you create a table in Microsoft Word, by default Microsoft Word does not
create a header row. However, if you create header rows in your Microsoft Word
source documents, you can quickly and easily specify the appearance that you want
for table header rows in your generated output.

Note: You cannot create table footer rows in Microsoft Word source documents.
Microsoft Word does not support the creation of table footer rows.

The following procedure provides an example of how to create table header rows
in Microsoft Word source documents using Microsoft Word 2003. Steps for creating
table header rows in Microsoft Word may be different in other versions of Microsoft
Word.

Creang Table Header Rows in Word | 497

To create a table header row in a Microsoft Word source document

1. In your Microsoft Word source document, locate the table for which you want
to create a table header row.

2. Select the row or rows of an existing table you want to use to create the
header row.

3. On the Table menu, click Table Properties.

4. On the Row tab, in the Options area, verify that the Repeat as header row
at the top of each page check box is selected.

5. If the check box is not selected, select the check box to create a header
row for the table.

6. Click OK.

Working with Images in Word
Many writers include images when producing documents using Microsoft Word. Most
writers typically insert images into Microsoft Word source documents in one of the
following ways:

Inserting images in Microsoft Word source documents, also known as
embedding images

Inserting links to image files in the Microsoft Word source documents

If you insert an image into a Microsoft Word source document, Microsoft Word
inserts, or embeds, the image in the Microsoft Word source document, and the
image becomes a part of the document. Embedded images move with the text
of the paragraph in the document. Embedded images in Microsoft Word are also
sometimes called inline shapes.

If you insert a link to an image is Microsoft Word source documents, Microsoft Word
inserts a link to the image and displays the image in the Microsoft Word source
document. The link becomes a part of the document, but the actual image file
is not inserted into the document, although the actual image files is displayed in
the document. If you update the image file referenced by the link, Microsoft Word
displays the updated image referenced by the link automatically. Linked images in
Microsoft Word are also sometimes called shapes.

There are benefits and drawbacks to inserting images directly into Microsoft Word
source documents and inserting links to images used in Microsoft Word source
documents.

498 | Working with Images in Word

For example, if you insert images in Microsoft Word source documents, you do not
have worry about breaking links between the Microsoft Word source documents
and the image files. If you link to images in Microsoft Word source documents, you
must ensure that you keep the same file structure for the image files in order to not
break links between the Microsoft Word source document and the image file.

However, linking images in Microsoft Word source files, rather than inserting or
embedding images, provides some of the following benefits:

You can update image files without reinserting the image file into your
Microsoft Word source documents.

If you have one image used in multiple places, you can update the image in
one place, rather than reinserting the image into multiple places.

You can manage your documentation files and image files separately, which
makes organizing images easier.

Source documents with linked images are smaller in size than source
documents with inserted, or embedded, images.

When you work with Microsoft Word source documents that you will use to generate
output, ensure you follow the guidelines specified by the Stationery designer for the
following items:

Method used to insert images

Correct DPI to use for inserted images

Correct image file format to use for inserted images

Inserting Images in Word
Before you insert images into Microsoft Word source documents you plan to use to
generate output, review image considerations. For more information, see “Working
with Images in Word”.

The following procedure provides an example of how to insert an image in Microsoft
Word source documents using Microsoft Word 2003. Steps for inserting an image in
Microsoft Word may be different in other versions of Microsoft Word.

After you insert your images, validate your images. For more information, see
“Validating Images in Word”.

To insert an image in a Microsoft Word source document

Inserng Images in Word | 499

1. In your Microsoft Word source document, on the Insert menu, click Picture
> From File.

2. Browse to the location of the image file you want to insert in your Microsoft
Word source document, and then select the image file.

3. If you want to embed the image in your Microsoft Word source
document, click the Insert button. Microsoft Word inserts the image in your
source document and displays the image.

4. If you want to insert a link to the image file in your Microsoft Word
source document, click the drop-down button on the Insert button and
then click Link to File. Microsoft Word inserts a link to the image in your
source document and displays the image in your source document.

After you insert an image, you can assign alternate text or a long description to the
image. For more information, see “Assigning Alternate Text to Images and Image
Maps in Word” and “Assigning Long Descriptions to Images in Word”.

Validating Images in Word
If you inserted images in your Microsoft Word source documents, you can validate
the images you inserted using the WebWorks Transit menu for Microsoft Word
before you generate output. For more information about inserting images into
Microsoft Word source documents, see “Inserting Images in Word”.

In the WebWorks Transit menu for Microsoft Word, embedded images are referred
to as inline shapes, and images referenced by links in Microsoft Word source
documents are referred to as shapes.When you validate embedded images or
images referenced by links in Microsoft Word source documents, if ePublisher
detects an issue with the image in your source document, ePublisher displays
an error and highlights the image with the issue in your Microsoft Word source
document.

To validate images in a Microsoft Word source document:

1. Open the Microsoft Word source document that contains the images you want
to validate.

2. If you want to validate embedded images, complete the following steps:

a. On the WebWorks menu, click Tools > Validate Inline Shapes.

b. ePublisher displays a message that tells you how many embedded
images are in the source document. Click OK to continue with the
validation.

500 | Validang Images in Word

c. If ePublisher did not detect any issues with the embedded
images, ePublisher displays a status message that tells you all
embedded images were validated successfully.

d. If ePublisher detects an issue with an embedded image,
ePublisher displays an error message. Complete one of the following
steps:

If you want to fix the image with the issue, click No to stop
the validation scan. Go to the highlighted inline shape with the
issue, fix the inline shape by re-adding the inline shape to your
Microsoft Word source document, and then run the inline shape
validation scan again.

If you want to continue the scan without fixing the image
with the issue, click Yes to continue with the validation scan.

3. If you want to validate images referenced by links, complete the
following steps:

a. On the WebWorks menu, click Tools > Validate Shapes.

b. ePublisher displays a message that tells you how many images
referenced by links are in the source document. Click OK to continue
with the validation.

c. If ePublisher did not detect any issues with the images referenced by
links, ePublisher displays a status message that tells you all images
were validated successfully.

d. If ePublisher detects an issue with an image referenced by a link,
ePublisher displays an error message. Complete one of the following
steps:

If you want to fix the image with the issue, click No to stop
the validation scan. Go to the highlighted shape with the issue,
fix the shape by re-adding the link to the shape in your Microsoft
Word source document, and then run the inline shape validation
scan again.

If you want to continue the scan without fixing the image
with the issue, click Yes to continue with the validation scan.

Creating Image Links in Word
You can create image links that allow users who click the image to link to content
in another location. For example, if you include your company logo in a source

Creang Image Links in Word | 501

document, you can define a link for the logo so that when users click the logo, they
link to your company home page.

The following procedure provides an example of how to create an image link in
Microsoft Word source documents using Microsoft Word 2003. Steps for creating an
image link in Microsoft Word may be different in other versions of Microsoft Word.

To create an image link in a Microsoft Word source document

1. In your Microsoft Word source document, insert the image for which you
want to create an image link. For more information, see “Inserting Images in
Word”.

2. Select the image for which you want to create an image link.

3. On the Insert menu, click Hyperlink.

Note: If Microsoft Word does not display Hyperlink on the Insert menu, you
cannot use this procedure to create a hyperlinked image. However, you
can create a hyperlinked text box to create a hyperlinked image. For
more information, see “Creating Clickable Regions for Image Maps in
Word”.

4. In the Insert Hyperlink window, select the object you want to link to and
specify the appropriate options. For example, you can link to an existing file or
web page, a location in a document, or an email address.

5. Click OK.

6. Save your Microsoft Word source document.

7. Generate output for your project. For more information, see “Generating
Output”.

8. In Output Explorer, verify ePublisher created the image link using the link
information you specified on the page by clicking on the image. For more
information about viewing output files in Output Explorer, see “Viewing Output
in Output Explorer”.

Creating Clickable Regions for Image Maps
in Word
An image map can be a single image separated with clickable regions or a
composite image made up of multiple images grouped together, yet still separated
with clickable regions. For example, you could create an image of the countries of
Europe and then define an image map for the image that allows users to link to a
topic about each country when they click on an area of the image. User can click

502 | Creang Clickable Regions for Image Maps in Word

France to see information about France, Italy to see information about Italy, and so
on.

When you define an image map, you can also define alternate text for each
clickable region. For example, you might define alternate text for the Italy region as
“Click here for more information about Italy.” For more information about assigning
alternate text to image maps, see “Assigning Alternate Text to Images and Image
Maps in Word”.

Creating Image Maps for Single Images in Word
You create an image map for a single image by inserting the image into a drawing
canvas and then creating text boxes with hyperlinks that link to a location with
additional content. You can also create image maps for composite images. For more
information about creating image maps for composite images, see “Creating Image
Maps for Composite Images in Word”.

The following procedure provides an example of how to create an image map for a
single image in Microsoft Word source documents using Microsoft Word 2003. Steps
for creating an image map for a single image in Microsoft Word may be different in
other versions of Microsoft Word.

To create an image map for a single image in a Microsoft Word source
document:

1. Insert your cursor on the line where you want to insert the single image you
want to use for your image map.

2. On the Insert menu, click Text Box. Microsoft Word inserts a drawing
canvas. You will insert your image and the text boxes that contain hyperlinks
for each clickable area you want to specify for the image into this drawing
canvas.

3. Click in the drawing canvas to insert a text box in the drawing canvas.

4. On the Insert menu, click Picture > From File.

5. Browse to the location of the image you want to use for your image map,
select the image, and then click Insert, Link to File, or Insert and Link
based on the image insertion method you use for your projects. Microsoft
Word inserts the image into the drawing canvas.

6. Add a text box that covers each region in the image that you want to be able
to click by completing the following steps:

a. Select the drawing canvas.

b. On the Insert menu, click Text Box.

Creang Image Maps for Single Images in Word | 503

c. Click on the drawing canvas, and then drag and drop the text box over
an area of the image you want to make clickable.

d. Right-click the text box, and then click Format Text box.

e. On the Colors and Lines tab, in the Fill area, in the Color field, select
No Fill from the list.

f. In the Line area, in the Color field, select No Line from the list.

g. Click OK.

7. Specify a hyperlink for each text box by completing the following steps:

a. Right-click the text box, and then click Hyperlink from the right-click
menu.

b. Specify the location to which you want to link, and then click OK. For
example, you can link to a Web site or you can link to a location in the
source document.

8. Press and hold the SHIFT key, and then click the image and the text box you
created for each hyperlinked area you want to use to create the clickable
image map for the area.

9. When you have the image and all of the hyperlinked text boxes you created
for the image map selected, continue to press and hold the SHIFT key, then
right-click the selection and then click Grouping > Group on the context
menu.

10. Save your Microsoft Word source document.

11. Generate output for your project. For more information, see “Generating
Output”.

12. In Output Explorer, verify ePublisher created the image map using the link
information you specified by clicking on the page that contains the image map
and then clicking on each area of the image where you created a link. For
more information about viewing output files in Output Explorer, see “Viewing
Output in Output Explorer”.

Creating Image Maps for Composite Images in
Word
You can create composite images by inserting the composite images into a drawing
canvas and then grouping the composite images with hyperlinked text boxes.

504 | Creang Image Maps for Composite Images in Word

The following procedure provides an example of how to create image maps for
composite images in Microsoft Word source documents using Microsoft Word 2003.
Steps for creating image maps for composite images in Microsoft Word may be
different in other versions of Microsoft Word.

To create an image map for a composite image in a Microsoft Word source
document

1. Insert your cursor on the line where you want to insert the composite image
you want to use for your image map.

2. On the Insert menu, click Picture > New Drawing. Microsoft Word inserts
a drawing canvas. You will insert the images that make up your composite
image and the text boxes that contain hyperlinks for each clickable area you
want to specify for the image into this drawing canvas.

3. Select the drawing canvas, and then on the Insert menu, click Picture >
From File.

4. Browse to the location of each image that makes up your composite image,
select the image, and then click Insert, Link to File, or Insert and Link
based on the image insertion method you use for your projects. Microsoft
Word inserts the image into the drawing canvas.

5. Position each image that makes up your composite image in the drawing
canvas by dragging and dropping the image into its correct position.

6. Add a text box that covers each region in the image that you want to be able
to click by completing the following steps:

a. Select the drawing canvas.

b. On the Insert menu, click Text Box.

c. Click on the drawing canvas, and then drag and drop the text box over
an area of the image you want to make clickable.

d. Right-click the text box, and then click Format Text box.

e. On the Colors and Lines tab, in the Fill area, in the Color field, select
No Fill from the list.

f. In the Line area, in the Color field, select No Line from the list.

g. Click OK.

7. Specify a hyperlink for each text box by completing the following steps:

Creang Image Maps for Composite Images in Word | 505

a. Right-click the text box, and then click Hyperlink from the right-click
menu.

b. Specify the location that you want to link to, and then click OK. For
example, you can link to a Web site or you can link to a location in the
source document.

8. Press and hold the SHIFT key, and then click each image that makes up your
composite image and the text box you created for each hyperlinked area you
want to use to create the clickable image map for the area.

9. When you have the image and all of the hyperlinked text boxes you created
for the image map selected, continue to press and hold the SHIFT key, then
right-click the selection and then click Grouping > Group on the context
menu.

Note: After grouping the image and the text boxes, do not use the Hyperlink
command on the right-click menu to assign a hyperlink to the entire
group. If you do, the hyperlink you assign for the group will override the
hyperlinks you assigned to the individual text boxes in the group.

10. Save your Microsoft Word source document.

11. Generate output for your project. For more information, see “Generating
Output”.

12. In Output Explorer, verify ePublisher created the image map using the link
information you specified by clicking on the page that contains the image map
and then clicking on each area of the image where you created a link. For
more information about viewing output files in Output Explorer, see “Viewing
Output in Output Explorer”.

Assigning Image Scales in Word
When ePublisher converts images inserted into your source documents, it can
scale images to make them display larger or smaller in your generated output. By
default, ePublisher uses the scaling factor applied to images as specified by the
image style you apply to each image. For example, if you apply an image style to
images and the Stationery designer defined the image style to scale images to 80%
of their original size, all images that have this image style applied to them will be
scaled to 80% in the generated output.

Typically, using the standard scaling factor specified in the image style is sufficient.
Occasionally, however you may want to override the scaling factor for an individual
image. For example, while most .gif images scale to 80%, you may have one
large image that you want scaled to 60% in your generated output. You can
manually override the standard scaling factor specified in your Stationery for a
specific image by using the GraphicScale marker.

506 | Assigning Image Scales in Word

To assign a scale to a specific image, your Stationery and template must have the
GraphicScale marker type configured. Your output format must also support scaling
by image.

The following procedure provides an example of how to specify image scaling for
an image Microsoft Word source documents using Microsoft Word 2003. Steps for
specifying image scaling for an image in Microsoft Word may be different in other
versions of Microsoft Word.

To specify an image scale for an image in a Microsoft Word source
document

1. In your Microsoft Word source document, locate the image for which you want
to specify image scaling.

2. Right-click the image, and then click Format Picture or Format Object.

3. Change the layout setting of the image to Top and Bottom by completing
the following steps:

Note: By default when you insert images into Microsoft Word, Microsoft Word
inserts the image using the Inline with text layout setting. In order
to specify the image scale for image output files, you must group the
image and the text box that contains the GraphicScale marker. However,
you cannot group images using the In line with text layout setting
in Microsoft Word. To work around this known Microsoft Word issue, if
you have an image that uses an In line with text layout setting, use
the Top and Bottom layout setting for the image while you insert the
GraphicScale marker, and then reapply the In line with text layout
setting after you group the image and the GraphicScale marker.

a. On the Layout tab, click Advanced.

b. On the Text Wrapping tab, click Top and Bottom.

c. Click OK, and then click OK again to close the window.

4. Select your image.

5. On the Insert menu, click Text Box, and then click to the right of your
image. Microsoft Word inserts a text box.

6. Insert your cursor into the text box, and then complete the following steps:

a. On the WebWorks menu, click Markers.

b. In the Markers field, select GraphicScale from the list of markers.

c. In the Value field, type a scaling value for the image.

Assigning Image Scales in Word | 507

For example, if you want the image in your Microsoft Word source
document reduced by 50% when you generate output, type 50 .

Click OK. ePublisher inserts the GraphicScale marker into the text box.

d. Select the text box.

e. Right-click the selected text box, and then click Format Text Box.

f. On the Colors and Lines tab, in the Fill area, in the Color field, select
No Fill.

g. In the Line area, in the Color field, select No Line.

h. Click OK.

7. Drag and drop the text box onto the image.

8. Select the text box and the image.

9. Right-click the selected text box and image, and then click Grouping >
Group.

Note: When you select Group, the location of the image in your Microsoft
Word source document may change in relation to the text in your source
document. For example, the image may move up or down in your
Microsoft Word source document. This is known Microsoft Word behavior.
You may need to scroll up or down in your source document to the new
location of the image to find the image.

10. If your image previously used the In line with text layout setting for
the image, reassign this style to your image by completing the following
steps:

a. Right-click only the image, and then click Format Object.

Note: You must ensure you right-click only the image, and not on the
text box or the grouped text box and image. If you right-click on
the text box or the grouped text box and image, Microsoft Word
does not display the Format Object menu option on the context
menu.

b. On the Layout tab, click In line with text.

c. Click OK, and then click OK again to close the window.

11. Save your Microsoft Word source document.

508 | Assigning Image Scales in Word

12. Generate output for your project. For more information, see “Generating
Output”.

13. In Output Explorer, verify ePublisher created the image using the image scale
you specified in the GraphicScale marker by clicking on the page that contains
the image for which you specified image scaling. For more information
about viewing output files in Output Explorer, see “Viewing Output in Output
Explorer”.

Assigning Image Styles in Word
Typically you do not need to specify an image style for images when you generate
output. By default, each image generated by ePublisher is associated with the
default image style defined in the Stationery used by your Stationery. However,
if you want to change the image style of one image or a small set of images, you
can specify the image style you want to use for an image in your source document
using the GraphicStyle marker type.

For example, if you want to specify a yellow border around a set of screen shot
images that illustrate a particular piece of product functionality, you can specify
that each of the screen shots images in the set have a yellow border around them
through the use of the GraphicStyle marker type.

To assign a style to a specific image, your Stationery and template must have
the GraphicStyle marker type configured. Your output format must also support
specifying image styles.

The following procedure provides an example of how to specify image styles for
images in Microsoft Word source documents using Microsoft Word 2003. Steps
for specifying image styles for images in Microsoft Word may be different in other
versions of Microsoft Word.

To specify an image style for an image in a Microsoft Word source
document

1. In your Microsoft Word source document, locate the image for which you want
to specify an image style.

2. Select the image, and then select the WebWorks menu to insert a
GraphicStyle marker next to the image. To insert the marker follow these
steps.

a. On the WebWorks menu, click Markers.

b. In the Markers field, select GraphicStyle from the list of markers.

c. In the Value field, type the name of the image style the Stationery
designer configured for the Stationery used by your ePublisher project.

Assigning Image Styles in Word | 509

For example, if the Stationery designer configured an image style called
GreenBorder in your Stationery, type GreenBorder .

Click OK. ePublisher inserts the GraphicStyle marker into the text box.

3. Save your Microsoft Word source document.

4. Generate output for your project. For more information, see “Generating
Output”.

5. In Output Explorer, verify ePublisher created the image using the image style
you specified by clicking on the page that contains the image for which you
specified an image style and verifying ePublisher applied the image style you
specified in the generated output. For more information about viewing output
files in Output Explorer, see “Viewing Output in Output Explorer”.

Creating Index Entries in Word
An index lists the terms and topics discussed in a document and the page or pages
on which they appear. An online index provides the user with a point-and-click
resource for quickly navigating online content.

ePublisher uses the same native index entry features used in source documents to
create a printed index to create an online index. If you include index entries in your
source documents, ePublisher detects the index entries and uses the index entries
to create an online index in your generated output.

Microsoft Word inserts index entries as an XE (Index Entry) field in a field code. To
create index entries in a Microsoft Word source document, insert index entries into
your Microsoft Word source document. ePublisher then uses the index entries to
create an online index when you generate output.

Before you insert index entries, verify with the Stationery designer that your
Stationery is configured to support online index generation. By default, ePublisher
enables online index generate for output, but this functionality can be disabled in
your Stationery by the Stationery designer. Also confirm that your output format
supports online index creation.

The following procedure provides an example of how to insert index entries in
Microsoft Word source documents using Microsoft Word 2003. Steps for inserting
index entries in Microsoft Word may be different in other versions of Microsoft Word.

To insert an index entry in a Microsoft Word source document

1. In your Microsoft Word source document, select the word you want to include
in your index.

510 | Creang Index Entries in Word

2. Press ALT+SHIFT+X . Microsoft Word displays the selected text in the Main
entry field on the Mark Index Entry window.

3. Specify the appropriate options for the index entry, and then click Mark. For
more information about the options for the index entry, see the Microsoft
Word Help.

Microsoft Word inserts each index entry as an XE (Index Entry) field in a field
code. Field codes use hidden text format. If you don’t see the XE field after
you insert your index entry, click the Paragraph symbol on the Standard
toolbar.

4. After you insert your index entries, update all of your inserted index entries by
completing the following steps:

a. On the Edit menu, click Select All.

b. Press F9 . Microsoft Word updates all of the field codes in the Microsoft
Word source document, including the XE (Index Entry) field codes.

5. Hide the XE (Index Entries) in your source document by clicking the
Paragraph symbol on the Standard toolbar to hide the index field codes and
hidden text.

6. Save your Microsoft Word source document.

7. Generate output for your project. For more information, see “Generating
Output”.

8. In Output Explorer, verify ePublisher created the index correctly by clicking
on the page or tab that displays the index and then clicking on the index
entries. For more information about viewing output files in Output Explorer,
see “Viewing Output in Output Explorer”

Using Variables in Word
A variable serves as a placeholder for information that may change frequently.
Using variables in source documents allows you to quickly and easily control the
content in your generated output. When you change the value of a variable in an
ePublisher project, it changes the value in only your generated output. The variable
value does not change in your source document.

Once you insert variables into your source documents, whenever the value of a
item defined by a variable needs to change, you can make the change in a single
location, rather than searching and replacing for all instances of the item. For
example, you can use variables in the following ways:

Using Variables in Word | 511

If you have publication dates or release dates in your source documents that
you need to update periodically, you can set up the date as a variable.

If you work with products that have names or versions that frequently
change, you can set up variables for product names and versions.

If you need to produce documentation sets for a product with multiple brands,
you can use variables to help you produce documentation for each different
brand using the same set of source files.

Creating Variables in Word
Microsoft Word implements variables as DocProperty field codes. When you work
with Microsoft Word source documents, typically you use variables defined in a
Microsoft Word template by a Stationery designer. The variables in these templates
will also include the built-in document properties such as Author or Subject . You
import these variables into your Microsoft Word source documents when you apply
the template to your source documents. After you import the variables, you insert
the variables as appropriate.

Typically you should not need to create variables in your Microsoft Word source files
if you use a Microsoft Word template created by a Stationery designer. However, in
some cases you may need to create a variable in a Microsoft Word source document
if you do not have a Microsoft Word template that includes a variable you need for
your project.

The following procedure provides an example of how to create variables in Microsoft
Word source documents using Microsoft Word 2007 and Word 2010.

Note: Newer versions of Word may or may not use this exact procedure,
however this may provide enough information to get working with
variables in Word.

To create a variable in Word 2007 or Word 2010

1. Go to File, and click Info

2. Click the Properties tab in the right-hand side of the window and click the
Advanced Properties option from the dropdown

3. Click the Custom tab

4. Type in the Name of your variable in Name, for example BookName

5. For the Value, type in the information you want the variable to represent, for
example User Guide

6. Click Add to add the variable to the list

512 | Creang Variables in Word

Inserting Variables into Word
You can insert a variable into a source document after you apply a Microsoft Word
template that contains the variables to your source document. If you want to use
a variable that is not defined in a Microsoft Word template, you must create the
variable in your source document before you can insert it. For more information
about creating a variable, see “Creating Variables in Word”.

The following procedure provides an example of how to insert variables in Microsoft
Word source documents using Microsoft Word 2007 or 2010.

Note: Newer versions of Word may or may not use this exact procedure,
however this may provide enough information to get working with
variables in Word.

To insert a variable (DocProperty field) into a Microsoft Word document

1. Open the Microsoft Word source document in which you want to insert a
variable.

2. Place your cursor in the location where you want to insert the variable.

3. Go to the Insert ribbon and click on the Quick Parts dropdown and then
select Field...

4. In the Field names selection box, select DocProperty

5. In the adjacent selection box labeled Property, select the appropriate
variable name to insert in your document

Changing Variable Values in Word
You can change the value assigned to a variable in a Microsoft Word source
document.

Note: After you change a variable value in your source document, update the
variable value for the variable from the previous value to the new value by
selecting all the content in your Microsoft Word source document and then
pressing the F9 key.

The following procedure provides an example of how to change a variables in
Microsoft Word source documents using Microsoft Word 2007 or 2010.

Note: Newer versions of Word may or may not use this exact procedure,
however this may provide enough information to get working with
variables in Word.

Changing Variable Values in Word | 513

To change a variable value in a Microsoft Word source document

1. Open the Microsoft Word source document that contains the variable with a
value you want to change.

2. On the File menu, click Info.

3. Click the Properties tab in the right-hand side of the window and click the
Advanced Properties option from the dropdown

4. Click the Custom tab and from the Name list box, select the variable you
wish to change

5. In the Value field, type a new value for the variable. The value you type is
the value that Microsoft Word displays in your Microsoft Word document.

6. Click OK

7. On the Edit menu, click Select All.

8. Press the F9 key. Microsoft Word updates the variable value in each place in
your source document where you inserted the variable.

9. Click Done again to close the window.

Deleting Variables in Word
Delete a variable in a Microsoft Word source document when you no longer want to
use the variable. Before you delete a variable, ensure you search for the variable
and delete or replace all references to the variable. If your source document still
contains a reference to a variable after you delete it, Microsoft Word displays errors
in places where a reference to a deleted variable still exists.

The following procedure provides an example of how to delete variables in Microsoft
Word source documents using Microsoft Word 2007 or 2010.

To delete a variable in a Microsoft Word source document

1. Open the Microsoft Word source document that contains the variable you want
to delete.

2. Press Alt+F9 to display all field codes in the source document.

3. Search for and replace all references to the variable you want to delete.

4. On the File menu, click Info

5. Click Properties and select Advanced Properties

514 | Deleng Variables in Word

6. On the Custom tab, in the Properties field, select the name of the variable
you want to delete in the Name column.

7. Click Delete.

8. Click OK.

9. On the Edit menu, click Select All.

10. Press the F9 key. Microsoft Word updates the fields in your Microsoft Word
source document. If there are any fields that reference the deleted variable in
your source document, Microsoft Word displays an error message in the field.

11. Search for the word Error in your Microsoft Word source document to verify no
references to the deleted variable remain in your source document.

12. Save your Microsoft Word source document.

Using Conditions in Word
Conditions allow you to show or hide information in your source documents and in
your online output. You apply conditions to the content in your source documents,
and then you set the visibility for those conditions either in your source documents
or in your ePublisher project.

For example, your source documents might contain some content that should be
displayed in only the printed version and other content that should be displayed
in only the online version. You can use the same set of source documents for both
printed and online versions through the use of conditions. You can create one
condition called PrintOnly specifically for printed content, and then you can create
another condition called OnlineOnly specifically for online content. After you create
the PrintOnly and OnlineOnly conditions, you can apply them to the appropriate
content in your source documents.

Use the WebWorks Transit menu plug-in for Microsoft Word to work with conditions
in your Microsoft Word source documents. ePublisher installs the WebWorks Transit
menu plug-in for Microsoft Word by default when you install ePublisher Express.
You also have the option to install the WebWorks Transit menu plug-in for Microsoft
Word when you install ePublisher Designer or ePublisher AutoMap. For more
information about installing the WebWorks Transit menu plug-in for Microsoft Word,
see “Installing ePublisher Components”.

After you apply conditions in your source documents, ePublisher can use the
conditions defined in your source document to control the visibility of content when
it generates output. You can also change the visibility specified for any condition in
your ePublisher project. Changing the visibility specified for any condition in your
ePublisher project does not change the visibility specified for the condition in your
source documents.

Using Condions in Word | 515

Creating Conditions in Word
The WebWorks Transit menu for Microsoft Word allows you to quickly and easily
create conditions you can then use to control content in your source documents.
Obtain a list of supported conditions from the Stationery designer, and then create
each supported condition in each of your Microsoft Word source documents using
the WebWorks Transit menu for Microsoft Word.

The following procedure provides an example of how to create conditions in
Microsoft Word source documents using Microsoft Word 2003. Steps for creating
conditions in Microsoft Word may be different in other versions of Microsoft Word.

To create a condition in a Microsoft Word source document

1. Open Microsoft Word.

2. Ensure that the WebWorks Transit Menu for Microsoft Word is installed on
your computer and initialized. For more information, see “Working with the
WebWorks Transit Menu for Word”.

3. In your Microsoft Word source document, on the WebWorks menu, click
Conditions.

4. Click the Add icon.

5. In the Type field, type a name for the condition.

For example, if you want to create a condition for content that you want to
display in only online content, type OnlineOnly . If you want to create a
condition for content that you want to display in only printed content, type
PrintOnly .

6. If you want the content the condition is applied to hidden in Microsoft
Word, select the Hidden check box.

7. If you want to highlight the content the condition is applied to in
Microsoft Word, in the Highlight field, select a color from the drop-
down list. Highlighting the content the condition is applied to allows you to
more easily see the conditionalized content in your Microsoft Word source
documents.

8. Click OK.

9. Click OK again.

Applying Conditions in Word

516 | Applying Condions in Word

After you have created conditions in your Microsoft Word source documents, you
can apply conditions to content. For more information about creating conditions in
Microsoft Word source documents, see “Creating Conditions in Word”.

The following procedure provides an example of how to apply conditions in Microsoft
Word source documents using Microsoft Word 2003. Steps for applying conditions in
Microsoft Word may be different in other versions of Microsoft Word.

To apply a condition to content in a Microsoft Word source document

1. In your Microsoft Word source document, select the content to which you
want to apply the condition.

2. On the WebWorks menu, click Conditions.

3. Select a condition.

4. Click Apply Condition.

5. Click OK.

Validating Conditions in Word
An unbalanced condition is a condition that does not have either an opening or
closing tag. You may accidently create an unbalanced condition if you delete an
opening or closing tag.

The following is an example of a balanced condition:

{PRIVATE WWMTS PrintOnly} Timing Devices {PRIVATE WWMTE PrintOnly}

The following is an example of an unbalanced condition:

{PRIVATE WWMTS PrintOnly} Timing Devices

If you have any unbalanced conditions in your Microsoft Word source documents,
ePublisher cannot apply the condition when it generates output.

If you use conditions in your Microsoft Word source documents, validate your
conditions and verify that your conditions are balanced before you generate output.
When you validate conditions, if you have unbalanced conditions in your Microsoft
Word source document ePublisher displays the following error.

Validang Condions in Word | 517

If ePublisher displays the error, you can go either go to the location of the error,
fix the unbalanced condition in your source document, and then continue the
validation, or you can cancel the validation.

To validate conditions in a Microsoft Word source document

1. In your Microsoft Word source document, on the WebWorks menu, click
Tools > Validate Conditions. ePublisher scans the Microsoft Word source
document for unbalanced conditions.

2. If the validation scan detects an unbalanced condition, click Navigate
to error to go to the unbalanced condition and correct the error.

3. If you want the validation scan to continue without correcting the
unbalanced condition, click Continue scan.

4. If you want to cancel the validation scan, click Cancel scan.

Removing Conditions in Word
If you no longer want to apply a condition to content in a Microsoft Word source
document, you can remove the applied condition from the content.

The following procedure provides an example of how to remove conditions from
content in Microsoft Word source documents using Microsoft Word 2003. Steps
for removing conditions from content in Microsoft Word may be different in other
versions of Microsoft Word.

518 | Removing Condions in Word

To remove a condition from content in a Microsoft Word source document

1. In your Microsoft Word source document, select the content with the condition
you want to remove.

2. On the WebWorks menu, click Conditions.

3. Click the Delete icon.

4. If you want to remove the condition from the content but keep the
content in your Microsoft Word source document, click OK.

5. If you want to remove both the condition from the content and delete
the content from your Microsoft Word source document, select the
Delete applied content check box, and then click OK.

6. Click OK again.

Modifying Conditions in Word
You can edit the name of the condition, specify whether you want the content to
which you applied the condition hidden or displayed in Microsoft Word, and change
the color assigned to a condition.

The following procedure provides an example of how to modify conditions in
Microsoft Word source documents using Microsoft Word 2003. Steps for modifying
conditions in Microsoft Word may be different in other versions of Microsoft Word.

To modify a condition in a Microsoft Word source document

1. In your Microsoft Word source document, on the WebWorks menu, click
Conditions.

2. Select the condition you want to modify.

3. Click the Edit icon.

4. If you want to change the name of the condition, in the Type field, type
a new name for the condition.

5. If you want the content the condition is applied to hidden in Microsoft
Word, select the Hidden check box.

6. If you want the content the condition is applied to displayed in
Microsoft Word, clear the Hidden check box.

7. If you want to change the color used to highlight the content to which
the condition is applied, in the Highlight field, select a color from the
drop-down list. Specifying a color for the condition allows you to more easily

Modifying Condions in Word | 519

see the content the condition is applied to in your Microsoft Word source
document.

8. Click OK.

9. Click OK again.

Highlighting All Conditions in Word
You can use WebWorks Transit menu functionality to highlight conditions you
applied in your Microsoft Word source document. Highlighting all of the conditions
you applied in your Microsoft Word source document allows you to see where all of
the conditional content is in your Microsoft Word source document.

The following procedure provides an example of how to highlight all conditions in
Microsoft Word source documents using Microsoft Word 2003. Steps for highlighting
all conditions in Microsoft Word may be different in other versions of Microsoft
Word.

To highlight all conditions in a Microsoft Word source document

1. In your Microsoft Word source document, on the WebWorks menu, click
Preferences.

2. Select the Show highlighting check box.

3. Click OK.

Displaying Conditionalized Content with
Conflicting Settings in Word
You can apply more than one condition to content in your Microsoft Word source
documents. If you apply more than one condition to content in your Microsoft Word
source document and the conditions that you applied to the content have different
show and hide settings, you can specify how you want conditionalized content
with conflicting show and hide settings displayed in your Microsoft Word source
documents.

For example, you may have content with three conditions applied to it. Two of the
conditions applied may be set to show, or display, in the Microsoft Word source
document, while one of the conditions may be set to hide, or not display, in the
Microsoft Word source document.

If you have multiple conditions applied to content in your source documents with
conflicting show and hide settings, you can choose if you want to display the
content with conflicting conditions in a Microsoft Word source document or hide the
content.

520 | Displaying Condionalized Content with Conflicng Sengs in Word

The following procedure provides an example of how to display conditionalized
content with conflicting show and hide settings in Microsoft Word source documents
using Microsoft Word 2003. Steps for displaying conditionalized content with
confecting show and hide settings in Microsoft Word may be different in other
versions of Microsoft Word.

To display conditionalized content with conflicting show and hide settings
in a Microsoft Word source document

1. In your Microsoft Word source document, on the WebWorks menu, click
Preferences.

2. If you want to show content that has conditions applied with
conflicting show and hide settings, select the Give priority to show
conditions check box. This check box is selected by default.

3. If you want to hide content that has conditions applied with
conflicting show and hide settings, clear the Give priority to show
conditions check box.

4. Click OK.

Using Passthrough Conditions in Word
A passthrough condition is a condition you apply to content that you do not
want ePublisher to process when you generate output. For example, if you have
embedded multimedia files in your source documents, such as Audio Video
Interleave files (.avi) or Adobe Software Flash files (.swf), you can apply a
passthrough condition to the code so that ePublisher does not process the code.

The following example shows .avi code to which you can apply a passthrough
condition.
<embed src="sample.avi" width="400"
 height="300" pluginspage=";>
</embed>

The following example shows .swf code to which you can apply a passthrough
condition.
<embed src="sample.swf" width="400"
height="300" pluginspage="
http://www.macromedia.com/shockwave/download/index.cgi?
P1_Prod_Version=ShockwaveFlash";>
</embed>

If you have code in your Microsoft Word source documents that you do not
want ePublisher to process, create a passthrough condition and then apply the

Using Passthrough Condions in Word | 521

passthrough condition to the code. For more information, see “Creating Conditions
in Word” and “Applying Conditions in Word”.

You can also use Passthrough markers and the Passthrough paragraph styles and
character styles options to insert content directly into your output without being
transformed and coded for your output.

Deleting Conditions in Word
Delete a condition in a Microsoft Word source document when you no longer want to
apply the condition to content in the source document.

The following procedure provides an example of how to delete conditions in
Microsoft Word source documents using Microsoft Word 2003. Steps for deleting
conditions in Microsoft Word may be different in other versions of Microsoft Word.

To delete a condition in a Microsoft Word source document

1. In your Microsoft Word source document, on the WebWorks menu, click
Conditions.

2. Select the condition you want to delete.

3. Click the Delete condition icon.

4. If you want to delete the condition from the list of available
conditions and remove the condition from any content to which it
was applied in the source document, click OK. ePublisher removes the
condition from the list of conditions and removes the condition from any
content in the source document to which you applied the condition.

5. If you want to delete the condition from the list of available
conditions and also delete any content to which the condition was
applied, select the Delete applied content check box, and then click OK.
ePublisher removes the condition from the list of conditions and deletes any
content to which the condition was applied in the source document.

Specifying Output File Names in Word
By default, ePublisher automatically assigns file names to your generated output
files for topics (pages) and for embedded images (graphics).

Note: If you insert your images using the Link to File or Insert and Link option in
the Insert Picture window in Microsoft Word, ePublisher preserves the original
file names. For more information, see “Working with Images in Word”.

You can customize this naming convention using one of the following methods:

522 | Specifying Output File Names in Word

Inserting Filename markers into your source documents

Specifying the topic (page) and image (graphic) naming patterns for
ePublisher to use in the target settings for your output

This section explains how you can specify page and image output file names in your
Word source documents using Filename markers. For more information about using
target settings to specify output file names using page and image naming patterns,
see “Specifying Page, Image, and Table File Naming Patterns”.

Specifying Page Output File Names in Word
Specify specific names for page output files when you generate output using
Filename markers. Insert Filename markers into your source document for each
page you want to specify a file name for when you generate content.

Note: You can also use page naming patterns to specify names for page output
files and embedded image output files. For more information, see “Specifying
Page, Image, and Table File Naming Patterns”.

To specify a file name for a page output file, your Stationery and template must
have the Filename marker type configured. Your output format must also support
this feature.

The following procedure provides an example of how to specify page output file
names in Microsoft Word source documents using Microsoft Word 2003. Steps
for specifying page output file names in Microsoft Word may be different in other
versions of Microsoft Word.

To specify page output file names in a Microsoft Word source document

1. In your Microsoft Word source document, locate the page for the topic to
which you want to assign a specific file name. For more information about
creating pages using page breaks, see “Specifying Page Breaks Settings”.

2. Insert your cursor at the beginning of the first heading on the page.

3. On the WebWorks menu, click Insert Filename Marker.

4. In the Filename field, complete the following steps:

a. Type the file name you want to specify for the output page file. Do not
include the output file extension when you type the file name text.

b. Click OK. ePublisher inserts the Filename marker into your Microsoft
Word source document.

5. Save your Microsoft Word source document.

Specifying Page Output File Names in Word | 523

6. Generate output for your project. For more information, see “Generating
Output”.

7. In Output Explorer, verify ePublisher created an output file using the file name
you specified. For more information, see “Viewing Output in Output Explorer”.

Specifying Image Output File Names in Word
Specify specific names for image output files when you generate output if you
embed, or insert images directly into the source document instead of inserting and
linking or linking images.

Many writers do not need use Filename markers to specify image output file names
because many writers prefer to insert images in Microsoft Word source documents
as references, or links, using the Link to File or Insert and Link option in the
Insert Picture window in Microsoft Word. When writers use one of these methods to
insert images, ePublisher automatically uses the name of the image file referenced
by the link as the name of the image output file when generating image output files
from Microsoft Word source documents.

However, some writers prefer to insert images directly into Microsoft Word source
documents using the Insert option in Microsoft Word. If you use the Insert option,
Microsoft Word inserts the image directly into the Microsoft Word source document.
When you use the Insert option to insert images directly into Microsoft Word
source documents, by default, ePublisher assigns image output file names for the
inserted images using an image naming pattern. For more information about image
naming patterns, see “Specifying Page, Image, and Table File Naming Patterns”.

However, if you use the Insert option to insert images directly into Microsoft Word
source documents, you can also use Filename markers to specify image output
file names. Insert Filename markers into your source document for each image
you want to specify a file name for when you generate content. To specify a file
name for an image output file, your Stationery must have the Filename marker type
configured. Your output format must also support this feature.

When you specify image output file names, you create a text box, insert a Filename
marker in the text box, and then group the image and the text box that contains
the Filename marker. The following procedure provides an example of how to
specify image output file names in Microsoft Word source documents using Microsoft
Word 2003. Steps for specifying image output file names in Microsoft Word may be
different in other versions of Microsoft Word.

To specify image output file names for inserted images in a Microsoft Word
source document

1. In your Microsoft Word source document, locate the inserted image for which
you want to assign an output image file name.

524 | Specifying Image Output File Names in Word

Note: Only perform this procedure if you have inserted the image directory
into the file using the Insert option when you inserted the image into
your Microsoft Word source document. Do not perform this procedure if
you have inserted the image using the Link to File or Insert and Link
options when you inserted the image into your Microsoft Word source
document.

2. Right-click the image, and then select Format Picture or Format Object.

3. Change the layout setting of the image to Top and Bottom by completing
the following steps:

Note: By default when you insert images into Microsoft Word, Microsoft Word
inserts the image using the Inline with text layout setting. In order to
specify an image output file name for an inserted image, you must group
the image and the text box that contains the Filename marker. However,
you cannot group images using the In line with text layout setting
in Microsoft Word. To work around this known Microsoft Word issue, if
you have an image that uses an In line with text layout setting, use
the Top and Bottom layout setting for the image while you insert the
Filename marker, and then reapply the Inline with text layout setting
after you group the image and the Filename marker.

a. On the Layout tab, click Advanced.

b. On the Text Wrapping tab, click Top and Bottom.

c. Click OK, and then click OK again to close the window.

4. Select the image.

5. On the Insert menu, click Text Box, and then click to the right of your
image. Microsoft Word inserts a text box.

6. Insert your cursor into the text box, and then complete the following steps:

a. On the WebWorks menu, click Insert Filename Marker.

b. In the Filename field, type the file name you want to specify for the
output image file, and then click OK. ePublisher inserts a Filename
marker into the text box.

c. Select the text box.

d. Right-click the selected text box, and then click Format Text Box.

e. On the Colors and Lines tab, the Fill area, in the Color field, select No
Fill.

Specifying Image Output File Names in Word | 525

f. In the Line area, in the Color field, select No Line.

g. Click OK.

7. Drag and drop the text box onto the image.

8. Select the text box and the image.

9. Right-click the selected text box and image, and then click Grouping >
Group.

Note: When you select Group, the location of the image in your Microsoft
Word source document may change in relation to the text in your source
document. For example, the image may move up or down in your
Microsoft Word source document. This is known Microsoft Word behavior.
You may need to scroll up or down in your source document to the new
location of the image to find the image.

10. If your image previously used the In line with text layout setting for the
image, reassign this style to the image by completing the following steps:

a. Right-click only the image, and then click Format Object.

Note: You must ensure you right-click only the image, and not on the
text box or the grouped text box and image. If you right-click on
the text box or the grouped text box and image, Microsoft Word
does not display the Format Object menu option on the context
menu.

b. On the Layout tab, click In line with text.

c. Click OK, and then click OK again to close the window.

11. Save your Microsoft Word source document.

12. Generate output for your project. For more information, see “Generating
Output”.

13. In Output Explorer, verify ePublisher created an image output file using the
file name you specified in the Filename marker. For more information, see
“Viewing Output in Output Explorer”.

Creating Context-Sensitive Help in
Word
This section explains how you can use ePublisher to create links to context-sensitive
help content in Microsoft Word source documents

526 | Creang Context-Sensive Help in Word

Context-Sensitive Help in Word
Context-sensitive help links provide content based on the context of what the user
is doing. In many cases, this help content is based on the window that is open and
active. For example, the Help button on a window in a software product can open a
specific Help topic that provides important information about the window:

What the window allows you to do

Brief concepts needed to understand the window

Guidance for how to use the window

Descriptions about each field on the window, valid values, and related fields

Links to related topics, such as concepts and tasks related to the window

The Help topic can also be embedded in the window itself, such as an HTML pane
that displays the content of the Help topic. Providing this content when and where
the user needs it, without requiring the user to search through the help, keeps
the user productive and focused. This type of help also makes the product more
intuitive by providing answers when and where needed.

There are several methods for creating context-sensitive Help. In addition, output
formats use different mechanisms to support context-sensitive Help. You can
reference a topic in the following ways:

File name

Use a Filename marker to assign a file name to a topic. Each topic can have
no more than one Filename marker by default. However, you can create a
custom mapping mechanism using file names. Then, you can open the specific
topic with that file name. However, if your file naming changes, you need
to change the link to the topic. This file naming approach delivers context-
sensitive help capabilities in output formats that do not provide a mapping
mechanism.

Internal identifier (topic alias)

Use a TopicAlias marker to define an internal identifier for each topic. The
benefit of using an internal identifier is that it allows file names to change
without impacting the links from the product. The writer inserts this marker
in a topic and specifies a unique value for that topic. Then, the mapping
mechanism of your output format determines how that internal identifier is
supported. Some output formats, such as HTML Help, use a mapping file that
defines these topic aliases.

Context-Sensive Help in Word | 527

To simplify the coding of your source documents, the Stationery designer can also
configure your Stationery to define both the file name and the topic alias for each
topic file.

Before you begin to insert Filename markers or TopicAlias markers into your source
documents, consult with your Stationery designer. Confirm that your Stationery
supports context-sensitive help links, and discuss with your Stationery designer the
type of marker you should use to define context-sensitive help link in your source
documents.

For more information about configuring Filename and TopicAlias markers for
context-sensitive help links, see the following topics:

“Defining Context-Sensitive Help Links”

“Defining Filename Markers for Context-Sensitive Help Links”

“Defining Filename Markers for Context-Sensitive Help Links”If you generate
Eclipse Help output, you also can choose the topic description you want to
display for each context-sensitive link. When you use a TopicAlias marker to create
context-sensitive links, Eclipse creates a contexts.xml file that lists all of the
context IDs for the Eclipse Help system you created using TopicAlias markers. In
the contexts.xml file, Eclipse also provides a description of the context-sensitive
link. By default, the description Eclipse provides for the context-sensitive link
is the text of the first paragraph of the topic. However, if you want to specify a
different description for the context-sensitive link, you can do this by using the
TopicDescription marker. For more information about using the TopicDescription
marker, see “Specifying Context-Sensitive Help Links in Word”.

Planning for Context-Sensitive Help in Word
Creating context-sensitive help requires you to collaborate with application
developers. Because topic IDs and map numbers must be embedded in both
the software application and in your source documents, you and the application
developers must agree in advance on the values to use.

Before you create context-sensitive help topics, first confirm with your application
developers that the application supports context-sensitive help. Then work with
your application developers to decide how to choose the topic ID for each context-
sensitive help topic:

You choose the topic IDs

You can choose a set of topic IDs and embed them in your source documents
using TopicAlias markers. When you generate output, ePublisher can generate
a mapping file using those topic IDs and assign a unique number to each topic
ID. You can provide the generated mapping file to your application developers,
who can embed the topic IDs in the application code. You can then manually
maintain this mapping file, or you can allow ePublisher to generate a new file

528 | Planning for Context-Sensive Help in Word

each time you generate the help. Remember to give the updated help system
and mapping file to your application developers each time.

Your developers choose the topic IDs

Your application developers can choose a set of topic IDs and embed them in
the application code. Then, you can get a copy of the mapping file from your
application developers, specify this mapping file in your project settings, and
embed the topic IDs in your source documents using TopicAlias markers. In
this case, ePublisher does not generate the mapping file.

Before you begin to implement context-sensitive help, meet with your application
developers to select one of these methods for assigning the topic IDs to use for
context-sensitive help links. Once you choose a set of topic IDs, embed them in
your source documents using TopicAlias markers and do not change them.

Note: Because of the way Microsoft Word uses markers with the Transit menu, in
order for ePublsher to best pickup a marker such as a TopicAlias, please place
this marker after the heading and not before.

Specifying Context-Sensitive Help Links in
Word
You can use TopicAlias markers that contain topic IDs, or Filename markers that
specify file names, to create context-sensitive help. If your output format supports
the use of mapping files and topic IDs, typically you use TopicAlias markers to
create context-sensitive help. If your output format does not support the use of
mapping files and topic IDs, typically you use Filename markers to create context-
sensitive help.

If you are generating Eclipse Help, you can also choose to specify a topic
description for each context-sensitive help link your created using a TopicAlias
marker by using a TopicDescription marker in conjunction with the TopicAlias
marker. For more information about how TopicAlias markers and TopicDescription
markers can work together when generating Eclipse Help, see “Context-Sensitive
Help in Word”.

To specify a context-sensitive help link, your Stationery and template must have a
TopicAlias or Filename marker type configured. If you are generating Eclipse Help
and you want to be able to specify topic descriptions for your context-sensitive help
links, you Stationery and template must also have a TopicDescription marker type
configured. Consult with the Stationery designer to determine which marker type
you should use to create context-sensitive help links and topic descriptions in your
source documents. Your output format must also support this feature.

The following procedure provides an example of how to create context-sensitive
help links and topic descriptions in Microsoft Word source documents using

Specifying Context-Sensive Help Links in Word | 529

Microsoft Word 2003. Steps for creating context-sensitive help links in Microsoft
Word may be different in other versions of Microsoft Word.

To create a context-sensitive help link in a Microsoft Word source
document

1. Open the Microsoft Word source document that contains the context-sensitive
topic you want to link to when users click a help button or help icon from
within an application.

2. Insert your cursor at the end of the heading paragraph (or body paragraph if
no heading) to which you want to link.

3. On the WebWorks menu, click Markers.

4. Select the marker type the Stationery designer configured your Stationery
to support from the drop-down list. For example, select TopicAlias or
Filename.

5. In the Value field, type the topic ID you want to specify for the topic.

6. Click OK.

7. If you are generating Eclipse Help and you want to specify topic
descriptions for each context-sensitive help link you are creating,
complete the following steps:

a. Insert your cursor in the topic after the TopicAlias marker you inserted
for the Eclipse context-sensitive help topic.

b. On the WebWorks menu, click Markers.

c. Select the TopicDescription marker type from the list.

d. If the TopicDescription marker type is not on the list, check
with the Stationery designer to obtain the name of the marker type
the Stationery designer created to support this functionality, and then
use the marker type specified by the Stationery designer. For more
information, refer to “Implementing Online Features in Word”.

e. In the Value field, type the topic description you want to use.

f. Click OK.

8. Save your Microsoft Word source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. In Output Explorer, complete the following steps:

530 | Specifying Context-Sensive Help Links in Word

a. Verify that ePublisher inserted the topic ID into the map file when it
generated output.

b. If you generated Eclipse Help and specified topic descriptions for
your context-sensitive help topics, verify that the contents.xml
file for your Eclipse Help system contains the topic descriptions you
specified for context-sensitive help topics.

c. Test the generated output using the application and verify that the
application links to the appropriate context-sensitive help topic. This
testing ensures the context-sensitive help link you created displays
correctly within the application.

Creating Popup Windows in Word
A popup window is a window that is smaller than standard windows and typically
does not contain some of the standard window features such as tool bars or status
bars. Popup windows display when users hover over or click on a link. The popup
window closes automatically as soon as the users click somewhere else.

A typical use of popup windows is to display glossary terms. For example, in printed
documentation, terms and definitions are typically grouped in a separate glossary
document. However, in online content, you can display glossary definitions in popup
windows. With glossary popup windows, users can choose whether or not they want
to view the definition of a term.

You create popup windows by creating a link between the word or phrase in a topic
and the content you want to display in the popup window. After you create the
link, you then insert Popup markers or apply Popup paragraph styles to define the
content you want to display in the popup window.

If the Stationery designer configured the Stationery to support popup windows
using markers, you use the following Popup markers to create popup windows:

Popup

Specifies the start of the content to include in a popup window. The content
displays in a popup window when users hover over or click on the link. In
some output formats users can also view the content in a standard help
topic window in addition to viewing the content in a popup window. For
example, if you insert a Popup marker in front of a glossary definition, the
glossary definition displays in both a popup window and in a glossary topic
that contains the definition.

PopupEnd

Specifies the end of the content to display in the popup window.

Creang Popup Windows in Word | 531

PopupOnly

Specifies that the popup content displays only through a popup window. For
example, if you insert a PopupOnly marker in front of a glossary definition,
the glossary definition displays only in a popup window.

If the Stationery designer configured the Stationery to support popup windows
using paragraph styles, you use the following paragraph styles to create popup
windows:

Popup and Popup Append paragraph styles

Specifies that content displays both in popup windows and in standard
help topics. You apply the Popup paragraph style to the first paragraph of
content you want displayed in the popup window. If you have more than one
paragraph of content you want to display, you apply the Popup Append style
to the additional paragraphs.

For example, if you apply a glossary term and glossary definitions style for a
glossary using the Popup and Popup Append styles, the terms and definitions
in your output display in both a popup window and in a glossary topic that
contains the definitions.

Popup Only and Popup Only Append paragraph styles

Specifies that content displays only in popup windows. You apply the Popup
Only paragraph style to the first paragraph of content you want displayed
in the popup window. If you have more than one paragraph of content you
want to display, you apply the Popup Only Append style to the additional
paragraphs.

For example, if you apply a glossary term and glossary definition style for
a glossary using the Popup Only and Popup Only Append paragraph styles,
the terms and definitions in your output display in only popup windows. The
content is not displayed in an additional glossary topic that contains the
definitions.

Creating Popup Window Links in Word
Your first step in creating a popup window is to create a link between a word or
phrase in a topic and the popup content you want to display when users hover over
or click the link. Use native Microsoft Word functionality to create a link between the
word or phrase in a topic and the content you want to display in a popup window.
You can create a link in Microsoft Word with a bookmark and a cross-reference or
hyperlink.

Before you create popup window links, verify that your output format supports this
feature.

532 | Creang Popup Window Links in Word

The following procedure provides an example of how to create a a popup window
link in Microsoft Word source documents using Microsoft Word 2003. Steps for
creating popup window links in Microsoft Word may be different in other versions of
Microsoft Word.

To create a link between a word or phrase and popup content in a
Microsoft Word source document

1. In your Microsoft Word source document, locate the text you want to create a
link to and display in the popup window.

2. If you want to create a link that includes the link target text, create
the link using a bookmark and a cross-reference by completing the following
steps:

a. Select the text to which you want to link.

b. On the Insert menu, click Bookmark.

c. In the Bookmark name field, type a name for the bookmark in
CamelCase. The bookmark name cannot include spaces.

For example, if you are creating a bookmark for the
definition of WebWorks Help in your source document, type
WebWorksHelpDefinition .

d. Click Add. Microsoft Word inserts a hidden bookmark.

e. In your Microsoft Word source document, locate the word or phrase for
which you want to create a link.

f. Using your cursor, select the text you for which you want to create a
link.

For example, if you want to specify WebWorks Help as a link, select
WebWorks Help.

g. On the Insert menu, click Reference > Cross-reference.

h. In the Reference type field, select Bookmark.

i. In the Insert reference to field, select Bookmark text.

j. Select the Insert as hyperlink check box.

k. In the For which bookmark field, click the name of the bookmark for
the text you want to display in the popup.

Creang Popup Window Links in Word | 533

For example, if you created a bookmark named WebWorksHelpDefinition
for text that provides a definition for WebWorks Help, click
WebWorksHelpDefinition.

l. Click Insert, and then click Close.

3. If you want to create a link that does not include the link target text,
create the link using a bookmark and a hyperlink by completing the following
steps:

a. Insert your cursor in front of the text to which you want to link.

b. On the Insert menu, click Bookmark.

c. In the Bookmark name field, type a name for the bookmark in
CamelCase. The bookmark name cannot include spaces.

For example, if you are creating a bookmark for the
definition of WebWorks Help in your source document, type
WebWorksHelpDefinition .

d. Click Add. Microsoft Word inserts a hidden bookmark.

e. In your Microsoft Word source document, locate the word or phrase for
which you want to create a link.

f. Using your cursor, select the text you for which you want to create a
link.

For example, if you want to specify WebWorks Help as a link, select
WebWorks Help.

g. On the Insert menu, click Hyperlink.

h. In the Link to area, click Place in This Document.

i. In the Select a place in this document field, under Bookmarks, click
the name of the bookmark for the text you want to display in the popup.

For example, if you created a bookmark named WebWorksHelpDefinition
for text that provides a definition for WebWorks Help, click
WebWorksHelpDefinition.

j. Click OK.

4. Verify that the link goes to the appropriate location in the source document by
pressing and holding down the CTRL key and then clicking the link.

5. Save your Microsoft Word source document.

534 | Creang Popup Window Links in Word

After you create a link between a word or phrase in a topic and the popup content
you want to display in the popup window, define the content you want to display in
the popup window using one of the following methods:

Create popup windows using Popup markers. For more information, see “Using
Markers to Create Popup Windows in Word”.

Create popup windows using Popup paragraph styles. For more information,
see “Using Paragraph Styles to Create Popup Windows in Word”.

Using Markers to Create Popup Windows in
Word
You can insert Popup markers into your Microsoft Word source documents to create
popup windows. To use Popup markers to create popup windows, your Stationery
must have the following items configured:

Popup marker type

PopupEnd marker type

PopupOnly marker type

Your output format must also support this feature.

The following procedure provides an example of how to insert Popup markers in
Microsoft Word source documents using Microsoft Word 2003. Steps for inserting
Popup markers in Microsoft Word may be different in other versions of Microsoft
Word.

Note: Popup content is created from whole paragraphs. You cannot include a
subset of a paragraph in a popup.

To use popup markers to create popup windows in a Microsoft Word source
document

1. In your Microsoft Word source document, create a link between a word or
phrase in the topic and the content you want to display in the popup window.
For more information, see “Creating Popup Window Links in Word”.

2. Insert your cursor in front of the text you want to display in the popup
window.

3. On the WebWorks menu, click Markers.

4. If you want the popup content to display in both a popup window and
in a standard help topic, complete the following steps:

Using Markers to Create Popup Windows in Word | 535

a. Select Popup from the list of markers in the Marker field.

b. Leave the Value field blank.

c. Click OK to insert the marker.

5. If you want the popup content to display only in a popup window,
complete the following steps:

a. Select PopupOnly from the list of markers in the Marker field.

b. Leave the Value field blank.

c. Click OK to insert the marker.

6. Specify where you want the popup content to end by completing the following
steps:

a. Insert your cursor at the end of the content you want to display in the
popup window.

b. On the WebWorks menu, click Markers.

c. Select PopupEnd from the list of markers in the Marker field.

d. Leave the Value field blank.

e. Click OK to insert the marker.

7. Save your Microsoft Word source document.

8. Generate output for your project. For more information, see “Generating
Output”.

9. In Output Explorer, go to the page where you created the popup window
and verify that ePublisher created the popup window that the popup window
displays the content you specified. For more information, see “Viewing Output
in Output Explorer”.

Using Paragraph Styles to Create Popup
Windows in Word
You can use Popup paragraph styles in your Microsoft Word source documents to
create popup windows. To use Popup paragraph styles to create popup windows,
your Stationery and Microsoft Word template must have the following items
configured:

536 | Using Paragraph Styles to Create Popup Windows in Word

Popup and Popup Append paragraph style behaviors if you want your content
to display both in popup windows and in standard help topics.

Popup Only and Popup Only Append paragraph style behaviors if you want
your content to display only in popup windows.

Your output format must also support this feature.

The following procedure provides an example of how to use Popup paragraph styles
to create popup windows in Microsoft Word source documents using Microsoft
Word 2003. Steps for using Popup paragraph styles to create popup windows in
Microsoft Word may be different in other versions of Microsoft Word.

To create popup windows using Popup paragraph styles in a Microsoft
Word source document

1. In your Microsoft Word source document, create a link between a word or
phrase in the topic and the content you want to display in the popup window
and ensure that the link resolves in the document. For more information, see
“Creating Popup Window Links in Word”.

2. Save your Microsoft Word source document.

3. In the ePublisher Style Designer, configure the destination paragraph styles
with the appropriate popup behavior via the Options panel.

4. Generate output for your project. For more information, see “Generating
Output”.

5. In Output Explorer, go to the page where you created the popup window and
verify that ePublisher created the popup window and that the popup window
displays the content you specified. For more information, see “Viewing Output
in Output Explorer”.

Creating Expand/Collapse Sections
(Drop-Down Hotspots) in Word
You can create sections of content that expand and collapse when you click a link
or hot spot. This structure allows you to create items, such as tasks with numbered
procedures, bulleted lists, or definitions, that are easy to scan. Users can then
expand individual items to display additional information.

Hot spots for expand/collapse sections initially display in one of the following states:

The content is initially collapsed and will expand beneath the hotspot when
the user clicks the hotspot. Clicking the hotspot a second time causes the
expanded content to return to its original collapsed state.

Creang Expand/Collapse Secons (Drop-Down Hotspots) in Word | 537

The content is initially expanded and will collapse or disappear from beneath
the hotspot when the user clicks the hotspot.

You create expand/collapse sections in Microsoft Word source documents by using
the following items:

An Expand/Collapse paragraph style

A DropDownEnd marker

You use an Expand/Collapse paragraph style to start expand/collapse sections and
a DropDownEnd marker to specify where the content in the expand/collapse section
ends. The Stationery defines whether the sections should initially be expanded
(shown) or collapsed (hidden) and the image used to show the state of the section.

To create expand/collapse sections, your Stationery and template must have the
following items configured:

An Expand/Collapse paragraph style

A DropDownEnd marker

Your output format must also support this feature.

The following procedure provides an example of how to create expand/collapse
sections in Microsoft Word source documents using Microsoft Word 2003. Steps
for creating expand/collapse sections in Microsoft Word may be different in other
versions of Microsoft Word.

To create an expand/collapse section in a Microsoft Word source document

1. In your Microsoft Word source document, identify a topic that contains text for
which you want to create an expand/collapse section.

2. Apply an Expand/Collapse paragraph style to the text you want users to click
to expand or collapse content.

For example, in the following sample procedure, you would apply the Expand/
Collapse paragraph style to the To open a project text.

To open a project

a. On the File menu, click Open.

b. Browse to the location of the project on your local computer.

c. Select the project, and then click Open.

538 | Creang Expand/Collapse Secons (Drop-Down Hotspots) in Word

3. Insert your cursor at the end of the content you want to display in the
expand/collapse section.

For example, in the following sample procedure, you would insert your cursor
after the period in the last sentence of the procedure, Select the project, and
then click Open.

To open a project

a. On the File menu, click Open.

b. Browse to the location of the project on your local computer.

c. Select the project, and then click Open.

4. On the WebWorks menu, click Markers.

5. In the Markers field, select the DropDownEnd marker.

6. Leave the Value field blank.

7. Click OK. ePublisher inserts a DropDownEnd marker at your insertion point.
This marker identifies where the contents of your expand/collapse section will
end.

8. Save your Microsoft Word source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. In Output Explorer, go to the page where you created the expand/collapse
section and verify that ePublisher created the expand/collapse section and
that the expand/collapse section displays the content you specified. For more
information, see “Viewing Output in Output Explorer”.

Creating Related Topics in Word
Related topics provide a list of other topics that may be of interest to the user
viewing the current topic. For example, you could have a section called Creating
Web Pages in your help. You may also have many other topics, such as HTML Tags
and Cascading Style Sheets, that related to creating Web pages. Identifying these
related topics for users can help them find the information they need and identify
additional topics to consider. However, providing these types of links as cross-
references within the content itself may not be the most efficient way to present the
information. By utilizing related topics links, you combine the capabilities of cross-
references with the efficiency of a related topics button.

Creang Related Topics in Word | 539

Related topics and See Also links provide similar capabilities, but there are several
important differences:

Related topics can link to headings in a Help system that do not start a new
page.

Relate topics links are static and defined in the source documents as links.
You must have all the source documents to create the link and generate the
output.

If a related topics list contains a broken link in the source document, that link
is broken in the generated output. In a See Also link list, the broken link is not
included in the output.

The Stationery designer can configure related topics to display in the following
ways:

Included as a list in the topic itself.

Displayed in a popup window when the user clicks a button, as show in the
following figure.

540 | Creang Related Topics in Word

Note: If a related topic link is broken in the source document, in most cases that
link is broken in the generated output. WebWorks Help and WebWorks Reverb
provide an additional feature by removing broken links from related topics
lists that are displayed in a popup window when a user clicks the Related
Topics button.

To create related topics links, your Stationery and template must have a Related
Topics paragraph style configured. Your output format must also support this
feature.

The following procedure provides an example of how to create related topics links
in Microsoft Word source documents using Microsoft Word 2003. Steps for creating
related topics links in Microsoft Word may be different in other versions of Microsoft
Word.

To create a related topics list in a Microsoft Word source document

1. Identify the topic in which you would like to insert a related topics list.

2. Identify the different topics you want to link to from this topic.

Note: Generally, you should only create one related topics list for each section
of your source document that corresponds to a help topic. For example,
if the Stationery designer specified in your Stationery that there will be
a page break at each Heading 1 section, then you should only create
one related topics list for each Heading 1 section within your source
document.

3. Create a cross-reference to each topic you want to include in the related
topics list by completing the following steps:

a. Insert your cursor in the location in your Microsoft Word source
document where you want to insert the link to the related topic.

b. On the Insert menu, click Reference > Cross-reference.

c. In the Reference type field, select Heading.

d. In the Insert reference to field, click Heading text.

e. Select the insert as hyperlink checkbooks.

f. In the For which heading field, select the heading to which you want
to cross reference.

g. Click Insert.

Creang Related Topics in Word | 541

h. Click Close.

4. Apply the Related Topic paragraph style to the cross-references in your related
topics list.

5. If you want to display the list of related topics in only your generated
output, apply an OnlineOnly condition to the list of related topics. For more
information about applying conditions, refer to “Applying Conditions in Word”.

6. Save your Microsoft Word source document.

7. Generate output for your project. For more information, see “Generating
Output”.

8. In Output Explorer, go to the page where you created the related topics list
and verify that ePublisher created the related topics and that the related
topics list displays the topics you specified. For more information, see
“Viewing Output in Output Explorer”.

Creating Links to PDF in Word
You have the ability to link to different information in an external document such as
a PDF with a hyperlink to the content.

To create an external hyperlink to a PDF document

1. In the Word menu, go to Insert > Hyperlink.

2. Select Existing File or Web Page for the Link to label located on the left.

3. In the Text to display text box, enter the text you would like for the
hyperlink

4. Navigate to the file location on the system to link against for the PDF.

5. Save the Word document.

Creating See Also Links in Word
See Also links, also known as ALinks, or associative links, are links that may be of
interest to the user viewing the current topic. These links use internal identifiers to
specify the links and the link list is built dynamically based on the topics available
when the user clicks to display the links. See Also links are important to use with
larger help sets and merged help sets.

Related topics and See Also links provide similar capabilities, but there are several
important differences:

542 | Creang See Also Links in Word

See Also links must link to styles that start a new topic, such as a heading.

See Also links are dynamic and the lists of links are built at display time
instead of during help generation.

Since see Also link lists are dynamically built, they do not include links to
topics that are not available when the user displays the links. If a related
topics list contains a broken link in the source document, that link is broken in
the generated output for most output formats.

See Also links are useful if you plan to merge help systems. For example, if you
have a multiple help systems that you merge into one main help system at run time
and if your topics in the merged help systems contain See Also keywords that are
also used in the main help system, links to those topics are included in the See Also
lists in the main project.

You can create See Also links as buttons or as inline text links in Microsoft HTML
Help and WebWorks Help. The following example shows how the two different types
of See Also links display in a Microsoft HTML Help system.

Create See Also links by applying the See Also paragraph style or character style
to text in your Microsoft Word source documents and inserting markers into your
Microsoft Word source documents.

Create See Also links by applying the See Also paragraph style or character style
to text in your Microsoft Word source documents and inserting markers into your
Microsoft Word source documents. To create See Also links, your Stationery and
template must have the following items configured:

See Also paragraph style if you want to create See Also links with buttons

See Also paragraph style if you want to create see Also links as inline text
links

Creang See Also Links in Word | 543

SeeAlsoKeyword marker type

SeeAlsoLink marker type

SeeAlsoLinkDisplay marker type if you generate Microsoft HTML Help and you
want to display the target topics in a popup menu

SeeAlsoLinkWindowType marker type if you generate Microsoft HTML Help and you
want to display the target topics in a custom window

The following procedure provides an example of how to create See Also links in
Microsoft Word source documents using Microsoft Word 2003. Steps for creating
See Also links in Microsoft Word may be different in other versions of Microsoft
Word.

To create a See Also link in a Microsoft Word source document

1. Identify each topic to which you want to link from a See Also link, and then
complete the following steps for each topic:

a. Insert your cursor into the topic to which you want to link.

b. On the WebWorks menu, click Markers.

c. In the Marker field, select the SeeAlsoKeyword marker.

d. In the Value field, type a text string that is a unique identifier as the
See Also keyword for the topic. See Also keywords are case sensitive
and cannot contain punctuation or spaces.

For example, if you have a unique topic called About WebWorks Help,
type AboutWebWorks help in the Value field.

e. Click OK. ePublisher inserts a SeeAlsoKeyword marker at your insertion
point. This marker identifies the topic for See Also links.

2. Identify the topic where you want to insert a list of See Also links.

3. Enter the text you want to display for the See Also button or for the See Also
inline text link on a separate line in the source document where you want the
See Also button or inline text link to display.

For example, if you want to create a button with the text See Also on the
button, type See Also . If you want to create inline text with the text
Additional Information for the link, type Additional Information .

4. If you want to create a See Also button for your See Also links, apply
the See Also paragraph style to the text you want to display in the See Also
button.

544 | Creang See Also Links in Word

5. If you want to create a See Also inline text link for your See Also
links, apply the See Also character style to the text you want to display in the
See Also inline text link.

6. Apply an OnlineOnly condition to the See Also text. Applying an OnlineOnly
condition to the See Also button or See Also inline text displays the See Also
link in your generated output, but does not display the See Also button or link
in your printed content.

7. Insert your cursor inside the text you specified for the See Also button or See
Also inline text link.

8. For each topic to which you want to link from a See Also link, complete the
following steps:

a. On the WebWorks menu, click Markers.

b. In the Marker field, select the SeeAlsoLink marker.

c. In the Value field, type the text string that is a unique identifier for the
topic to which you want to link. This text string is the text string you
typed when you created the SeeAlsoKeyword marker for the topic.

For example, if you created a SeeAlsoKeyword marker with the text
string AboutWebWorksHelp, type AboutWebWorksHelp in the Value field
for the SeeAlsoLink marker.

d. Click OK. ePublisher inserts a SeeAlsoLink marker at your insertion
point. This marker identifies the topics users can link to when they click
the See Also button.

9. If you generate Microsoft HTML Help output and you want to display
the target topics in a popup menu, complete the following steps:

a. Insert your cursor inside the text you specified for the See Also button
or inline text link.

a. On the WebWorks menu, click Markers.

b. In the Marker field, select the SeeAlsoLinkDisplayType marker.

Note: This marker type is supported only in Microsoft HTML Help.

c. In the Value field, type menu . By default, Microsoft HTML Help displays
See Also links in the Topics Found window. To display See Also links in a
popup menu, specify menu for the marker value.

d. Click OK. ePublisher inserts a SeeAlsoDisplayType marker at your
insertion point.

Creang See Also Links in Word | 545

10. If you generate Microsoft HTML Help output and you want to display
the target topics in a custom window, complete the following steps:

a. Insert your cursor inside the text you specified for the See Also button
or See Also inline text link.

b. On the WebWorks menu, click Markers.

c. In the Marker field, select the SeeAlsoLinkWindowType marker.

Note: This marker type is supported only in Microsoft HTML Help.

d. In the Value field, type the name of a custom window defined for
Microsoft HTML Help by the Stationery designer.

For example, if the Stationery designer defined a custom window called
ContextHelp to use to when displaying context-sensitive help topics,
type ContextHelp in the Value field for the SeeAlsoLinkWindowType
marker.

e. Click OK. ePublisher inserts a SeeAlsoDisplayType marker at your
insertion point.

11. Save your Microsoft Word source document.

12. Generate output for your project. For more information, see “Generating
Output”.

13. In Output Explorer, go to the page where you created the See Also links and
verify that ePublisher created the See Also button or See Also inline text and
that the See Also button or inline text displays the links you specified. For
more information, see “Viewing Output in Output Explorer”.

Creating Meta Tag Keywords in Word
Meta tags are lines of code placed between the <head> and </head> tags in HTML
pages. Meta tags give web search engines information about the content of the
web page and how search engines should treat the web page. Users viewing web
pages do not see the meta tags, but meta tags can be used to influence the way
web pages on a web site appear in web search engine results. Users also see the
text you specify for meta tags right following the title of your page when your page
comes up in search results.

In help systems, search ranking works like ranking in an Internet search engine. If
you generate help system output, you can use meta tag keywords to specify terms
for pages for help topics where you want to improve searchability. For example,
assume that in your help system you have a topic called See Also links. However,
you know that See Also links are also sometimes referred to as ALinks, and you

546 | Creang Meta Tag Keywords in Word

think that some users of your help system may search for information about See
Also links by typing ALinks into the Search field for your help system. In this
example, you can insert ALinks as a meta tag keyword for each page that discusses
See Also links, so users who search your system for information about ALinks can
find the information they are looking for in your See Also link topics.

To assign meta tag keywords, your Stationery and template must have the
Keywords marker type configured. Your output format must also support this
feature.

The following procedure provides an example of how to create meta tag keywords
in Microsoft Word source documents using Microsoft Word 2003. Steps for creating
meta tag keywords in Microsoft Word may be different in other versions of Microsoft
Word.

To create meta tag keywords for a page in a Microsoft Word source
document

1. In your Microsoft Word source document, find the first paragraph in the page
for the page for which you want to create a meta tag keyword.

2. On the WebWorks menu, click Markers.

3. In the Marker field, select Keywords from the list of markers.

4. In the Value field, type the comma-delimited list of keywords that you
want web search engines to use when crawling Web sites and to display
immediately following the title of your page when your page comes up in
search results.

For example, type keyword1 , keyword2 , keyword3 , where keyword is the
keyword you want web search engines to use when crawling your Web site.

5. Click OK.

6. Save your Microsoft Word source document.

7. Generate output for your project. For more information, see “Generating
Output”.

8. In Output Explorer, verify that ePublisher inserted your meta tag keywords
correctly by completing the following steps:

a. On the View menu, click Output Explorer.

b. In the TargetName\ProjectName folder, open the page to which you
assigned meta tag keywords in Notepad, where TargetName is the name
of your target and ProjectName is the name of your project.

Creang Meta Tag Keywords in Word | 547

c. Verify that the text you specified for your meta tag displays in the meta
name attribute between in the <head> and </head> tags section of your
web page. For example, if you typed keyword1 , keyword2 , keyword3 ,
for your meta tag keywords, your meta tags in for the page should be
similar to the following entry:

<meta name="keywords" content="keyword1, keyword2,
keyword3" />

Assigning Custom Page Styles in Word
By default, each page generated by ePublisher is associated with the default page
style defined in the Stationery used by your ePublisher project. This means that
typically you do not need to specify a page style for pages when you generate
output. However, if you want to change the page style of one page or a smaller
set of pages, you can specify the page style you want to use for a page in your
Microsoft Word source document using the PageStyle marker.

For example, you may want to use one page style in your help system for all
concept and procedure topic pages, and another page style for all context-sensitive
window description topic pages in your help system. In this example, you can use
the default page style for all of your concept and procedure topic pages, and then
you can use a second custom page style defined in your Stationery for all context-
sensitive window description topic pages in your help system.

Before you begin, obtain the names of the custom page styles you can use with
your Stationery from the Stationery designer. Then insert a PageStyle marker with
the page style name into the topic you want to display using a custom page style.
After you assign a custom page style to a topic using the PageStyle marker, the
generated output displays the topic using the specified page style.

To assign custom page styles, your Stationery and template must have the
following items configured:

Custom page styles defined for your Stationery by the Stationery designer

PageStyle marker type

Your output format must also support this feature.

The following procedure provides an example of specifying page styles for pages in
Microsoft Word source documents using Microsoft Word 2003. Steps for specifying
page styles for pages in Microsoft Word may be different in other versions of
Microsoft Word.

548 | Assigning Custom Page Styles in Word

To specify a custom page style for a page in a Microsoft Word source
document

1. In your Microsoft Word source document, locate the page for the topic to
which you want to assign a page style.

2. Insert your cursor in the location on the page where you want to insert the
PageStyle marker.

3. On the WebWorks menu, click Markers.

4. In the Marker field, select PageStyle from the list of markers.

5. In the Value field, type the name of the page style you want to associate with
the page.

For example, if you Stationery designer configured a page style for your
Stationery called YellowBackground, type YellowBackground .

6. Click OK. ePublisher inserts the PageStyle marker into your source document.

7. Save your Microsoft Word source document.

8. Generate output for your project. For more information, see “Generating
Output”.

9. In Output Explorer, verify ePublisher created the page using the page style
you specified by clicking on the page and verifying ePublisher applied the
page style you specified in the generated output. For more information
about viewing output files in Output Explorer, see “Viewing Output in Output
Explorer”.

Creating What’s This (Field-Level) Help
in Word
If you generate Microsoft HTML Help output, you can implement What’s This help
for product dialog boxes and windows. What’s This Help is also known as field-
level help. Only Microsoft HTML Help supports field-level help. In addition, not
all products are designed to support field-level help for product dialog boxes and
windows. Before you begin implementing field-level help, consult your product team
to determine if field-level help part of the product design. If field-level help is part
of the product design, you will also need to obtain the appropriate ID from your
product team for each field-level help topic you need.

Users can view the field-level help you create using one of following methods:

Creang What’s This (Field-Level) Help in Word | 549

Users click on the question mark icon in the upper right corner of the dialog
box or window.

When users click on the question mark icon, their cursor changes to a
question mark. Users can then move the question mark cursor over the fields
on the dialog box or window, and Windows displays the field-level help you
created in a popup window when they hover over a specific field.

Users right-click a field on a dialog box or window and then select the What’s
This? option from the single option menu Windows displays.

After users select this option, Windows displays the field-level help you specify
in in a popup window.

Users close the popup window that provides the field-level help by pressing the Esc
key on the keyboard. When users press the Esc key, their cursor returns to the
regular cursor shape for the user.

To create What’s This help, your Stationery and template must have the following
items configured:

What Is This help paragraph style

WhatIsThisHelpIDThe following procedure provides an example of how to create
What’s This help in Microsoft Word source documents using Microsoft Word 2003.
Steps for creating What’s This help in Microsoft Word may be different in other
versions of Microsoft Word.

To create What’s This help in a Microsoft Word source documents

1. Identify a topic that contains field-level help.

2. Apply the What Is This paragraph style to the text that contains the field-level
help.

3. Insert your cursor into the field-level help text.

4. On the WebWorks menu, click Markers.

5. In the Marker field, select WhatIsThisID from the list of markers.

6. In the Value field, type the appropriate ID for the field-level description.
Obtain appropriate IDs for each field-level description from your product
team.

7. Click OK.

8. Save your Microsoft Word source document.

550 | Creang What’s This (Field-Level) Help in Word

9. Generate output for your project. For more information, see “Generating
Output”.

10. In Output Explorer, verify ePublisher created the What’s This help you
specified by completing the following steps:

a. On the View menu, click Output Directory.

b. Open the ProjectName folder, where ProjectName is the name of your
project.

c. Open the whatisthis.txt file and verify that the field-level help you
created is associated with the correct ID you received from your product
development team.

d. Open the whatisthis.h file and verify that each new string you added
is listed in the file.

Opening Topics in Custom Windows in
Word
You can open topics in custom windows in Microsoft HTML Help and Oracle Help. By
default, Microsoft HTML Help displays content in the standard Microsoft HTML Help
tri-pane window. The Stationery designer can modify the size, position, and other
characteristics of the tri-pane window in your Microsoft HTML Help project. The
Stationery designer can also define custom windows for you to use in a Microsoft
HTML Help project. If the Stationery designer defines custom windows in a Microsoft
HTML Help project, you can specify which topics you want to display in the custom
window using the WindowType marker.

By default, Oracle Help displays content in the standard Oracle Help viewer. The
Stationery designer can modify the size, position, and other characteristics of Oracle
Help windows. The Stationery designer can also define custom windows for you to
use in an Oracle Help project. If the Stationery designer defines custom windows
in an Oracle Help project, you can specify which topics you want to display in the
custom window using the WindowType marker.

For example, if you want your context-sensitive help topics to display in a different
type of window than other content, after you create a context-sensitive help topic
you can use the WindowType marker to specify that you want the context-sensitive
help topics to display in a custom window. After you assign a custom window to
a topic using the WindowType marker, the help system displays the topic in your
generated output in the custom window whenever users access the topic from the
table of contents, index, a standard hyperlink, a related topics list, or a See Also
link.

Opening Topics in Custom Windows in Word | 551

To open topics in custom windows, your Stationery and template must have the
following items configured:

Custom window styles defined for your Stationery by the Stationery designer

PageStyle marker type

The following procedure provides an example of how to specify topics open in
custom Microsoft HTML Help or Oracle Help windows in Microsoft Word source
documents using Microsoft Word 2003. Steps for specifying topics open in custom
Microsoft HTML Help or Oracle Help windows in Microsoft Word may be different in
other versions of Microsoft Word.

To specify topics open in a custom window in a Microsoft Word source
document

1. Obtain the names of custom windows configured in the Stationery you use for
your ePublisher project from the Stationery designer.

2. In your Microsoft Word source document, locate the topic that you want to
open in a custom window.

3. Insert your cursor into the topic.

4. On the WebWorks menu, click Markers.

5. In the Marker list, select WindowType from the list.

6. In the Value field, type the name of the custom window configured by the
Stationery designer that you want to specify for the topic.

7. Click OK.

8. Save your Microsoft Word source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. In Output Explorer, verify the topic displays in the custom window you
specified for the topic. For more information about viewing output files in
Output Explorer, see “Viewing Output in Output Explorer”.

Customizing TOC Entry in Word
Use these steps to customize a TOC entry in your Reverb 2.0 output. Your Word
file must have a nested heading structure for TOC Icons to appear.

552 | Customizing TOC Entry in Word

1. In your Word document, click in or highlight the header that will have the
customized TOC entry.

2. Click Markers from the Transit menu in Word.

3. Select TOCEntryClass.

4. Give the TOCEntryClass a value. This value will become the class. In the
example, folder_icon is used.

5. Save your Word Document.

6. Scan the document in ePublisher Designer.

7. Open the Style Designer.

8. Open Marker Styles.

9. Locate the Marker Type Option from the Options tab and set its value to
TOC Entry Class .

10. In this example, the assigned class for the Menu TOC entry will be the value
of the marker: folder_icon.

Customizing TOC Entry in Word | 553

11. Add the following to a target override of _icons.scss . Notice how the CSS
class is the name of the value given in the Marker Text Window. In this
example we change the icon color and the icon of the TOC entry. You are
able to make other customizations such as adding a border, or changing the
background color.

 .folder_icon {

 > div > span > i {

 color: black;

 &:before {

 content: $folder_icon;

 }

 }

 }

12. Save your project and generate the output.

554 | Customizing TOC Entry in Word

Customizing Table of Contents Icons in
Word
By default, the Contents tab in a Microsoft HTML Help, Oracle Help, and WebWorks
Help uses book and page icons to identify entries. By default, the Contents tab in
Sun JavaHelp uses folder and page icons to identify entries. You can also customize
the table of contents icons.

For example, if you want to make new topics stand out by using a unique icon
specific to new books, pages, or folders, you can insert a marker into a topic and
specify the icon you want to display for the book, page, or folder in your help
system table of contents.

To customize a table of contents icon, your Stationery and template must have the
following items configured:

Customizing Table of Contents Icons in Word | 555

TOCIconHTMLHelp for Microsoft HTML Help

TOCIconOracleHelp for Oracle Help

TOCIconJavaHelp for Sun JavaHelp

TOCIconWWHelp for WebWorks Help

The following procedure provides an example of how to customize table of contents
icons for topics in Microsoft Word source documents using Microsoft Word 2003.
Steps for customizing table of contents icons for topics in Microsoft Word may be
different in other versions of Microsoft Word.

To specify a custom table of contents icon in a Microsoft Word source
document

1. If you want to specify a custom table of contents icon for Microsoft
HTML Help, identify the number of the image you want to use for the table
of contents image for the topic in the .hhp file for your Microsoft HTML Help
project by completing the following steps:

a. On the View menu, click Output Directory.

b. Open the ProjectName folder, where ProjectName is the name of your
project.

c. Open the ProjectName.hhp file where ProjectName is the name of your
project.

d. On the Contents tab, select a table of contents entry, and then click the
Pencil icon.

e. On the Advanced tab, in the Image index field, use the up and down
arrows to identify the table of contents image you want to use for the
topic.

f. Note the number of the image you want to use for the table of contents
image for the topic.

For example, if you want to use a question mark icon with a red star for
the table of contents icon for new topics, note that the number for this
icon is 10.

g. Close HTML Help Workshop.

2. If you want to specify a custom table of contents icon for Oracle Help
or Sun JavaHelp, create the graphic file for the custom table of contents icon
in .gif format. The default graphics used as Sun JavaHelp or Oracle Help
table of contents icons are 17 x 17 pixels. The custom graphics you create for

556 | Customizing Table of Contents Icons in Word

Sun JavaHelp or Oracle Help table of contents icons should also be 17 x 17
pixels. You can assign any name to the graphic files.

3. If you want to specify a custom table of content icon for WebWorks
help, create graphics files containing the collapsed and expanded versions
of the icons you want to use, then save the graphic files in .gif format. The
default graphics used as WebWorks Help table of contents icons are 17 x 17
pixels. The custom graphics you create for WebWorks Help table of contents
icons should also be 17 x 17 pixels. You can assign any name to the graphic
files.

4. Copy the graphic files you want to use as icons in the table of contents into
the following folder:

Note: If the folder does not exist, first create the folder using the specified
folder structure and then copy the graphic files you want to use as icons
into the folder. You do not need to perform this step when specifying
custom table of contents icons for Microsoft HTML Help.

If you are generating Oracle Help, copy the graphic files you want to
use into the following folder:

ProjectName\Formats\Oracle Help\Files\images folder, where
ProjectName is the name of your project.

If you are generating Sun JavaHelp 1.1.3, copy the graphic files you
want to use into the following folder:

ProjectName\Formats\Sun Java Help 1.1.3\Files\images folder,
where ProjectName is the name of your project.

If you are generating Sun JavaHelp 2.0, copy the graphic files you
want to use into the following folder:

ProjectName\Formats\Sun Java Help 2.0\Files\images folder,
where ProjectName is the name of your project.

If you are generating WebWorks Help, in your ProjectName\Files
folder, where ProjectName is the name of your project, create a wwhelp
\images subfolder and copy the graphic files you want to use into this
folder. Your project file structure should be similar to the following
structure:

ProjectName \Files\wwhelp\images, where ProjectName is the name
of your project.

5. In your Microsoft Word source document, locate the topic where you want to
use the custom table of contents icon.

6. Insert your cursor into the heading for the topic.

Customizing Table of Contents Icons in Word | 557

7. On the WebWorks menu, click Markers.

8. In the Marker list, select the appropriate TOCIcon marker type from the list.

9. In the Value field, type the following text:

If you are generating Microsoft HTML Help, type the number of the
icon that you want to use for the table of contents image.

For example, if you want to use a question mark icon with a red star for
the table of contents icon for new topics, type 10 .

If you are generating Oracle Help or Sun JavaHelp, type the
following text:

images/ TOCIcon .gif

where TOCIcon.gif is the name of the table of contents icon you want
to display for the topic.

If you are generating WebWorks Help, type the following text:

c=” collapsed. gif ” e=”expanded.gif”

where collapsed. gif is the name of the icon you want to use
when the table of contents entry is collapsed, and expanded. gif
is the name of the icon you want to use when the table of contents
entry is expanded. If the table of contents entry is for a page instead
of a book, the entry will never be expanded, so you can omit the
e=”expanded.gif” portion of the entry for pages.

For example, you might create a special icon to highlight books that
are new for a particular release of your WebWorks Help system. If you
named these icons newbookopen.gif and newbookclosed.gif , you
would type the following text into the Value field:

c=”newbookclosed.gif” e=”newbookopen.gif”

10. Click OK.

11. Save your Microsoft Word source document.

12. Generate output for your project. For more information, see “Generating
Output”.

13. In Output Explorer, verify ePublisher created the table of contents using
the table of contents icon you specified for the topic. For more information
about viewing output files in Output Explorer, see “Viewing Output in Output
Explorer”.

558 | Customizing Table of Contents Icons in Word

Specifying Context Plug-ins in Word
You can specify Eclipse Help context plug-ins by using Context Plugin markers in
your source documents. ePublisher places the context plug-ins you specify in your
source documents in the plugin.xml file generated for each source document
group you have in Document Manager. You can then have developers use the
context plug-ins defined in plugin.xml files to call your Eclipse Help system as
appropriate from Eclipse plug-ins.

For example, assume you have the following three top-level groups in Document
Manager for your Eclipse Help system target:

Component A group - contains the source documents for ComponentA
Feature1 and ComponentA Feature2

Component B group - contains the source documents for ComponentB
Feature1 and ComponentB Feature 2

Component C group - contains the source documents for ComponentC
Feature1 and ComponentC Feature 2

You insert the following Context Plugin markers into the source documents for each
group:

ComponentAFeature1 and ComponentAFeature2 Context Plugin markers in
source documents contained in the ComponentA group

ComponentBFeature1 and ComponentBFeature2 Context Plugin markers in
source documents contained in the ComponentB group

ComponentCFeature1 and ComponentCFeature2 Context Plugin markers in
source documents contained in the ComponentC group

When you generate your Eclipse Help system, ePublisher creates the following
folder structure in the ProjectName\Output\TargetName folder, where
ProjectName is the name of your ePublisher project, and TargetName is the name
of your target:

ComponentA folder, which contains a plugin.xml file with the following
entries:

plugin="ComponentAFeature1ContextPlugin"

plugin="ComponentAFeature2ContextPlugin"

ComponentB folder, which contains a plugin.xml file with the following
entries:

Specifying Context Plug-ins in Word | 559

plugin="ComponentBFeature1ContextPlugin"

plugin="ComponentBFeature2ContextPlugin"

ComponentC folder, which contains a plugin.xml file with the following
entries:

plugin="ComponentCFeature1ContextPlugin"

plugin="ComponentCFeature2ContextPlugin"

You can then provide the context plug-in IDs in your plugin.xml files to the
appropriate Eclipse developers to use. The Eclipse developers use the context plug-
ins defined in plugin.xml files to call your Eclipse Help system as appropriate
from Eclipse plug-ins.

To specify a context plug-in in a Microsoft Word source document

1. Identify a topic in a source document where you want to insert the context
plug-in.

2. On the WebWorks menu, click Markers.

3. In the Marker Type field, select Context Plugin from the list of markers.

4. In the Value field, type the appropriate ID for the context plug-in.

Note: If you are responsible for defining the ID, ensure you supply the context
plug-in ID to your developers to use as appropriate for their Eclipse
plug-ins. If your developers define the ID, use the context plug-in ID you
obtained from your developers.

5. Click OK.

6. Save your Microsoft Word source document.

7. Generate output for your project. For more information, see “Generating
Output”.

8. In Output Explorer, verify ePublisher generated a plugin.xml file that
contains the context plug-in IDs you specified by completing the following
steps:

a. On the View menu, click Output Directory.

b. Open the ProjectName folder, where ProjectName is the name of your
project.

560 | Specifying Context Plug-ins in Word

c. Open the group folder for a group that contains the source documents
where you specified your context plug-in ID.

d. Open the plugin.xml file in Notepad and verify that the context plug-in
IDs you specified in your source documents are listed in the plugin.xml
file. Your context plug-in IDs should be listed in the Contexts area of
the file. Following is an example of the how the context plug-in IDs
you specified in your source documents should be displayed in the
plugin.xml file:

<!-- Contexts -->

<!-- -->

<extension point="org.eclipse.help.contexts">

<contexts file="contexts.xml"
plugin="ComponentAFeature1ContextPlugin" />

</extension>

<extension point="org.eclipse.help.contexts">

<contexts file="contexts.xml"
plugin="ComponentAFeature2ContextPlugin" />

</extension>

Creating Accessible Online Content in
Word
Accessible content is content that can be easily accessed by users with certain
disabilities. This section explains how you can prepare your Microsoft Word
source documents to ensure your content is accessible to users using assistive
technologies.

Accessible Content in Word
Images and tables are helpful ways to convey information to end users. However,
users with disabilities often cannot access the important information provided by
images and table layouts in online content. You should document images and other
non-text items such as table layouts so that users using assistive technologies to
access online content can access the information these items provide.

Content that must easily be accessed by people with disabilities must conform to
certain guidelines published by both the W3C and the United States government

Accessible Content in Word | 561

in order to produce accessible online output, also known as Section 508 compliant
output. These guidelines are intended to help writers produce accessible content.

You can use ePublisher to help you produce online content that conforms to the
W3C Web Content Accessibility Guidelines 1.0 (WCAG), Section 508 of the U.S.
Rehabilitation Act of 1998, and the Americans with Disabilities Act (ADA). If you are
required to generate accessible content, typically you provide the following items in
your online content:

Alternate text and descriptions for all images and image maps. For more
information, see “Assigning Alternate Text to Images and Image Maps in
Word”.

Long descriptions for all images. For more information, see “Assigning Long
Descriptions to Images in Word”.

Summaries for all tables. For more information, see “Assigning Alternate Text
(Summaries) to Tables in Word”.

You may also choose to provide the following items in your online content:

Alternate text for abbreviations. For more information, see “Assigning
Alternate Text to Abbreviations in Word”.

Alternate text for acronyms. For more information, see “Assigning Alternate
Text to Abbreviations in Word”.

Citations for quotes. For more information, see “Providing Citations for Quotes
in Word”.

You must prepare source documents and configure your ePublisher project in order
to create accessible content. You prepare your source documents by inserting
markers into your source documents and by applying character formats and
paragraph formats. You configure accessibility settings in the ePublisher project.
ePublisher uses the information in your source documents and your ePublisher
project to generate accessible online output.

For more information about producing accessible content and to check your content
further for compliance, see the following Web sites:

For the complete W3C note on the WCAG, visit http://www.w3c.org/TR/
WCAG10-CORE-TECHS.

For information about the related Web Accessibility Initiative, visit http://
www.w3.org/WAI.

For information about Section 508 of the U.S. Rehabilitation Act of 1998, visit
http://www.w3.org/WAI/Policy/#508.

562 | Accessible Content in Word

http://www.w3c.org/TR/WCAG10-CORE-TECH
http://www.w3c.org/TR/WCAG10-CORE-TECH
http://www.w3.org/WAI
http://www.w3.org/WAI
http://www.w3.org/WAI/Policy/#508

Accessible Content Navigation in Word
Users can navigate through the accessible content using keys on the keyboard. The
following output formats support navigation keys:

Dynamic HTML

Microsoft HTML Help

Oracle Help

WebWorks Help

Note: For the Dynamic HTML, navigation key behavior may vary based on the
browser the user uses. For example, in Netscape and Mozilla, users must
hold down the Alt key while pressing the navigation keys. In Internet
Explorer, users must first hold down the Alt key while pressing the
navigation key, and then press Enter.

The following table lists the how each output format supports navigation keys.

Accessible Content Navigaon in Word | 563

Navigation Key Function Format

1 Display the TOC Dynamic HTML

WebWorks Help 5.0

2 Display the Index Dynamic HTML

WebWorks Help 5.0

3 Display the Search tab WebWorks Help 5.0

4 Go to the previous page Dynamic HTML

Microsoft HTML Help

Oracle Help

WebWorks Help 5.0

If you are using
Microsoft HTML Help,
Alt+4 works only if the
topic pane has the focus.
If the topic pane does not
have the focus, you must
press Alt+0 and then Alt
+4 .

If you are using Oracle
Help, you must press
Enter after pressing Alt
+4 .

5 Go to the next page Dynamic HTML

Microsoft HTML Help
1.x

Oracle Help

WebWorks Help 5.0

564 | Accessible Content Navigaon in Word

Navigation Key Function Format

If you are using
Microsoft HTML Help,
the Alt+5 key works only
if the topic pane has the
focus. If the topic pane
does not have the focus,
you must press Al+ 0 and
then Alt +5 .

If you are using Oracle
Help, you must press
Enter after pressing Alt
+5 .

6 Shift the focus to the
related topics list displayed
at the bottom of the
current page

WebWorks Help 5.0

After you press the 6 key,
you can press Tab to cycle
through the entries in the
related topics list.

7 Display a blank feedback
e-mail (equivalent to
clicking the e-mail button
in the toolbar frame)

WebWorks Help 5.0

8 Print the current page
(equivalent to clicking the
Print button in the toolbar
frame)

WebWorks Help 5.0

9 Bookmark the current page
(equivalent to clicking the
Bookmark button in the
toolbar frame)

WebWorks Help 5.0

10 Shift the focus to the
topic frame (equivalent to
clicking within the topic
frame)

WebWorks Help 5.0

Accessible Content Navigaon in Word | 565

Validating Accessible Content in Word
After you configure your source documents and configure the appropriate settings,
ePublisher uses Accessibility conformance reports to perform the following checks to
verify that the generated output conforms to accessibility standards:

Alternate text for all images

Alternate text for all clickable regions in all image maps

Long descriptions for all images

Summaries for all tables

Note: ePublisher does not verify that you have provided alternate text for
abbreviations or acronyms or verify that you have included citations for
quotes. For more information about understanding and using the Accessibility
conformance reports ePublisher provides, see “Configuring Reports”, and
“Generating Reports”.

Assigning Alternate Text to Images and
Image Maps in Word
This section provides information about how to create accessible images and image
maps in your generated output by assigning alternate text to images.

Image and Image Map Alternate Text in Word
One of the largest accessibility challenges with online content today is the lack of
alternative text for images and image maps. Sight-impaired users often use screen
readers or refreshable Braille devices to read online content. However, when these
assistive technologies come across images or image maps without alternative text,
also known as alternate text, they are unable to provide users with information
about the image or image map and its meaning.

The Web Content Accessibility Guidelines require that alternate text be provided for
all images and image maps in online content. The alternate text is an image label
that describes the image or each area of the image map. Online content should
display alternate text for images and image maps when users perform the following
actions:

The user hovers the mouse pointer over an image or section of an image map.

The user browser has been configured to disable display of images and image
maps.

The user browser is a text-only browser such as Lynx.

566 | Image and Image Map Alternate Text in Word

The user uses assistive technology such as a screen reader.

The alternate text you assign to an image or sections of an image map should be
as accurate and as succinct as possible and provide users with a brief description of
the image and how the image relates to the page they are viewing. Make sure that
your alternate text conveys all of the important information related to the image
or image map section, but do not burden users with excessively long alternative
text. Screen readers or refreshable Braille devices always read the alternative text,
so if your page has several images or complex image maps with long descriptions,
it can take a long time for the assistive devices to read image-heavy pages with
long descriptions. If you need to provide a description of the image or image map
section that is more than a few words or a few short sentences, you should provide
a brief alternate text description of the image or image map section and then assign
a longer description the image using either the longdesc attribute or a description.
Once you specify a long description using the longdesc attribute, you can also
optionally display a D link next to the image. For more information about assigning
long descriptions to images, see “Assigning Long Descriptions to Images in Word”.

Assigning Alternate Text to Images in Word
Use the Web tab on the Format Picture window to assign alternate text to images
in Microsoft Word source documents.

The following procedure provides an example of how to assign alternate text to
images in Microsoft Word source documents using Microsoft Word 2003. Steps
for assigning alternate text to images in Microsoft Word may be different in other
versions of Microsoft Word.

To assign alternate text to an image in a Microsoft Word source document

1. In your Microsoft Word source document, locate the image for which you want
to specify image scaling.

2. Right-click the image, and then click Format Picture or Format Object.

3. On the Web tab, in the Alternative text field, type the alternate text you
want to specify for the image.

4. Click OK.

5. Save your Microsoft Word source document.

6. Generate output for your project. For more information, see “Generating
Output”.

7. Verify ePublisher assigned the alternate text you specified to the image when
it generated output by completing the following steps:

a. On the View menu, click Output Directory.

Assigning Alternate Text to Images in Word | 567

b. In the TargetName folder, open the page that has the image to which
you assigned alternate text in Notepad, where TargetName is the name
of your target.

c. Verify that the alternate text you specified is included in the alt tag for
the image.

Assigning Alternate Text to Image Maps in Word
Use the Web tab on the Format Text Box window to assign alternate text to areas
of an image map in Microsoft Word source documents.

The following procedure provides an example of how to assign alternate text to an
image map in Microsoft Word source documents using Microsoft Word 2003. Steps
for assigning alternate text to an image map in Microsoft Word may be different in
other versions of Microsoft Word.

To assign alternate text to an image map in a Microsoft Word source
document

1. In your Microsoft Word source document, locate the image map for which you
want to specify alternate text.

2. For each clickable area of the image map, complete the following steps:

a. Right-click the text box that defines a clickable region for the image
map.

b. On the Web tab, in the Alternative text field, type the alternate text
you want to specify for the image.

c. Click OK.

3. Save your Microsoft Word source document.

4. Verify ePublisher assigned the alternate text you specified to each area of the
image map when it generated output by completing the following steps:

a. On the View menu, click Output Directory.

b. In the TargetName folder, open the page that has the image map to
which you assigned alternate text in Notepad, where TargetName is the
name of your target.

c. Verify that the alternate text you specified is included in the alt tag for
each area of the image map.

568 | Assigning Alternate Text to Image Maps in Word

Assigning Long Descriptions to Images in
Word
This section explains how to create accessible images in your generated output by
assigning long descriptions to images.

Image Long Descriptions
The Web Content Accessibility Guidelines and Section 508 guidelines require you
to include long descriptions for each image in an HTML document. You can use the
longdesc attribute and a long descriptions stored in an external .txt file to assign
a long description to an image. When you use this approach, the long descriptions
are referenced in the HTML tag in the longdesc attribute as shown in the
following example:

<img src=“mission.gif” height=“240” width=“386” alt=“The Mission”
longdesc=“mission.txt” />

The longdesc attribute in the tag provides a link to a separate page where
a long description is available. The link is invisible to sighted users, but when a
conformant screen reader application reads the longdesc attribute, it loads the
file referenced in the longdesc attribute and reads it. In the previous example, the
screen reader would load and read the mission.txt file.

ePublisher provides the following options for assigning long descriptions to images:

You can use the ImageLongDescText marker to assign a long description to an
image. With this method, you assign a long description to an image using a
description you include in a marker you insert into your source document. For
more information, see “Specifying Long Descriptions for Images in Word”.

You can use the ImageLongDescByRef marker to assign a long description to
an image by referencing a long description saved in an external text (.txt)
file. With this method, you specify the path to the external text file in a
marker. For more information, see “Using Text in External Files to Assign Long
Descriptions to Images in Word”.

If you assign long descriptions to some, but not all of you images, you can use the
ImageLongDescNotReq marker. Use this marker when you use accessibility reports
to verify that all images have long description but you have certain images in your
source document that do not require a long description. For more information, see
“Excluding Images from Accessibility Report Checks in Word”.

Although using the longdesc attribute is recommended in the Web Content
Accessibility Guidelines and in 508 guidelines, older screen readers and many
current browsers do not support this attribute and few online content developers
use this attribute. As a result, the longdesc attributed benefits a only a small

Image Long Descripons | 569

number of users. Only users who use modern screen readers can access the
longdesc attribute easily. Older screen readers did not support this attribute. In
addition, even users who use the latest version of screen reader may be unfamiliar
with the longdesc attribute and may not know how to access long descriptions
using their screen reader because the longdesc attribute is used so infrequently in
online content.

If you use the ImageLongDescText marker to assign long descriptions to images, as
an interim solution ePublisher allows you to display a D link immediately after the
image. The D link is an upper case letter D link that directs users to another page
that contains the text you specified in the ImageLongDescText marker. Although
a D link is not required for accessible Web pages, it can be used in addition to the
longdesc attribute. The D link technique works in all browsers, but it is less elegant
than using the londesc attribute. Some users may be confused when they see a D
link on the page, while other users will ignore the D link.

If you want to use D links in addition to the longdesc attribute when you
generate output, your Stationery must have the D link option enabled. If you
have permissions to modify target settings in ePublisher, you can enable the D
link option setting in an project. For more information about enabling the D link
option in an project, see “Specifying Accessibility Settings”. For more information
about permissions required to modify target settings using ePublisher Express, see
“Working with Target Settings”.

Specifying Long Descriptions for Images in Word
To assign a long description to an image, your Stationery and template must have
the ImageLongDescText marker type configured. Your output format must also
support this feature.

When you use the ImageLongDescText marker to assign long descriptions to
images, ePublisher generates an external text file that contains the long description
you specify. When a conformant screen reader application reads the generated
page, it loads the .txt file referenced in the longdesc attribute on the page and
reads the file.

The following procedure provides an example of how to specify long descriptions
for images in Microsoft Word source documents using Microsoft Word 2003. Steps
for specify long descriptions for images in Microsoft Word may be different in other
versions of Microsoft Word.

To assign a long description to an image using marker text in a Microsoft
Word source document

1. In your Microsoft Word source document, locate the image to which you want
to assign a long description.

2. Right-click the image, and then click Format Picture or Format Object.

570 | Specifying Long Descripons for Images in Word

3. Change the layout setting of the image to Top and Bottom by completing
the following steps:

Note: By default when you insert images into Microsoft Word, Microsoft Word
inserts the image using the Inline with text layout setting. In order
to specify the image scale for image output files, you must group the
image and the text box that contains the ImageLongDescText marker.
However, you cannot group images using the In line with text layout
setting in Microsoft Word. To work around this known Microsoft Word
issue, if you have an image that uses an In line with text layout
setting, use the Top and Bottom layout setting for the image while
you insert the ImageLongDescText marker, and then reapply the
In line with text layout setting after you group the image and the
ImageLongDescText marker.

a. On the Layout tab, click Advanced.

b. On the Text Wrapping tab, click Top and Bottom.

c. Click OK, and then click OK again to close the window.

4. Select your image.

5. On the Insert menu, click Text Box, and then click to the right of your
image. Microsoft Word inserts a text box.

6. Insert your cursor into the text box, and then complete the following steps:

a. On the WebWorks menu, click Markers.

b. In the Markers field, select ImageLongDescText from the list of
markers.

c. In the Value field, type the long description you want to specify for the
image.

d. Click OK. ePublisher inserts the ImageLongDescText marker into the
text box.

e. Select the text box.

f. Right-click the selected text box, and then click Format Text Box.

g. On the Colors and Lines tab, in the Fill area, in the Color field, select
No Fill.

h. In the Line area, in the Color field, select No Line.

i. Click OK.

Specifying Long Descripons for Images in Word | 571

7. Drag and drop the text box onto the image.

8. Select the text box and the image.

9. Right-click the selected text box and image, and then click Grouping >
Group.

Note: When you select Group, the location of the image in your Microsoft
Word source document may change in relation to the text in your source
document. For example, the image may move up or down in your
Microsoft Word source document. This is known Microsoft Word behavior.
You may need to scroll up or down in your source document to the new
location of the image to find the image.

10. If your image previously used the In line with text layout setting for
the image, reassign this style to your image by completing the following
steps:

a. Right-click only the image, and then click Format Object.

Note: You must ensure you right-click only the image, and not on the
text box or the grouped text box and image. If you right-click on
the text box or the grouped text box and image, Microsoft Word
does not display the Format Object menu option on the context
menu.

b. On the Layout tab, click In line with text.

c. Click OK, and then click OK again to close the window.

11. Save your Microsoft Word source document.

12. Generate output for your project. For more information, see “Generating
Output”.

13. Verify ePublisher assigned the long description to the image by completing the
following steps:

a. On the View menu, click Output Directory.

b. In the TargetName\images folder, verify that ePublisher created
a .txt file that contains the long description you specified in the
ImageLongDescText marker, where TargetName is the name of your
target.

For example, if you specified a long description for ImageName.png ,
verify that ePublisher created an ImageName.txt file in the images
folder, where ImageName is the name of the image to which you
assigned a long description.

572 | Specifying Long Descripons for Images in Word

c. In the TargetName\ProjectName folder, open the page that contains
the image to which you assigned the long description in Notepad and
verify that the longdesc attribute references the ImageName.txt file
ePublisher created for the image, where TargetName is the name of
your target, ProjectName is the name of your project, and ImageName
is the name of the image to which you assigned a long description.

d. If you used the ImageLongDescText marker and the Stationery
designer configured your Stationery to support D links, open the
page in a browser, verify that the D link displays in the browser, and
then click the D link and verify that a page opens that displays the long
description that you specified in the ImageLongDescText marker.

Using Text in External Files to Assign Long
Descriptions to Images in Word
Use the ImageLongDescByRef marker to assign long descriptions to images using
text in external files. To assign a long description to an image, your Stationery and
template must have the ImageLongDescText marker type configured. Your output
format must also support this feature.

The following procedure provides an example of how to use text in external
files to assign long descriptions to images in Microsoft Word source documents
using Microsoft Word 2003. Steps for using text in external files to assign long
descriptions to images in Microsoft Word may be different in other versions of
Microsoft Word.

To assign a long description to an image using marker text in a Microsoft
Word source document

1. Create a .txt file that contains each image long description.

2. Place each image long description text file in a folder in the
ProjectName\Formats\TargetName\Files folder for your project, where
ProjectName is the name of your ePublisher project and TargetName is the
name of your target.

For example, place the each image long description in the following location:

ProjectName\Formats\TargetName\Files
\ longdescriptions\ imagelongdescription.txt

where ProjectName is the name of your ePublisher project, TargetName is
the name of your target, longdescriptions is the name of the folder where you
placed the image long description, and imagelongdescription is the name of
the .txt file that contains the image long description.

Using Text in External Files to Assign Long Descripons to Images in Word | 573

3. In your Microsoft Word source document, locate the image to which you want
to assign a long description.

4. Right-click the image, and then click Format Picture or Format Object.

5. Change the layout setting of the image to Top and Bottom by completing
the following steps:

Note: By default when you insert images into Microsoft Word, Microsoft Word
inserts the image using the Inline with text layout setting. In order
to specify the image scale for image output files, you must group
the image and the text box that contains the ImageLongDescByRef
marker. However, you cannot group images using the In line with text
layout setting in Microsoft Word. To work around this known Microsoft
Word issue, if you have an image that uses an In line with text
layout setting, use the Top and Bottom layout setting for the image
while you insert the ImageLongDescText marker, and then reapply the
In line with text layout setting after you group the image and the
ImageLongDescText marker.

a. On the Layout tab, click Advanced.

b. On the Text Wrapping tab, click Top and Bottom.

c. Click OK, and then click OK again to close the window.

6. Select your image.

7. On the Insert menu, click Text Box, and then click to the right of your
image. Microsoft Word inserts a text box.

8. Insert your cursor into the text box, and then complete the following steps:

a. On the WebWorks menu, click Markers.

b. In the Markers field, select ImageLongDescByRef from the list of
markers.

c. In the Value field, type the path to the .txt file that contains the long
description you want to assign to the image.

For example, type:

./ longdescriptions/ imagelongdescription.txt

where longdescriptions is the name of the folder where you placed the
image long description, and imagelongdescription is the name of the
.txt file that contains the image long description.

574 | Using Text in External Files to Assign Long Descripons to Images in Word

d. Click OK. ePublisher inserts the ImageLongDescText marker into the
text box.

e. Select the text box.

f. Right-click the selected text box, and then click Format Text Box.

g. On the Colors and Lines tab, in the Fill area, in the Color field, select
No Fill.

h. In the Line area, in the Color field, select No Line.

i. Click OK.

9. Drag and drop the text box onto the image.

10. Select the text box and the image.

11. Right-click the selected text box and image, and then click Grouping >
Group.

Note: When you select Group, the location of the image in your Microsoft
Word source document may change in relation to the text in your source
document. For example, the image may move up or down in your
Microsoft Word source document. This is known Microsoft Word behavior.
You may need to scroll up or down in your source document to the new
location of the image to find the image.

12. If your image previously used the In line with text layout setting for
the image, reassign this style to your image by completing the following
steps:

a. Right-click only the image, and then click Format Object.

Note: You must ensure you right-click only the image, and not on the
text box or the grouped text box and image. If you right-click on
the text box or the grouped text box and image, Microsoft Word
does not display the Format Object menu option on the context
menu.

b. On the Layout tab, click In line with text.

c. Click OK, and then click OK again to close the window.

13. Save your Microsoft Word source document.

14. Generate output for your project. For more information, see “Generating
Output”.

Using Text in External Files to Assign Long Descripons to Images in Word | 575

15. In Output Explorer, verify ePublisher assigned the long description to the
image using the long description in the external file when it generated output
by completing the following steps:

a. On the View menu, click Output Directory.

b. In the TargetName\ProjectName folder, open the page that contains
the image to which you assigned the long description using an external
file in Notepad and verify that the longdesc attribute references the
external text file that contains the long description for the image, where
TargetName is the name of your target, and ProjectName is the name of
your project.

Excluding Images from Accessibility Report
Checks in Word
In some instances, alternate text is sufficient for an image, and assigning a long
description to an image in addition to alternate text would be redundant. However,
you may have configured Accessibility reports to check for images without long
descriptions and notify you when an image does not have a long description.

In this scenario, while you want an Accessibility report to notify you when you
have an image without a long description, you do not want to be notified when
you deliberately did not assign a long description to an image because assigning
a both a long description and alternative text would be redundant. To address
this issue, you can use the ImageLongDescNotReq marker to exclude an image
that deliberately does not have a long description from validation when you
generate Accessibility reports. For more information about Accessibility reports
and configuring and generating Accessibility reports, see “Accessibility Reports”,
“Configuring Reports”, and “Generating Reports”.

To exclude images without long descriptions from Accessibility reports, your
Stationery and template must have the ImageLongDescNotReq marker type
configured. Your output format must also support this feature.

The following procedure provides an example of how to exclude images without
long descriptions from Accessibility report checks in Microsoft Word source
documents using Microsoft Word 2003. Steps for excluding images without long
descriptions from Accessibility report checks in Microsoft Word may be different in
other versions of Microsoft Word.

To exclude an image without a long description from Accessibility report
checks in a Microsoft Word source document

1. In your Microsoft Word source document, locate the image without a long
description that you want to exclude from an Accessibility report check.

576 | Excluding Images from Accessibility Report Checks in Word

2. Change the layout setting of the image to Top and Bottom by completing
the following steps:

Note: By default when you insert images into Microsoft Word, Microsoft Word
inserts the image using the Inline with text layout setting. In order
to specify the image scale for image output files, you must group the
image and the text box that contains the ImageLongDescNotReq marker.
However, you cannot group images using the In line with text layout
setting in Microsoft Word. To work around this known Microsoft Word
issue, if you have an image that uses an In line with text layout
setting, use the Top and Bottom layout setting for the image while
you insert the ImageLongDescNotReq marker, and then reapply the
In line with text layout setting after you group the image and the
ImageLongDescNotReq marker.

a. On the Layout tab, click Advanced.

b. On the Text Wrapping tab, click Top and Bottom.

c. Click OK, and then click OK again to close the window.

3. Select your image.

4. On the Insert menu, click Text Box, and then click to the right of your
image. Microsoft Word inserts a text box.

5. Insert your cursor into the text box, and then complete the following steps:

a. On the WebWorks menu, click Markers.

b. In the Markers field, select ImageLongDescNotReq from the list of
markers.

c. In the Value field, do not enter any text. You do not need to enter any
text in this field when you insert a ImageLongDescNotReq marker.

d. Click OK. ePublisher inserts the ImageLongDescText marker into the
text box.

e. Select the text box.

f. Right-click the selected text box, and then click Format Text Box.

g. On the Colors and Lines tab, in the Fill area, in the Color field, select
No Fill.

h. In the Line area, in the Color field, select No Line.

i. Click OK.

Excluding Images from Accessibility Report Checks in Word | 577

6. Drag and drop the text box onto the image.

7. Select the text box and the image.

8. Right-click the selected text box and image, and then click Grouping >
Group.

Note: When you select Group, the location of the image in your Microsoft
Word source document may change in relation to the text in your source
document. For example, the image may move up or down in your
Microsoft Word source document. This is known Microsoft Word behavior.
You may need to scroll up or down in your source document to the new
location of the image to find the image.

9. If your image previously used the In line with text layout setting for
the image, reassign this style to your image by completing the following
steps:

a. Right-click only the image, and then click Format Object.

Note: You must ensure you right-click only the image, and not on the
text box or the grouped text box and image. If you right-click on
the text box or the grouped text box and image, Microsoft Word
does not display the Format Object menu option on the context
menu.

b. On the Layout tab, click In line with text.

c. Click OK, and then click OK again to close the window.

10. Save your Microsoft Word source document.

11. Generate output for your project. For more information, see “Generating
Output”.

12. Generate an Accessibility report and confirm that ePublisher did not generate
an Image is missing a long description message for the image. For
more information about generating Accessibility reports and Accessibility
report messages, see “Generating Reports” and “Accessibility Report
Messages”.

Assigning Alternate Text (Summaries) to
Tables in Word
Tables, just like images, are a way to visually display information. Although tables
typically contain text, the purpose of the table is often not evident from text alone.
The organization and display of the table may contain information that is not
evident to assistive technologies. However, through the use of table summaries,

578 | Assigning Alternate Text (Summaries) to Tables in Word

assistive technologies can convey useful information to users about tables. The Web
Content Accessibility Guidelines recommend that you provide summary text for
each table in an HTML document. Table alternate text, or table summaries, provide
users with information about what type of information the table contains.

You can create accessible tables by typing the table summary into a TableSummary
marker. When ePublisher generates content, ePublisher puts the table summary you
specify into the table in the summary attribute.

To assign alternate text to tables, your Stationery and template must have the
TableSummary marker type configured. Your output format must also support this
feature.

The following procedure provides an example of how to assign alternate text to
tables in Microsoft Word source documents using Microsoft Word 2003. Steps
for assigning alternate text to tables in Microsoft Word may be different in other
versions of Microsoft Word.

To assign table summaries in a Microsoft Word source document

1. In your Microsoft Word source document, locate the table to which you want
to assign a table summary.

2. Insert your cursor in front of the table.

3. On the WebWorks menu, click Markers.

4. In the Markers field, select TableSummary from the list of markers.

5. In the Value field, type the alternate text for the table.

6. Click OK. ePublisher inserts the TableSummary marker into the table.

7. Insert the marker into the table caption by clicking OK.

8. Save your Microsoft Word source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. Verify ePublisher assigned the table summary you specified to the table when
it generated output by completing the following steps:

a. On the View menu, click Output Directory.

b. In the TargetName folder, open the page that has the table to which you
assigned a table summary in Notepad, where TargetName is the name
of your target.

Assigning Alternate Text (Summaries) to Tables in Word | 579

c. Verify that the table summary you specified is included in the summary
attribute for the table.

Excluding Tables from Accessibility Report
Checks in Word
Tables used specifically for layout may not need a table summary. For example,
if you use a table for layout, you probably would not assign a table summary to
the table. However, you may have configured Accessibility reports to check for
tables without table summaries and notify you when a table does not have a table
summary.

In this scenario, while you want an Accessibility report to notify you when you
have a table without a table summary, you do not want to be notified when you
deliberately did not assign a table summary to a table because a table summary is
not required. To address this issue, you can use the TableSummaryNotReq marker
to exclude a table that deliberately does not have a table summary from validation
when you generate Accessibility reports. For more information about Accessibility
reports and configuring and generating Accessibility reports, see “Accessibility
Reports”, “Configuring Reports”, and “Generating Reports”.

To exclude tables from Accessibility report checks, your Stationery must have
the TableSummaryNotReq marker type configured. Your output format must also
support this feature.

The following procedure provides an example of how to exclude tables without table
summaries from Accessibility report checks in Microsoft Word source documents
using Microsoft Word 2003. Steps for excluding tables without table summaries
from Accessibility report checks in Microsoft Word may be different in other versions
of Microsoft Word.

To exclude a table with a table summary from Accessibility report checks in
a in Microsoft Word source document

1. In your Microsoft Word source document, locate the table without a table
summary that you want to exclude from an Accessibility report check.

2. Insert your cursor in front of the table.

3. On the WebWorks menu, click Markers.

4. In the Markers field, select TableSummaryNotReq from the list of markers.

5. In the Value field, do not enter any text. You do not need to enter any text in
this field when you insert a TableSummaryNotReq marker.

6. Click OK. ePublisher inserts the TableSummaryNotReq marker into the table.

580 | Excluding Tables from Accessibility Report Checks in Word

7. Save your Microsoft Word source document.

8. Generate output for your project. For more information, see “Generating
Output”.

9. Generate the Accessibility report and confirm that ePublisher did not generate
an Table is missing a table summary message for the table. For more
information about generating Accessibility reports and Accessibility report
messages, see “Generating Reports” and “Accessibility Report Messages”.

Assigning Alternate Text to Abbreviations
in Word
Abbreviations are often used in written communication. Using an Abbreviation
character style and an AbbreviationTitle marker, you can specify alternate text
for abbreviations. For example, if your source document includes an abbreviation
such as SS#, you can specify Social Security Number as alternate text for the
abbreviation. When you use an AbbreviationTitle marker and Abbreviation character
style to specify alternate text for an abbreviation, ePublisher adds the abbreviation
alternate text you specify to the title attribute of the abbr tag in the output.

Following is an example of the HTML code produced when you specify Social
Security Number as alternate text for SS#.
<th>First name</th>
<th><abbr title="Social Security Number">SS#</abbr></th>

To assign alternate text to abbreviations, your Stationery and template must have
the following items configured:

Abbreviation character style

AbbreviationTitle marker type

Your output format must also support this feature.

The following procedure provides an example of how to specify alternate text for
abbreviations in Microsoft Word source documents using Microsoft Word 2003.
Steps for specifying alternate text for abbreviations in Microsoft Word may be
different in other versions of Microsoft Word.

To specify alternate text for an abbreviation in a Microsoft Word source
document

1. In your Microsoft Word source document, locate the abbreviation for which
you want to specify alternate text.

2. Apply the AbbreviationTitle character style to the abbreviation text.

Assigning Alternate Text to Abbreviaons in Word | 581

3. Insert your cursor anywhere inside the abbreviation.

4. On the WebWorks menu, click Markers.

5. In the Markers field, select AbbreviationTitle from the list of markers.

6. In the Value field, type the abbreviation alternate text.

7. Click OK. ePublisher inserts the AbbreviationTitle marker into the
abbreviation.

8. Save your Microsoft Word source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. Verify ePublisher assigned the abbreviation alternate text you specified when
it generated output by completing the following steps:

a. On the View menu, click Output Directory.

b. In the TargetName folder, open the page that has the abbreviation to
which you assigned alternate text in Notepad, where TargetName is the
name of your target.

c. Verify that the alternate text you specified for the abbreviation is
included in the abbr tag in the title attribute.

Assigning Alternate Text to Acronyms in
Word
Acronyms are often used in written communication. Using an Acronym character
style and an AcronymTitle marker, you can specify alternate text for acronyms. For
example, if your document includes an acronym like NATO you can specify North
Atlantic Treaty Organization as alternate text for the acronym. When you use an
AcronymTitle marker and an Acronym character style to specify alternate text for
an acronym, ePublisher adds the acronym alternate text you specify to the title
attribute of the acronym tag in the output.

Following is an example of the HTML code produced when you specify North Atlantic
Treaty Organization as alternate text for NATO.
<p><acronym title=”North Atlantic Treaty Organization”>NATO</acronym>
 is a military alliance.<p>

To assign alternate text to acronyms, your Stationery and template must have the
following items configured:

582 | Assigning Alternate Text to Acronyms in Word

Acronym character style

AcronymTitle marker type

Your output format must also support this feature.

The following procedure provides an example of how to specify alternate text for
acronyms in Microsoft Word source documents using Microsoft Word 2003. Steps for
specifying alternate text for acronyms in Microsoft Word may be different in other
versions of Microsoft Word.

To specify alternate text for an acronym in a Microsoft Word source
document

1. In your Microsoft Word source document, locate the acronymn for which you
want to specify alternate text.

2. Apply the AcronymTitle character style to the abbreviation text.

3. Insert your cursor anywhere inside the abbreviation.

4. On the WebWorks menu, click Markers.

5. In the Markers field, select AcronymTitle from the list of markers.

6. In the Value field, type the acronym alternate text.

7. Click OK. ePublisher inserts the AcronymTitle marker into the abbreviation.

8. Save your Microsoft Word source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. Verify ePublisher assigned the acronym alternate text you specified when it
generated output by completing the following steps:

a. On the View menu, click Output Directory.

b. In the TargetName folder, open the page that has the acronym to which
you assigned alternate text in Notepad, where TargetName is the name
of your target.

c. Verify that the alternate text you specified for the acronym is included in
the acronym tag in the title attribute.

Providing Citations for Quotes in Word

Providing Citaons for Quotes in Word | 583

A citation is a reference or footnote to a book, article, or other material that
specifies the source from which a quotation was borrowed. A citation contains
all the information necessary to identify and locate the work. Using a Citation
character style and the Citation marker, you can specify citations for quotes that
enable users to go to a Web site that contains additional information about the
quote.

Following is an example of the HTML code produced when you specify a citation for
a quote.
<blockquote cite="http://shakespeare.mit.edu/lll/full.html">
 <p>Remuneration! O! that's the Latin word for three farthings.
--- William Shakespeare (Love's Labor Lost).</p> </blockquote>

To provide citations for quotes, your Stationery and template must have the
following items configured:

Citation character style

Citation marker type

Your output format must also support this feature.

The following procedure provides an example of how to specify citations for
quotes in Microsoft Word source documents using Microsoft Word 2003. Steps for
specifying citations for quotes in Microsoft Word may be different in other versions
of Microsoft Word.

To specify citations for quotes in a Microsoft Word source document

1. In your Microsoft Word source document, locate the quotation for which you
want to specify a citation.

2. If the quotation is a phrase within a paragraph, complete the following
steps:

a. Apply the Citation character style to the quotation phrase.

b. Insert your cursor anywhere inside the quotation phrase.

3. If the quotation is a full paragraph, insert your cursor into the paragraph.

c. On the Special menu, click Marker.

4. On the WebWorks menu, click Markers.

5. In the Markers field, select Citation from the list of markers.

6. In the Value field, type the URL for the citation.

584 | Providing Citaons for Quotes in Word

7. Click OK. ePublisher inserts the Citation marker into the abbreviation.

8. Save your Microsoft Word source document.

9. Generate output for your project. For more information, see “Generating
Output”.

10. Verify ePublisher created the citation you specified when it generated output
by completing the following steps:

a. On the View menu, click Output Directory.

b. In the TargetName folder, open the page that has the quotation for
which you specified a quotation in Notepad, where TargetName is the
name of your target.

c. Verify that the citation you specified for the quotation is included in the
cite attribute.

Troubleshooting Word issues
Occasionally there might be issues with the source documents you are using. Below
is a list linking to the wiki solutions website that will help you troubleshoot each
one:

Troubleshoong Word issues | 585

Issue For more information, see to...

If you are seeing hidden
text in the output

Hidden text in output

If you are seeing
inconsistent bullets in
output

Inconsistent bullet sizes

If you are seeing an
“infinite” number of
transit menus in Word
2003

Transit Menu displays "infinite" menu syndrome

If you are using relative
images

Relative Images

If you are using master
docs

Using Microsoft Word Master Docs

If conversions hang and
your documents track
changes or comments

Word warning dialogs that interrupt conversions

Word warning dialogs that interrupt
conversions
Conversions in ePublisher being stuck because of warning dialogs or just hanging
when you are using Word source documents and you have comments or tracking
the changes, might be cause by a configuration in your Word application.

A warning dialog you might see during a conversion in ePublisher should look
similar to the following figure.

586 | Word warning dialogs that interrupt conversions

http://wiki.webworks.com/Permalinks/Solutions/Input/Word/HiddenText
http://wiki.webworks.com/Permalinks/Solutions/Input/Word/InconsistentBulletSize
http://wiki.webworks.com/Permalinks/Solutions/Input/Word/InfiniteMenu
http://wiki.webworks.com/Permalinks/Solutions/Input/Word/RelativeImages
http://wiki.webworks.com/Permalinks/Solutions/Input/Word/UsingMasterDocs

The following procedure provides an example of how to disable the “Warn before
printing, saving or sending a file that contains tracked changes or comments”
option in Microsoft Word source documents using Microsoft Word 2016.

To disable the “Warn before printing, saving or sending a file that contains
tracked changes or comments” in a Microsoft Word source document

1. Open a Microsoft Word document, or even a Blank document.

2. On the Word menu, click File and then Options.

3. In the window that pops out in the left side menu click on Trust Center, and
on the right side select Trust Center Settings. You should see a window
similar to the following figure.

4. After selecting Trust Center Settings you’ll see a new window, click on the
left side on Privacy Options and on the right panel uncheck Warn before

Word warning dialogs that interrupt conversions | 587

printing, saving or sending a file that contains tracked changes or
comments. You should see a window similar to the following figure.

5. And finally click OK.

588 | Word warning dialogs that interrupt conversions

DITA - XML
DITA Usage Standards
DITA Support
Using Ditaval files in DITA
Using Passthrough outputclass in DITA
Embedding a Video in DITA Source Documents
Creating Context-Sensitive Help in DITA Source Documents
Creating Hyperlinks in DITA Source Documents
Creating Popups in DITA Source Documents
Creating Related Topics in DITA Source Documents
Creating See Also Links in DITA Source Documents
Using the data element
Assigning Custom Page Styles to Pages in DITA Source Documents
Using Custom Graphic Styles for Images in DITA Source Documents
Customizing TOC Entry in DITA
Customizing Table of Contents Icons for Topics in DITA Source Documents Using Legacy Outputs
Using markopen and markclose
Troubleshooting DITA issues

Before you can generate output using DITA source documents, you need to prepare
your DITA source documents for output generation. This section explains how to
prepare your DITA source files for output generation.

DITA Usage Standards
DITA (Darwin Information Typing Architecture) is an XML-based format for creating
and publishing technical content. DITA leverages the strengths of XML and provides
a standard set of element definitions used to create technical content. Within the
topic types based on the standard topic definition, DITA specifies the information
elements used to define the content, such as the title, paragraph, table, and list
elements.

This section describes the design usage considerations for DITA source documents.
By reviewing how ePublisher processes DITA source documents, you can streamline
single-sourcing processes and reduce your production and maintenance costs. This
section does not describe all DITA details, but it focuses on the design and usage
considerations related to ePublisher.

DITA Standards for Single-Sourcing
ePublisher accepts ditamaps as input source documents. The ditamap identifies the
structure and order of the XML files and the DTD. The DTD defines the classes for
each element, such as topic/topic and task/task. ePublisher uses these classes to
process the content. ePublisher also allows you to add individual XML files as source
documents to a project. However, if you publish individual XML files without using a
ditamap, links will not be generated in the output.

DITA Standards for Single-Sourcing | 589

Note: Publishing individual XML files is only supported when using the DITA-OT
version 1.8 and above.

Mapping DITA Classes to ePublisher Styles
The default.wwconfig file maps classes to styles in ePublisher, defining both
the style type and the style name. You can override the default.wwconfig file
to specify your own style names and types. The override file does not need to be
comprehensive. Your override file can build on the default file. When the same
match is defined in both the customized override file and the default file, the match
in the customized file overrides the match in default file.

You can override the default.wwconfig file for all output formats, a specific
output format, or a specific target. The default.wwconfig file can also emit WIF
information, such as ww content for bulleted and numbered list items. For more
information, see the default default.wwconfig file in the following folder:
<ePublisher Installation Location>\ePublisher Designer\Adapters\xml
\scripts\dita

For more information about override files and locations, see “Stationery, Projects,
and Overrides”.

To specify your own class mappings with an override file

1. If you want to override the class mappings for all output formats,
complete the following steps:

a. In your Stationery design project, on the View menu, click Format
Override Directory.

b. Create the Formats\Adapters\xml\scripts\dita folder in your project
folder.

2. If you want to override the class mappings for one output format,
complete the following steps:

a. In your Stationery design project, on the View menu, click Format
Override Directory.

b. Create the Formats\Adapters\ formattype\xml\scripts\dita folder in
your project folder, where formattype is the name of the output format
you want to override, such as WebWorks Reverb 2.0 .

3. If you want to override the class mappings for a target, complete the
following steps:

a. In your Stationery design project, on the View menu, click Target
Override Directory.

590 | Mapping DITA Classes to ePublisher Styles

b. Create the Targets\ targetname\Adapters\xml\scripts\dita folder
in your project folder, where targetname is the name of the target you
want to override.

4. Copy the default.wwconfig file from the following folder to the override
folder you created within your project folder:

Program Files\WebWorks\ePublisher Designer\Adapters\xml\scripts
\dita

5. Open the default.wwconfig file you copied to your project override folder.

6. Remove any mappings you do not want to override.

7. Add the mappings you want to override, including a match statement that
defines the style name and a match statement that defines the style type.

8. Save and close the default.wwconfig file you copied to your project override
folder.

The default.wwconfig file provides two sections:

<Styles> section

Provides the style match statements that map DITA classes to style names in
ePublisher. Each style match statement, such as <Style match=... , defines
the classes and parent classes to use for a match. When a class matches
the style match statement, the XSL specifies the ePublisher style name to
associate with that class.

<Types> section

Provides the type match statements that map DITA classes to style types
in ePublisher. Each type match statement, such as <Type match=... ,
defines the classes to use for a match. When a class matches the type match
statement, the value attribute specifies the ePublisher style type for the style
associated with that class.

Defining Online Features with DITA
You assign formatting and features to styles in ePublisher. These style definitions
are stored in your Stationery and mapped to DITA classes. For some online
features, such as index entries, you use the standard DITA elements to implement
the feature. For more information about creating Stationery and implementing
online features, see “Designing, Deploying, and Managing Stationery”.

Review the following considerations to understand how to implement each online
feature using DITA elements and the Stationery options within ePublisher:

Defining Online Features with DITA | 591

For index entries, use the standard DITA tag.

For related topics, assign related topics options in ePublisher to paragraph
styles for related-links elements, such as the Related Task and Related
Concept styles.

For expand/collapse sections, assign dropdown options in ePublisher to the
appropriate paragraph styles. You cannot use a marker to identify the end of
the expand/collapse section, so you need to use a paragraph style to identify
the end.

For conditions, use attributes and ditaval file filtering, for more information,
See “Using Ditaval files in DITA”.

For variables, use conref and ditaval file filtering.

For popup windows, use the xref element for the link and define paragraph
styles with the popup options in ePublisher.

For specifying file names, use the othermeta element to define the marker
with the name for the file.

For specifying a topic alias for context-sensitive help links, use the othermeta
element to define the marker with the value of the topic ID for that topic.

For meta tag keywords, use the othermeta element to define the marker with
the keywords you want to include in the meta tag in the generated output.

For opening a topic in a custom window, use the othermeta element to define
the marker with the name of the window in which to open the topic.

For a custom TOC icon, use the othermeta element to define the marker with
the name of the TOC icon to use for the generated topic.

For See Also links, use related topics, which are available in more output
formats. See Also link support is being reviewed for future enhancements.

For accessibility features, such as image alternate text and long descriptions,
use standard DITA elements and attributes.

Configuring DITA Open Toolkit Version
In order to support DITA specialization and customization it is sometimes necessary
to specify a specific version of the DITA Open Toolkit (OTK). In ePublisher, you can
easily change which version of the OTK is used to preprocess all of your content on
a project by project basis. You can even configure your stationery to use a specific
version.

592 | Configuring DITA Open Toolkit Version

To change your project’s OTK version

1. In your Stationery design project, on the Project menu, click Project
Settings...

2. Expand the XML Input tab and locate the row labeled: DITA Open Toolkit
version .

3. Choose from one of the available versions and then select the OK button.

Note: Usually, it is fine to just use the latest version, however, it may be
necessary to use an older version if you have specializations or other
customizations that have not yet been migrated.

Customizing the DITA DTD
You can associate an instance of the DITA-OT with your Stationery design project to
apply and track DITA specialization through the Stationery.

To customize the DITA DTD and apply the DITA specialization

1. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

2. Create the Formats\Helpers\dita-ot-<version> folder in your projectname
folder, where projectname is the name of your Stationery design project.

3. Copy the contents of the following folder to the override folder you created
within your project folder:

Program Files\WebWorks\ePublisher Designer\Helpers\dita-ot-
<version>

4. Open the dita-ot-<version> folder you copied to your project override
folder and apply the DTD changes you need for your DITA specialization.
Typically this means running the ant integrate task to install your DITA-OT
plug-ins.

5. Save and close the modified files.

6. Regenerate your project to review the changes.

DITA Specialization
Structure is mapped to style in dita, for more information, please refer to the
following website:

DITA Specializaon | 593

http://wiki.webworks.com/HelpCenter/Tips/DITA/All Versions/DITA Configuration

DITA Support
ePublisher supports all current OASIS DITA standards, which includes versions 1.1,
1.2, and 1.3. For information on the complete set of DITA 1.3 topic types, elements,
attributes, and other specifications you may want to refer to:
https://www.webworks.com/Documentation/DITA_1.3_Language_Reference/.

Keyref elements
You can use the "keyref" feature in DITA as an indirect addressing mechanism.
Instead of linking directly to topics or maps, these can be given a symbolic name
(key attribute) that points to a topic file path (href attribute). References to the
topics are made using a key reference (keyref attribute). If the topic is relocated,
the path needs to be updated only in the map where it is defined. All other
references will automatically pick up the new location.

Conref extensions
DITA uses of the conref element.

Conref Range - Allows a single element to reference a range of elements.

Conref Push - Most commonly used when your component adds to an existing
component.

Conkeyref - Allows you to use a key in the conref attribute so you can more
easily change the target of the conref .

Using Ditaval files in DITA
For conditional text, DITA uses filtering to determine the user or audience that
will be viewing the help content. Using a file called a “ditaval” file, you can control
the filtering of the content that will be generated as output. You can place ditaval
files next to ditamap files using the name of the DITA map files that they are to be
applied to similar to this:

<ditamap name>.ditaval

With ePublisher you have 3 additional ways to handle ditaval files. The ditaval
definitions are looked for in the following order.

Per Target: Targets\<Target Name>\Adapters\xml\scripts\dita\default.ditaval

594 | Using Ditaval files in DITA

http://wiki.webworks.com/HelpCenter/Tips/DITA/All%20Versions/DITA%20Configuration
https://www.webworks.com/Documentation/DITA_1.3_Language_Reference/

Per Format: Formats\<Format Name>\Adapters\xml\scripts\dita
\default.ditaval

Entire project: Formats\Adapters\xml\scripts\dita\default.ditaval

The following example shows an example of how filtering works with the ditaval
markup:
<val>
 <prop att="audience" val="web" action="exclude" />
</val>

The attributes within prop determine the action and who sees the material that is
defined in the output.

action

include - Includes the content in output. This is the default behavior unless
otherwise set.

exclude - Excludes the content from output (if all values in the particular
attribute are excluded).

passthrough - Include the content in output, and preserve the attribute value
as part of the output stream for further processing by a runtime engine, for
example runtime filtering based on individual user settings

flag - include and flag the content on output (if the content has not been
excluded).

att

The attribute to be acted. This must be one of props, audience, platform,
product, otherprops, or a specialization of props. If the att attribute is
absent, then the prop element declares a default behavior for any conditional
processing attribute.

val

The value to be acted upon. If the val attribute is absent, then the prop
element declares a default behavior for any value in the specified attribute.

Using Passthrough outputclass in DITA
You may want to include some kind of HTML or Javascript in your output that
would not be generated as normal output. For this example we are going to use a
passthrough attribtue on a paragraph tag in DITA. This will create a Passthrough

Using Passthrough outputclass in DITA | 595

paragraph style that you would switch to Passthrough in the paragraph options tab
in ePublisher.

Below is an example of a Javascript alert in HTML using the CDATA attribute
<p outputclass="Passthrough">
<![CDATA[
<div>Click Me!</div>
]]>
</p>

Once you have entered in the paragraph that contains the passthrough attirbute,
re-scan the documennt and make sure that this passthrough paragraph has the
“Passthrough” option enabled so that the HTML will not be processed.

Depending on the output, for example, browser-based (Dynamic HTML or
WebWorks Help 5.0) versus PDF output, you may want to use ditaval filtering to
ensure that only the web-based output is getting output. For this instance, you
would want to have the following DITA markup
<p outputclass="Passthrough" audience="web">
<![CDATA[
<div>Click Me!</div>
]]>
</p>

For the PDF output, for example you would want to have the Target override:

Targets\PDF\Adapters\xml\scripts\dita

and the default.ditval information:
<val>
 <prop att="audience" val="web" action="exclude" />
</val>

For the Dynamic HTML output you would want to have the Target override:

Targets\Dynamic HTML\Adapters\xml\scripts\dita

and the default.ditval information:
<val>
 <prop att="audience" val="web" action="include" />
</val>

Note: Depending on what your Target name and input is like, the information
may be different than what is listed above. For more information on Target
overrides, See “Creating Target Overrides”.

Embedding a Video in DITA Source
Documents

596 | Embedding a Video in DITA Source Documents

This section explains how you can embed videos in DITA source documents for
ePublisher. For embedded videos we only allow the mp4 and flv formats.

Embedding a Video file
You can embed a video that you have on file into your DITA source
document.

To embed a video from your file directory:

1. Create the an object tag for the video, for example: <object> </object>

2. Next you are going to want to specify certain attributes for your video object

If want to set a stylename, set the outputclass attribute to whatever
stylename you want to give it.

Specify what width and height you want to give to your video in the
width and height attributes

Set the data attribute to the path to the video file relative to the source
file

For example: <object outputclass="Foo" width="560"
height="320" data="../../Video/small.mp4"> </object>

3. Optional: if you want controls on your video include the following param tag
inside your object tag: <param name=”controls” value=”true”>

The following is a fully working code example of the following steps:
<object outputclass="Foo" width="560" height="320" data="../../Video/
small.mp4">
 <param name="allowFullScreen" value="true" />
 <param name="controls" value="true" />
</object>

Linking to a Youtube Video
You can embed a Youtube video in your DITA source document.

To embed a Youtube Videa:

1. Create the an object tag for the video, for example: <object> </object>

2. Make sure that you are using the Embed URL and not the default URL
provided in your browser when on the YouTube website. To obtain the proper
URL, follow the instructions for obtaining a share link to embed in a website.

Linking to a Youtube Video | 597

3. Next you are going to want to specify certain attributes for your video object

Specify what width and height you want to give to your video in the
width and height attributes.

Set the data attribute to the link to the video file (optional).

For example: <object width="560" height="320" data="https://
www.youtube.com/embed/Fy1SB0ClS0k"> </object>

Note: The proper URL should contain “embed” in the path.

4. Next you can set certain param tags for your video depending on your own
specifications

Note: The data attribute on the object element is optional.

The following is a fully working code example of the following steps:
<object outputclass="Foo" width="560" height="320">
 <param name="movie" value="https://www.youtube.com/embed/
Fy1SB0ClS0k" />
 <param name="controls" value="true" />
</object>

Creating Context-Sensitive Help in
DITA Source Documents
This section explains how you can use ePublisher to create links to context-sensitive
help content in DITA source documents

Context-Sensitive Help
Context-sensitive help provides immediate assistance and information to users
without requiring users to leave the context in which they are working. It helps
answer questions like "What is this?" and "Why would I use this?", and provides
information for a particular object and its context.

For example, in many applications, user interface controls such as windows and
tabs have a help button. When users click on the help button, the application links
users to a help topic specific to the context of the window. Some applications also
embedded context-sensitive help topics into the window itself as an HTML pane.
The application relies on an identifier such as a topic ID or file name to identify the
specific help topic to display.

There are several methods for creating context-sensitive help links. In addition,
different use different mechanisms to support context-sensitive help links. For

598 | Context-Sensive Help

example, some , such as Microsoft HTML Help, create a map file using topic aliases.
Applications then use the topic IDs in the map file to provide links to context-
sensitive help topics from within the application. Other do not have a mapping
mechanism. However, these may support creating links to context-sensitive help
topics using file names.

Map Files
Many application support the use of map files to deliver context-sensitive help. The
topic IDs and map numbers are listed in a map file, which is a text file that typically
has a .h extension. Applications can use the information in the map file to link
users to the appropriate context-sensitive help topic.

Note: Some developers may use the term header file instead of map file.

There are some variations in the way context-sensitivity works depending on which
supported ePublisher output format you use. For example, Microsoft HTML Help,
Sun JavaHelp, and Oracle Help use map files.

Note: WebWorks Help, WebWorks Reverb, Dynamic HTML Help, and XML+XSL
do not use map files.

When an application calls a context-sensitive help topic, it relies on the topic IDs
and map numbers to identify the specific topic to display. Therefore, the topic IDs
and map numbers must be embedded both in the application code and in the help
system. If the topic IDs and map numbers do not match, the wrong topic (or no
topic) displays when the user requests Help.

Following is a typical example of a Microsoft HTML Help map file:
#define IDH_WDWTYPE 1001
#define IDH_WDWENTER 1002
#define IDH_WDWCANCEL 1003

In this example, IDH_WDWTYPE is a topic ID, and 1001 is the corresponding map
number. These topic IDs and map numbers must be embedded in the software
application and in your source documents.

Following is a typical example of a Sun JavaHelp and Oracle Help map file:
<mapID target="ch1_htm_999374" url="ch1.htm#999374">
<mapID target="ch2_htm_999640" url="ch2.htm#999640">
<mapID target="ch9_htm_999786" url="ch9.htm#999786">

In this example, ch1_htm_99374 is a topic ID, and ch1.htm#99374 is the target
URL for the topic ID. These topic IDs must be embedded in the software application
and in your source documents.

Map Files | 599

Planning for Context-Sensitive Help
Creating context-sensitive help requires you to collaborate with application
developers. Because topic IDs and map numbers must be embedded in both
the software application and in your source documents, you and the application
developers must agree in advance on the values to use.

Before you create context-sensitive help topics, complete the following steps:

1. Confirm with your application developers that the application supports
context-sensitive help.

2. Meet with your application developers to identify each context-sensitive help
topic you need to create.

3. Determine if you will use topic IDs or file names to create links to context-
sensitive help topics.

4. Discuss the process for referencing context-sensitive help topics from
the application with your application developers. Writers and application
developers have the following options for creating context-sensitive help links:

The writer chooses the topic IDs or file names and embeds them in
the source documents. If the generated output supports map files, the
writer performs the following steps:

The writer uses topic IDs inserted into source documents and
ePublisher to generate a map file, also known as a header file,
that contains the topic IDs defined by the writer and automatically
generated mapping IDs.

The writer supplies the generated map file to the application
developers to implement.

Note: The writer must supply the header file along with the help system
to the developers each time the writer updates the help system.
This ensures correctly identified context-sensitive help topics each
time.

Application developers choose the topic IDs or file names and then
give the topic IDs or filenames to the writer to embed in the source
documents. If the generated output supports map files, the application
developers perform the following steps:

Application developers create the map file, or header file.

Application developers give the writer a copy of the map file, or
header file, and the writer embeds the topic IDs from the map file
into the source documents.

600 | Planning for Context-Sensive Help

Note: The group context must be unique so that if there are the same topic ID’s in
a help system, the context sensitive pointer will go to the correct place in the
help.

Topic ID and File Name Requirements
If you are creating context-sensitive help topics using topic IDs, topic IDs must
follow these guidelines:

Must be unique

Must begin with an alphabetical character

May contain alphanumeric characters

May not contain special characters or spaces, with the exception of
underscores (_)

Dynamic HTML, Eclipse Help, Microsoft HTML Help, Oracle Help, Sun, WebWorks
Help, and WebWorks Reverb support the use of topic IDs to create context-sensitive
help.

If you are creating context-sensitive help topics using file names, file names must
follow these guidelines:

Must be unique

Must begin with an alphabetical character

May contain alphanumeric characters

May not contain special characters or spaces

XML+XSL support the use of file names to create context-sensitive help.

Output Formats that support Creating
Context-Sensitive Help Links In DITA
Source Documents
The following table lists available for creating context-sensitive help links.

Output Formats that support Creang Context-Sensive Help Links In DITA Source Documents | 601

that Support Context-
Sensitive Help Links

You can use ePublisher
to create context-
sensitive help links for
the following :

Eclipse Help

Microsoft HTML Help

Oracle Help

Sun JavaHelp 2.0

WebWorks Help

WebWorks Reverb

WebWorks Reverb 2.0

Specifying Context-Sensitive Help Links in
DITA Source Documents
Before you specify context-sensitive help links, review context-sensitive help link
requirements. For more information about context-sensitive help and context-
sensitive help link requirements, see “Context-Sensitive Help” and “Output Formats
that support Creating Context-Sensitive Help Links In DITA Source Documents”.

To specify a topic alias for a topic in a DITA source document:

1. In your DITA source document, locate your topic’s meta information container
element.

2. For this element, you use the <othermeta> element to define the topic alias,
for example: <othermeta name="TopicAlias" content="helpid"/>

Note: You can also use the <data> element to define topic alias values, for
example: <data name="TopicAlias" value="helpid"/>

3. Save the DITA document

602 | Specifying Context-Sensive Help Links in DITA Source Documents

4. Generate output for your target. For more information, see “Generating
Output”

Steps for creating context-sensitive help links in DITA may be different in other
versions of DITA.

Creating Hyperlinks in DITA Source
Documents
You will have to use DITA elements to create links in your documents so that
ePublisher can create links to other topics or files in the online help output of your
choice.

To create an a hyperlink to a topic in the same DITA file or another DITA
file, complete the following steps

1. Identify your link type, as it will determine the markup that is required.

2. For a hyperlink that is going the same file create the following markup:
<xref href="#yourtopicID">Your xref link text</xref>

3. For a hyperlink that is going to a different file create the following markup:
<xref href="file.xml#yourtopicID">Your xref link text</xref>

4. For a hyperlink that is going to a PDF create the following markup:
<xref format="PDF" href="sample.PDF">Your xref link text</xref>

Creating Popups in DITA Source
Documents
This section explains how to create popups in DITA source documents.

Popups
A popup window is a window that is smaller than standard windows and typically
does not contain some of the standard window features such as tool bars or status
bars. Popup windows display when users hover over or click on a link. The popup
topic closes automatically as soon as the users clicks somewhere else.

A typical use of popups is to display glossary terms. For example, in a printed
document, terms and definitions are typically grouped in a separate glossary
document. However, in a help system, you can display glossary definitions in
popups. When you create glossary popups, users can choose whether they want to
view the definition of an unfamiliar term. If they want additional information about
the term, they can view the definition in a click.

Popups | 603

You create popups by creating link between the word or phrase in a topic and the
content you want to display in the popup, and then you use <othermeta> elements
or paragraph styles to create popups.

Popup and Popup Append paragraph styles

Specifies that content displays both in popup windows and in standard
help topics. You apply the Popup paragraph style to the first paragraph of
content you want displayed in the popup window. If you have more than one
paragraph of content you want to display, you apply the Popup Append style
to the additional paragraphs.

For example, if you apply a glossary term and glossary definitions style for a
glossary using the Popup and Popup Append styles, the terms and definitions
in your output display in both a popup window and in a glossary topic that
contains the definitions.

Popup Only and Popup Only Append paragraph styles

Specifies that content displays only in popup windows. You apply the Popup
Only paragraph style to the first paragraph of content you want displayed
in the popup window. If you have more than one paragraph of content you
want to display, you apply the Popup Only Append style to the additional
paragraphs.

For example, if you apply a glossary term and glossary definition style for
a glossary using the Popup Only and Popup Only Append paragraph style,
the terms and definitions in your output display in only popup windows. The
content is not displayed in an additional glossary topic that contains the
definitions.

Requirements for Creating Popups in DITA
Source Documents
You prepare popups using <othermeta> elements or paragraph formats. Before
you create popups in your source documents, verify that your , templates, and
stationery meet popup requirements. The following table lists requirements for
creating popups.

604 | Requirements for Creang Popups in DITA Source Documents

 Requirement

Output Format You can use ePublisher to create popups for the
following :

Microsoft HTML Help

Oracle Help

Sun JavaHelp

WebWorks Help

WebWorks Reverb 2.0

Creating Popup Links in DITA Source
Documents
Steps for creating links in DITA may be different in other versions of DITA.

Using Paragraph Styles to Create Popups in
DITA Source Documents
You can use Popup paragraph formats in your DITA source documents to create
popups. To use Popup paragraph styles to create popup windows, your Stationery
and DITA file must have the following items configured:

Popup and Popup Append paragraph style behaviors if you want your content
to display both in popup windows and in standard help topics.

Popup Only and Popup Only Append paragraph style behaviors if you want
your content to display only in popup windows.

The following procedure provides an example of how to use Popup paragraph
formats to create popup windows in DITA source documents.

To create popup windows using Popup paragraph styles in DITA source
document

Using Paragraph Styles to Create Popups in DITA Source Documents | 605

1. In your DITA source document, create a link between a word or phrase in the
topic and the content you want to display in the popup window and ensure
that the link resolves in the document.

2. Save your DITA source document.

3. In the ePublisher Style Designer, configure the destination paragraph styles
with the appropriate popup behavior via the Options panel.

4. Generate output for your project.

5. In Output Explorer, go to the page where you created the popup window and
verify that ePublisher created the popup window and that the popup window
displays the content you specified.

Creating Related Topics in DITA Source
Documents
This section explains how to create related topics in DITA source documents.

Related Topics
Related topics provide a list of other topics that may be of interest to the user
viewing the current topic. For example, you could have a section called Creating
Web Pages in your help. You may also have many other topics, such as HTML Tags
and Cascading Style Sheets, that related to creating Web pages. Identifying these
related topics for users can help them find the information they need and identify
additional topics to consider. However, providing these types of links as cross-
references within the content itself may not be the most efficient way to present the
information. By utilizing related topics links, you combine the capabilities of cross-
references with the efficiency of a related topics button.

Related topics and See Also links provide similar capabilities, but there are several
important differences:

Related topics can link to headings in a Help system that do not start a new
page.

Relate topics links are static and defined in the source documents as links.
You must have all the source documents to create the link and generate the
output.

If a related topics list contains a broken link in the source document, that link
is broken in the generated output. In a See Also link list, the broken link is not
included in the output.

606 | Related Topics

The stationery designer can configure related topics to display in the following
ways:

Display in a popup window when the user clicks a button,

Included in a list in the topic itself and then displayed in a popup window
when the user clicks a button.

Note: If a related topic link is broken in the source document, in most cases that
link is broken in the generated output. WebWorks Help provides an additional
feature by removing broken links from related topics lists that are displayed
in a popups window when a user clicks the Related Topics button.

Requirements for Creating Related Topics
Links in DITA Source Documents
You can create related topics using a paragraph format. Before you create
related topics links in your DITA source documents, verify that your , templates,
and stationery meet related topics links requirements. The following table lists
requirements for creating related topics links.

Requirements for Creang Related Topics Links in DITA Source Documents | 607

 Requirement

Output Format You can use ePublisher to create related topics for the
following :

Eclipse Help

Microsoft HTML Help

Oracle Help

Sun Java Help

WebWorks Help

WebWorks Reverb

WebWorks Reverb 2.0

Specifying Related Topics Links in DITA
Source Documents
Create related topics links by applying the Related Topics paragraph format to
cross-references you create in your DITA source documents. Before you create
related topics in your source documents, review related topics links requirements.
For more information about related topics and related topics links requirements,
see “Related Topics” and “Requirements for Creating Related Topics Links in DITA
Source Documents”.

The following procedure provides an example of how to create related topics links
in DITA source documents using DITA 1.4. Steps for creating related topics links in
DITA may be different in other versions of DITA.

To create a related topics list in a DITA source document

1. Identify the topic in which you would like to insert a related topics list.

2. Identify the different topics you want to link to from this topic.

Note: Generally, you should only create one related topics list for each section
of your source document that corresponds to a help topic. For example,
if you have specified in your ePublisher project that there will be a
page break at each Heading 1 section, then you should only create

608 | Specifying Related Topics Links in DITA Source Documents

one related topics list for each Heading 1 section within your source
document.

Creating See Also Links in DITA Source
Documents
This section explains how to create See Also links in DITA source documents.

See Also Links
See Also links, also known as ALinks, or associative links, are links that may be
of interest to the user viewing the current topic. These links use internal identifiers
to specify the links and the link list is built dynamically based on the topics available
when the user clicks to display the links. See Also links are important to use with
larger help sets and merged help sets.

Related topics and See Also links provide similar capabilities, but there are several
important differences:

See Also links must link to styles that start a new topic, such as a heading.

See Also links are dynamic and the lists of links are built at display time
instead of during help generation.

Since see Also link lists are dynamically built, they do not include links to
topics that are not available when the user displays the links. If a er list
contains a broken link in the source document, that link is broken in the
generated output for most .

See Also links are useful if you plan to merge help systems. For example, if you
have a multiple help systems that you merge into one main help system at run time
and if your topics in the merged help systems contain See Also keywords that are
also used in the main help system, links to those topics are included in the See Also
lists in the main project.

You can create See Also links as buttons or as inline text links in Microsoft HTML
Help and WebWorks Help. The following example shows how the two different types
of See Also links display in a Microsoft HTML Help system.

See Also Links | 609

To create See Also links in your generated output, use a See Also paragraph format
or character format defined by the stationery designer and through <othermeta>
elements.

Requirements for Creating See Also Links
in DITA Source Documents
You create See Also links using a paragraph or character format and through
<othermeta> elements. Before you create See Also links in your DITA source
documents, verify that your , templates, and stationery meet See Also link
requirements. The following table lists requirements for creating See Also links.

610 | Requirements for Creang See Also Links in DITA Source Documents

 Requirement

Output Format You can use ePublisher to create See Also links for the
following :

Microsoft HTML Help

WebWorks Help

Specifying See Also Links in DITA Source
Documents
Create See Also links by applying the See Also paragraph format or character
format to text in your DITA source documents and through <othermeta> elements
into your DITA source documents. Before you create See Also links in your source
documents, review See Also link requirements. For more information about See
Also links and See Also link requirements, see “See Also Links” and “Requirements
for Creating See Also Links in DITA Source Documents”.

Steps for creating See Also links in DITA may be different in other versions of DITA.

Using the data element
This section explains how to use the <data> element in DITA source documents.
The data element allows insertion of arbitrary marker style data similar to the
<othermeta> element. Unlike the <othermeta> element, the <data> element can
be used throughout a topic, just like a marker.

Using the data element to insert markers

The <data> element represents a property within a DITA topic or map. You can use
the <data> element to insert a marker type anywhere on your page. Here is an
example of the <data> element: <data name =”TOCIcon” value = “red.png”/>.
In this example, our marker name is TOCIcon, and is using the value of red.png.

For more information on the <data> element see https://docs.oasis-open.org/dita/
v1.2/os/spec/langref/data.html

Assigning Custom Page Styles to Pages
in DITA Source Documents

Assigning Custom Page Styles to Pages in DITA Source Documents | 611

https://docs.oasis-open.org/dita/v1.2/os/spec/langref/data.html
https://docs.oasis-open.org/dita/v1.2/os/spec/langref/data.html

This section explains how to assign custom page styles to specific pages in DITA
source documents.

Page Styles
By default, each page generated by ePublisher is associated with the default page
style defined in the stationery used by your ePublisher project. This means that
typically you do not need to specify a page style for pages when you generate
output.

For example, you may want to use one page style in your help system for all
concept and procedure topic pages, and another page style for all context-sensitive
window description topic pages in your help system. In this example, you can use
the default page style for all of your concept and procedure topic pages, and then
you can use a second custom page style defined in your stationery for all context-
sensitive window description topic pages in your help system.

Requirements for Specifying Custom Page
Styles for Pages in DITA Source Documents
You specify page styles for pages using <othermeta> elements. Before you
specify page styles for pages by using <othermeta> elements in your DITA
source documents, verify that your , templates, and stationery meet image style
requirements. The following table lists requirements for specifying page styles for
pages.

612 | Requirements for Specifying Custom Page Styles for Pages in DITA Source Documents

 Requirement

Output Format You can use ePublisher to specify page styles for
specific images for the following :

Dynamic HTML

Eclipse Help

eBook - ePub 2.0

Microsoft HTML Help

Oracle Help

Sun JavaHelp

WebWorks Help

WebWorks Reverb

WebWorks Reverb 2.0

Specifying Custom Page Styles for Pages in
DITA Source Documents
For more information about page styles and page style requirements, see “Page
Styles” and “Requirements for Specifying Custom Page Styles for Pages in DITA
Source Documents”.

To specify a Page Style for a topic in a DITA source document:

1. In your DITA source document, locate your topic’s meta information container
element.

2. For this element, you use the <othermeta> element to define the Page Style,
for example: <othermeta name="PageStyle" content="stylename"/>

3. Save the DITA document

4. Generate output for your target. For more information, see “Generating
Output”

Specifying Custom Page Styles for Pages in DITA Source Documents | 613

Steps for specifying custom page styles for pages in DITA may be different in other
versions of DITA.

Using Custom Graphic Styles for
Images in DITA Source Documents
This section explains how to use custom graphic styles for images in DITA source
documents. It also explains how graphic styles are assigned by default using
implicit image properties in the source content.

Assigning Graphic Styles
By default, each image generated by ePublisher is associated with one of several
possible graphic styles that all begin with Default. This means that typically you do
not need to specify a graphic style for images when you generate output.

For example, you may want to create a special style called “thumbnail” for handling
very large images. In this example, each graphic that you assign the “thumbnail”
style would have those defined properties. All other graphics would use one of the
Default graphic styles.

To use a custom graphic style for images in your DITA source documents:

1. In your DITA source document, locate the image/s that will be assigned the
custom graphic style.

Example: <image href="myimage.png" />

2. Within this image element, insert the outputclass attribute to assign the
custom graphic style to the image. Assign the outputclass value as the name
of the custom graphic style.

Example:

<image href="myimage.png" outputclass="CustomGraphicStyle" />

3. Define the graphic style in ePublisher Designer.

Default Graphic Styles for DITA
For DITA, ePublisher will automatically use predefined graphic styles based on the
properties of the graphic that is being generated. Below are the list of predefined
graphic styles that ePublisher uses for DITA images when no custom graphic style
has been assigned.

614 | Default Graphic Styles for DITA

Graphic Style Name Example DITA Code to Produce

Default
<image href="file.png"/>

<image placement="break" href="file.png"/>

DefaultLeft
<image placement="break" align="left"
 href="file.png"/>

DefaultCenter
<image placement="break" align="center"
 href="file.png"/>

DefaultRight
<image placement="break" align="right"
 href="file.png"/>

Default Scalefit
<image scalefit="yes" href="file.png"/>

Customizing TOC Entry in DITA
Use these steps to customize a TOC entry in your Reverb 2.0 output. Your DITA file
must have a nested heading structure for TOC Icons to appear.

1. Locate the <prolog> element in your DITA document. If your document
does not have a <prolog> element, you can insert one near the top of the
document under the opening <concept> , <task> , or <topic> element.
A <metadata> element must be nested within the <prolog> element. An
<othermeta> element must be nested withing the <metadata> element. The
end result should look like this:

2. The <othermeta> tag requires a name and content attribute. The value of the
name attribute will be “TOCEntryClass”. The value of the content attribute can
be whatever value you would like to use. The value of the content attribute
will become the name off the CSS class that you will customize in an override
of the *.scss files.

3. Save your DITA document.

4. Scan the document in ePublisher Designer.

Customizing TOC Entry in DITA | 615

5. Open the Style Designer.

6. Open Marker Styles.

7. Locate the Marker Type Option from the Options tab and set its value to
TOC Entry Class .

8. In this example, the assigned class for the Menu TOC entry will be the value
of the marker: folder_icon.

9. Add the following to a target override of _icons.scss . Notice how the CSS
class is the name of the value given in the Marker Text Window. In this
example we change the icon color and the icon of the TOC entry. You are
able to make other customizations such as adding a border, or changing the
background color.

 .folder_icon {

 > div > span > i {

 color: black;

 &:before {

 content: $folder_icon;

 }

 }

 }

10. Save your project and generate the output.

616 | Customizing TOC Entry in DITA

Customizing Table of Contents Icons
for Topics in DITA Source Documents
Using Legacy Outputs

Customizing Table of Contents Icons for Topics in DITA Source Documents Using Legacy Outputs | 617

This section explains how to customize the appearance of table of contents icons
for topics in Microsoft HTML Help, Sun JavaHelp, Oracle Help, and WebWorks help
systems. For information on how to customize Menu TOC entries in Reverb 2.0, see
“Customizing TOC Entry in DITA”.

Requirements for Specifying Custom
Table of Contents Icons in DITA Source
Documents

618 | Requirements for Specifying Custom Table of Contents Icons in DITA Source Documents

 Requirement

Output Format You can use ePublisher to specify custom table of
contents icons in the following :

Microsoft HTML Help

Oracle Help

Sun JavaHelp

WebWorks Help

Specifying Custom Table of Contents Icons
in DITA Source Documents
For more information about custom table of contents icons, see “Requirements for
Specifying Custom Table of Contents Icons in DITA Source Documents”.

To specify a Custom Table of Contents Icon for a topic in a DITA source
document:

1. In your DITA source document, locate your topic’s meta information container
element.

2. For this element, you use the <othermeta> element to define the Page Style,
for example: <othermeta name="TOCIcon" content="blue.png"/>.

Note: You can also use the <data> element, for example: <data
name="TOCIcon" value="blue.png"/>.

3. Save the DITA document

4. Generate output for your target. For more information, see “Generating
Output”

Steps for customizing table of contents icons for topics in DITA may be different in
other versions of DITA.

To specify a custom table of contents icon in a DITA source document

5. If you want to specify a custom table of contents icon for Microsoft
HTML Help, identify the number of the image you want to use for the table

Specifying Custom Table of Contents Icons in DITA Source Documents | 619

of contents image for the topic in the .hhp file for your Microsoft HTML Help
project by completing the following steps:

a. On the View menu, click Output Directory.

b. Open the ProjectName folder, where ProjectName is the name of your
project.

c. Open the ProjectName.hhp file where ProjectName is the name of your
project.

d. On the Contents tab, select a table of contents entry, and then click the
Pencil icon.

e. On the Advanced tab, in the Image index field, use the up and down
arrows to identify the table of contents image you want to use for the
topic.

f. Note the number of the image you want to use for the table of contents
image for the topic.

For example, if you want to use a question mark icon with a red star for
the table of contents icon for new topics, note that the number for this
icon is 10.

g. Close HTML Help Workshop.

6. If you want to specify a custom table of contents icon for Oracle Help
or Sun JavaHelp, create the graphic file for the custom table of contents icon
in .gif format. The default graphics used as Sun JavaHelp or Oracle Help
table of contents icons are 17 x 17 pixels. The custom graphics you create for
Sun JavaHelp or Oracle Help table of contents icons should also be 17 x 17
pixels. You can assign any name to the graphic files.

7. If you want to specify a custom table of content icon for WebWorks
help, create graphics files containing the collapsed and expanded versions
of the icons you want to use, then save the graphic files in .gif format. The
default graphics used as WebWorks Help table of contents icons are 17 x 17
pixels. The custom graphics you create for WebWorks Help table of contents
icons should also be 17 x 17 pixels. You can assign any name to the graphic
files.

8. Copy the graphic files you want to use as icons in the table of contents into
the following folder:

Note: If the folder does not exist, first create the folder using the specified
folder structure and then copy the graphic files you want to use as icons
into the folder. You do not need to perform this step when specifying
custom table of contents icons for Microsoft HTML Help.

620 | Specifying Custom Table of Contents Icons in DITA Source Documents

If you are generating Oracle Help, copy the graphic files you want to
use into the following folder:

ProjectName\Formats\Oracle Help\Files\images folder, where
ProjectName is the name of your project.

If you are generating Sun JavaHelp 1.1.3, copy the graphic files you
want to use into the following folder:

ProjectName\Formats\Sun Java Help 1.1.3\Files\images folder,
where ProjectName is the name of your project.

If you are generating Sun JavaHelp 2.0, copy the graphic files you
want to use into the following folder:

ProjectName\Formats\Sun Java Help 2.0\Files\images folder,
where ProjectName is the name of your project.

If you are generating WebWorks Help, in your ProjectName\Files
folder, where ProjectName is the name of your project, create a wwhelp
\images subfolder and copy the graphic files you want to use into this
folder. Your project file structure should be similar to the following
structure:

ProjectName\Files\wwhelp\images

Using markopen and markclose
This default.wwconfig modification specifies the start and a stop of an element.
This is especially useful for the implementation of the dropdown elements in
WebWorks Help 5 or WebWorks Reverb output. ePublisher has preconfigured items
such as the Defintion Term Elements, below is an example of the sample DITA
markup:
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE concept PUBLIC "-//OASIS//DTD DITA Concept//EN"
 "concept.dtd">
<concept id="simplelist" xml:lang="en-us">
 <title>Definition List</title>
 <conbody>
 <p>Definition list</p>
 <dl>
 <dlhead>
 <dthd>Image File View Selection</dthd>
 <ddhd>Resulting Information</ddhd>
 </dlhead>
 <dlentry>
 <dt>File Type</dt>

Using markopen and markclose | 621

 <dd>Image's file extension</dd>
 </dlentry>
 <dlentry>
 <dt>Image Class</dt>
 <dd>Image is raster, vector, metafile or 3D</dd>
 </dlentry>
 <dlentry>
 <dt>Number of pages</dt>
 <dd>Number of pages in the image</dd>
 </dlentry>
 <dlentry>
 <dt>Fonts</dt>
 <dd>Names of the fonts contained within a vector image</dd>
 </dlentry>
 </dl>
 <p>Content after the definition list.</p>
 </conbody>
</concept>

Without the use of the markclose in the default.wwconfig, the last paragraph
would be underneath the last Definition Term element. To make sure that no other
elements are inside the dropdown, you can assign markclosed to it by creating
an override to default.wwconfig located in [project directory]\Formats
\Adapters\xml\scripts\dita . For more information, refer to “Creating Format
Overrides” Below is an example of the modification needed to get the desired
output:
 <!-- Mark open/close on definition entries -->
 <!-- -->
 <Style match="//*[contains(@class, ' topic/dlentry ')]">
 <xsl:variable name="VarName" select="'Definition List Entry'" />
 <wwditaconfig:Head name="{$VarName}" markopen="{$VarName} Open"
 markclose="{$VarName} Close" />
 </Style>

Configuring markopen and markclose
entries for dropdowns in ePublisher
After you have created the override, you will still need to scan for the newly
created paragraph styles in ePublisher. Using our created override, you would see
something like this in the Style Designer:

622 | Configuring markopen and markclose entries for dropdowns in ePublisher

The output is set to disabled because the markopen just serves as a placeholder
text. In the closed entry, we set the Options to have the Dropdown to Break:

Configuring markopen and markclose entries for dropdowns in ePublisher | 623

We do this because that is how the content will emit, below is an example of the
sample output’s HTML that shows the paragraph styles as div classes:

Note that the Content after the definition list is now in a Body paragraph, so that it
does not become included in the dropdown.

Troubleshooting DITA issues
Occasionally there might be issues with the source documents you are using. Below
is a list linking to the wiki solutions website that will help you troubleshoot each
one:

624 | Troubleshoong DITA issues

Issue Solution

If you are having
issues with whitespace
when authoring with
FrameMaker using DITA

White space in FrameMaker

If you are having issues
with cross references
when authoring with
FrameMaker using DITA.
In particular, if you
are using the fm-xref
element, generated
output will not properly
update the generated
numbering. There is
a solution to fix this
behavior in FrameMaker.

DITA Cross References in FrameMaker

If you are receiving
a Cannot Duplicate
Document

Cannot duplicate document error message

If you are having
issues outputting cross
references from DITA

Cross Reference to same topic not working

If you are having issues
using a custom DTD

DTD Issues

If you are using an older
or newer version of the
OTK

Different versions of the OTK

If you are trying to use
conditional text

DITA conditions

If you are trying to
localize figure/table
paragraphs

Localization of the word "table" or "figure"

Troubleshoong DITA issues | 625

http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/WhitespaceRemoved
http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/CrossReferencesInFrame
http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/CrossReferencesInFrame
http://wiki.webworks.com/Permalinks/Solutions/Input/FrameMaker/CannotDuplicateDocument
http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/DTD%20issues
http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/DifferentVersionsOfOT
http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/DitaConditions
http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/FigureLocalization

Issue Solution

If you are getting a Java
error when generating

Java Error

If you are trying to put a
list in a table

List in a Table

If you are getting a
Resample WIFerror upon
generation

ResampleWIF Pipeline Error Blocks Generation of
Output

If your elements are not
being populated in the
style designer

DITA styles are not being read in the Style Designer

If your Overview topics
are showing up on the
same level as their
children

DITA Overview Topics Showing on Same Level as
Children Topics

626 | Troubleshoong DITA issues

http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/JavaError
http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/ListInATable
http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/ResampleWIFPipelineError
http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/ResampleWIFPipelineError
http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/StylesNotPopulated
http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/TopicsNotNestingProperly
http://wiki.webworks.com/Permalinks/Solutions/Input/DITA/TopicsNotNestingProperly

Markdown++ Output Format
Introduction
Setting up a Markdown++ Target in ePublisher
Basic Workflow for Adding and Converting Documents
Configuration Tasks for Markdown++
Markdown++ Tables and Layout

Introduction
The Markdown++ output format is a versatile output target designed as both
an output and an interoperable source format within ePublisher 2024.1. Unlike
traditional output formats, Markdown++ is tailored for integration with tools that
utilize Markdown, such as OpenAI's ChatGPT, GitHub, and others. It provides an
open format that streamlines transitions from proprietary authoring systems—
such as FrameMaker, Word, or DITA-XML—to Markdown, supporting transparent,
collaborative technical writing in Markdown-compatible systems.

Primary Uses:

• Migrating Content: Seamlessly migrate source files from FrameMaker,
Word, or DITA-XML into Markdown++.

• Interoperability: Facilitate content creation and maintenance in an
accessible Markdown format for enhanced collaboration.

• AI Compatibility: Create documentation directly accessible for AI systems,
including OpenAI’s ChatGPT.

Setting up a Markdown++ Target in
ePublisher
Setting up a Markdown++ output target in ePublisher is straightforward. Using
ePublisher’s Designer interface, you can convert existing source documents into
Markdown++ format and manage outputs with ease.

Steps to Set Up
1. Create a New Project or Use Existing Stationery:

◦ Open ePublisher Designer and either start a new project or select
existing Stationery.

◦ Markdown++ can be added as a target to an existing project, enabling
conversion from any compatible source format.

2. Add Markdown++ as an Output Format:

Seng up a Markdown++ Target in ePublisher | 627

◦ In your Stationery Design Project, choose Add Target.
◦ Select Markdown++ from the available output formats.

3. Scan Documents:

◦ After adding Markdown++ as a target, Scan All Documents to
ensure that all styles, variables, and elements from the source
documents are recognized and mapped for the Markdown++ output.

4. Generate Output:

◦ Once your documents are scanned and the target is configured, select
Generate Output. ePublisher will create Markdown++ files for each
source document, organized in a Markdown-friendly structure.

Basic Workflow for Adding and Converting
Documents
To add and convert documents to Markdown++:

• Add Source Documents: Use the Document Manager to add source files.
• Set Markdown++ as the Active Target: In the Manage Targets menu,

ensure Markdown++ is selected as the active target.
• Generate and Review Output: Use the Preview Window to check the

output structure.

Note: Markdown++ files generated by ePublisher are immediately ready for further
editing or maintenance, making it easy to shift from complex authoring tools to
Markdown-based workflows.

Workflow for Generating Markdown++ Output
Markdown++ enables round-tripping, where content can be converted from
Markdown back into Markdown++. This feature aids in standardizing code, styles,
and document structures across projects.

1. Prepare Source Files: Add your source files (from Word, FrameMaker, or
DITA-XML) to the project.

2. Select Markdown++ as Target: Specify Markdown++ as the active output
target in the Document Manager.

3. Generate Markdown++ Files: Review the generated files, which will
include Markdown files for each topic and structured elements that adhere to
Markdown++ specifications.

628 | Basic Workflow for Adding and Converng Documents

Configuration Tasks for Markdown++
Markdown++ in ePublisher offers powerful configuration options to enhance the
versatility and control of your Markdown output. By fine-tuning settings such as
the Markdown Syntax and Indentation Level properties for paragraph and
character styles, you can produce highly structured, readable, and stylistically
consistent Markdown documents. These configuration tasks empower technical
writers to create sophisticated layouts that retain compatibility with other Markdown
tools while leveraging Markdown++’s advanced capabilities. This section provides
guidance on these essential configuration tasks, helping you set up a seamless
Markdown workflow that meets both organizational standards and the demands of
complex technical documentation.

Configuring Each Paragraph and Character
Style's Markdown Syntax Property
The Markdown Syntax property in ePublisher's Markdown++ output format
allows you to control the specific Markdown representation for both paragraph and
character styles. While the default setting of Auto-Detect often yields acceptable
results, configuring each style’s Markdown syntax explicitly ensures consistent
formatting and improves output quality, especially for production workflows.

Setting the Paragraph Style's Markdown Syntax
Property

By default, the Markdown Syntax property for paragraph styles is set to Auto-
Detect, which infers the appropriate Markdown based on the source paragraph’s
structure and formatting. For greater control, especially when preparing final
documentation, you can specify an explicit Markdown syntax from the following
options:

• Title 1, Title 2, Heading 1, Heading 2, Heading 3, Heading 4, Heading
5, Heading 6: Corresponds to Markdown heading syntax (e.g., # , ## , etc.).
Use these options to explicitly set headers for different sections.

• Unordered List, Ordered List: Configures paragraphs to render as list
items, aligning with Markdown’s list syntax (- , or numbered).

• Blockquote: Formats paragraphs as blockquotes using the > character in
Markdown.

• Code Fence: Renders content within a fenced code block, using backticks
(```).

• None: Renders the content as a plain paragraph without additional
Markdown syntax, recommended when there is no specific formatting
required.

To configure a paragraph style’s Markdown Syntax property:

1. In ePublisher Designer, open the Style Designer for your project.

Configuraon Tasks for Markdown++ | 629

2. Select the Paragraph Style you wish to configure.

3. Locate the Markdown Syntax property.

4. Choose the desired setting from the dropdown list, or keep Auto-Detect if
unsure.

5. Save your settings to apply changes to the Markdown++ output.

Tip: If you’re uncertain of the specific Markdown syntax, set the property to None
for a plain paragraph appearance.

Setting the Character Style's Markdown Syntax
Property

The Markdown Syntax property for character styles defines inline formatting, such
as bold or italic text. The available options are:

• Bold: Formats text in bold (**text**).
• Italic: Formats text in italics (*text*).
• Strikethrough: Formats text with strikethrough (~~text~~).
• Code: Renders text within inline code format using backticks (`text`).
• None: Renders the text without additional Markdown syntax.

To configure a character style’s Markdown Syntax property:

1. In ePublisher Designer, open the Style Designer for your project.

2. Select the Character Style you wish to configure.

3. Locate the Markdown Syntax property.

4. Choose an explicit setting (e.g., Bold, Italic), or use Auto-Detect if unsure.

5. Save your settings to apply changes to the Markdown++ output.

Recommendation: For best results in production, avoid Auto-Detect and
explicitly configure each style’s Markdown Syntax property. This ensures clarity and
consistency across your Markdown++ documentation.

Configuring Each Paragraph Style's Markdown
Indentation Level Property

630 | Configuraon Tasks for Markdown++

The Indentation Level property in ePublisher’s Markdown++ output format
allows you to create nested paragraph structures, providing flexibility in organizing
content hierarchically. This property applies only to paragraph styles and controls
whether a paragraph nests under its preceding sibling paragraph—the paragraph
immediately before it in the document structure.

By default, Indentation Level is set to None, preventing any indentation relative
to the preceding paragraph. However, by configuring this property to a value of
1 or higher, you can create multi-level structures, such as nested lists, indented
blockquotes, or even complex outline formats.

How Indentation Works

When set to 1 or more, the Indentation Level property will nest the paragraph
one level beneath its preceding sibling, but only if:

1. The preceding sibling paragraph is configured as a container paragraph—
that is, a paragraph that allows nesting.

2. The preceding sibling’s Markdown Syntax property is set to one of the
following container-compatible formats:

◦ Unordered List
◦ Ordered List
◦ Blockquote

Note: A paragraph’s indentation level cannot exceed one level beneath the
preceding sibling, but it can nest as deep as the structure allows, based on the
indentation of previous paragraphs.

Setting Indentation Levels

To configure a paragraph style’s indentation level:

1. In ePublisher Designer, open the Style Designer for your project.

2. Select the Paragraph Style you wish to configure.

3. Locate the Indentation Level property.

4. Set the Indentation Level to the desired number (1 or greater) to enable
nesting.

5. Save your settings to apply changes to the Markdown++ output.

Example Use Cases

Configuraon Tasks for Markdown++ | 631

The Indentation Level property provides a powerful way to structure Markdown
content. Here are some examples:

• Nested Lists: Create lists within lists by setting the Indentation Level on
each successive list item style. This structure is ideal for outlines, multi-tiered
content, or Harvard-style lists.

• Blockquote Content Islands: Place an indented paragraph within a
blockquote, allowing for multiple paragraphs nested under a single quote.
This technique is effective for formatting testimonials, quoted sections, or
side content within a primary narrative.

The Indentation Level property, combined with other Markdown++ formatting
options, allows for sophisticated document structures that can elevate your
Markdown presentations.

Markdown++ Tables and Layout
Markdown++ extends traditional Markdown with advanced table support and
flexible layout options, enabling you to create professional, structured documents
with ease. The multi-line pipe table feature, a standout capability of Markdown
++, supports complex content within table cells, including multi-line text, images,
and rich formatting. This section introduces the configuration options available for
Markdown++ tables and provides insights on maximizing their layout potential.
By mastering these features, you can adapt Markdown++ to meet diverse
documentation needs, from data-rich tables to intricate, styled layouts, ensuring
seamless output across Markdown-aware tools and ePublisher’s full range of output
formats.

Introduction to Markdown++ Multi-line Pipe
Tables
One of the most powerful features of the Markdown++ output format is its
advanced support for tables, allowing technical authors to create professional,
complex table layouts within Markdown. Markdown++ offers two table-rendering
options under the Table Style setting, called Table Rendering:

• Pipes Multiline (default): Supports multi-line cell content, along with
embedded Markdown++ elements such as paragraphs, character styles,
images, and markers.

• Pipes: Traditional Markdown pipe tables, suitable for simpler tables or
datasets.

Using Multi-line Pipe Tables

The Pipes Multiline option is recommended for most users because it offers
complete support for multi-line content within cells. This setting preserves the

632 | Markdown++ Tables and Layout

readability and formatting of complex tables, allowing for robust styling and layout
configurations that are compatible with Markdown syntax.

Key Advantages of Multi-line Pipe Tables:

• Supports Advanced Content: Each cell can contain multi-line content,
including nested Markdown++ paragraphs, images, and markers.

• Compatibility with Markdown Tools: While fully compatible with most
Markdown-aware tools, tools that do not support Markdown++ will render
a basic version of the table without advanced styling. Multi-line content will
appear as individual rows in non-Markdown++ viewers, preserving basic
readability.

• Migration Capabilities: Use multi-line pipe tables to transfer complex
tables from FrameMaker, Word, or DITA-XML, retaining layout fidelity within
Markdown while making content more accessible and transparent.

Configuring Table Rendering

To configure the table rendering mode:

1. In ePublisher Designer, open the Style Designer for your project.

2. Select the Table Style you wish to configure.

3. Locate the Table Rendering option.

4. Choose either:

◦ Pipes Multiline: For full-featured tables that support multi-line and
styled content.

◦ Pipes: For simple, single-line tables with basic content.

5. Save your settings to apply changes to the Markdown++ output.

Benefits of Markdown++ Tables Across ePublisher
Outputs

Markdown++ tables can be styled with a Markdown++ style name, providing
consistent and rich styling options when generating other ePublisher outputs such
as PDF, WebWorks Reverb 2.0, or HTML. This allows authors to leverage Markdown
++’s Markdown-based transparency while still achieving high-quality output across
multiple formats.

For simpler tables focused on plain data representation, the Pipes option provides a
straightforward solution, ideal for basic data tables or scenarios where simplicity is
a priority.

Markdown++ Tables and Layout | 633

Markdown++’s multi-line pipe tables offer an unparalleled combination of
compatibility and fidelity, bridging the gap between traditional authoring tools
and the flexibility of Markdown. This unique feature empowers authors to retain
full control over table layouts, bringing Markdown-based tables to a professional
standard without sacrificing compatibility.

634 | Markdown++ Tables and Layout

WebWorks Reverb 2.0
Choosing a Skin
Using SASS To Customize Reverb Interface
Previewing Reverb Output
Delivering Reverb Output
Top-Level Groups in Reverb
Searching Output
Using Baggage Files
Searching with URL Method
TOC or Index with URL Method
Launching Context Sensitive Help for WebWorks Reverb 2.0
End-user requirements in WebWorks Reverb 2.0
Analytics Event Tracking in Reverb 2.0
‘Was This Helpful?’ Buttons
‘Was This Search Helpful?’ Buttons
Document Last Modified Date in Reverb
Drop-down Expand/Collapse All Toggle Button
Google Translate Button
Customizable Header and Footer
Custom TOC Menu Items
Customizing a Bullet Icon using Font Awesome
Using the url_maps.xml reference file

WebWorks Reverb 2.0 has many of the features found in WebWorks Help, and
goes one step further by providing high-performance load times combined with
optimal handling of the end-user’s device resolution. This means that users viewing
this type of output on a mobile device will be able to view the files in a fast, light-
weight manner that is optimal for lower resolutions and/or touch operated screens.
Furthermore, users on a more traditional higher-resolution computer monitor
will still have the same advantages offered by a complete online help system. In
other words, Reverb adapts to the traits of the device that is doing the reading of
the content. Additionally, the JavaScript code for WebWorks Reverb 2.0 has been
written in an inline-safe manner, which makes the output even more secure on the
web.

WebWorks Reverb 2.0 also offers a commenting and end-user feedback mechanism
using the Disqus commenting and discussion platform. This platform is a leading
solution on the Internet for comment handling and has no cost and provides
automatic hosting of your end-users comments in a way that is transparent and
effective.

Reverb also provides easy Google Analytics integration. Using Google Analytics in
your web files will be very easy to configure with this format.

If you have end-users that require localized help files, WebWorks Reverb 2.0
offers a seamless integration with the Google Translate Element. This feature is
very powerful and can be used instead of an expensive and burdensome set of
translated files and help volumes, which requires a separate set of content for each
language that you are supporting. Using WebWorks Reverb 2.0, you can now create

WebWorks Reverb 2.0 | 635

instantaneously localized help volumes without any translation requirements and
only one set of help files. For more information see “Google Translate Button”.

Choosing a Skin
You can select from a number of predefined skins that are available for the
WebWorks Reverb 2.0 output format. Each skin has been professionally designed
with assistance from both graphic designers and web developers so that your users
can get an ideal experience when browsing your documentation.

Note: If you plan on customizing the Reverb 2.0 toolbar or menu, we
recommend not using the skins to simplify future upgrades.

You may select among the following types of skins:

Neo

The default skin for WebWorks Reverb 2.0, Neo is the latest design for Reverb
output and was designed with current web aesthetics in mind. It features
a simplistic layout that looks great across many devices. This skin is very
versatile and well suited for most purposes.

Classic

636 | Choosing a Skin

Based off of the original WebWorks Reverb skin, Classic makes a return with
some modifications in WebWorks Reverb 2.0. This skin features a larger
toolbar, and gradients across the layout to produce a traditional help look and
feel. This skin is great for many purposes and offers existing users a similar
skin if they were previously using the Classic skin with WebWorks Reverb.

Corporate

The Corporate skin has been brought into the WebWorks Reverb 2.0 Format,
with an updated yet familiar look to it. This skin has a polished look and would
suit the needs of a high-profile technology company’s help set.

Choosing a Skin | 637

Metro

The Metro skin has returned in WebWorks Reverb 2.0. This skin was designed
in reference to the Windows 8.1 Metro interface design pattern. The Metro
skin is useful for users wanting migrate from WebWorks Reverb and have a
starting point that looks and feels like their previous Metro skin.

638 | Choosing a Skin

Social

The Social skin has been designed to provide a user experience most similar
to that of social networking websites. It provides a familiar interface that is
intuitive and casual enough to maximize your end-user participation.

Choosing a Skin | 639

Using SASS To Customize Reverb
Interface
The WebWorks Reverb 2.0 Format uses a technology called SASS to present the
user with a dynamic and responsive visual experience. To summarize, SASS is
useful because it lets the designer make use of devices that are typically not
available in the CSS language. SASS lets the user create and reuse variables across
their style sheet, as well as create functions and mixins to enable efficiency and
ease of access that other programming languages typically get to enjoy. Once a
SASS design has been created, it is then processed and transcompiled to CSS for
use in HTML layouts.

Because of the benefits of this, the WebWorks Reverb 2.0 design process is able to
be simple and robust. With a large collection of intuitively-named variables, users
are able to change settings like fonts and colors in one spot and watch it propagate
throughout the layout.

For those interested, SASS is well documented and WebWorks’ implementation of
this technology conforms with the standards implemented by the creator. Below are
a list of resources that may be useful in priming the user to interacting with SASS
for the first time.

SASS Basic Guide: https://sass-lang.com/guide

640 | Using SASS To Customize Reverb Interface

https://sass-lang.com/guide

SASS Reference: https://sass-lang.com/documentation/file.SASS_REFERENCE.html

CSS Tutorial: https://www.w3schools.com/Css/

Using Custom SASS files in Reverb Projects
The WebWorks Reverb 2.0 Format now allows you to use your own custom SASS
files for your projects which allows for even more customization To do this simply
add your SASS file as a Format or Target override.

Previewing Reverb Output
You can view the generated files directly in your browser, however, the social-media
functionality will not be present when viewing WebWorks Reverb 2.0 files in this
manner. In order to preview the social-media functionality, you will need to view the
files from a web server. With ePublisher, you can preview your WebWorks Reverb
2.0 files through a web server without having to configure a separate web server.

To preview the output, simply select the top level group in the Document
Manager. This will display an entry in the Output Explorer called: View Output .
Double-click on this entry and your help system will be opened in your default
browser connected to a web server built into ePublisher.

To fully preview WebWorks Reverb 2.0 using the built-in web server

1. Open your project and make sure that your WebWorks Reverb 2.0 target is
active and fully generated.

2. In the Document Manager select the top level group.

3. In the Output Explorer underneath Merge Output, double click View
Output.

4. A browser window will be opened using your default browser and a URL to a
locahost web address will be displayed. You can now browse the entire help
volume as if it were deployed on a dedicated web server.

Delivering Reverb Output
When you generate output for your project, ePublisher creates the Output folder
in your project folder, and then creates a folder in the Output folder for each
generated target. Then, ePublisher creates a folder named for the project itself in
the target folder. For example, when you generate output, ePublisher creates the
following folder structure:
<Project Area>\<Project Name>\Output\<Target Name>\<Project Name>

Delivering Reverb Output | 641

https://sass-lang.com/documentation/file.SASS_REFERENCE.html
https://www.w3schools.com/Css/

In this folder structure, <Project Area> is the name of the ePublisher component
you are using, such as ePublisher Express , <Project Name> is the name of your
ePublisher project, and <Target Name> is the name of your ePublisher target, such
as WebWorks Reverb . To deliver your WebWorks Reverb generated output, you
need to deliver all the files and subfolders in the <Target Name>\<Project Name>
folder.

The <Target Name>\<Project Name> folder contains the entry-point file,
index.html by default, which establishes the help set appearance. When the
user opens the entry-point file, the browser uses all the files in the <Target
Name>\<Project Name> folder to display the help, including all the topic files,
generated .css files, .pdf files, images, and WebWorks Reverb components.

Top-Level Groups in Reverb
Top-Level Groups are used for many organizational and functional purposes in
WebWorks Reverb 2.0. Once a help set is generated as a WebWorks Reverb 2.0
Output, Top-Level Groups are converted into a hierarchical structure to form the
Parcels that make up the Table of Contents, and the structure in the file system.
These Parcels can then be selected by the user when using Scoped Search to filter
search results, and also using the URL method to filter a help set into a subset that
contains a specific section of the entire set.

Searching Output
Use the following guide to assist users in finding terms in your help system:

Boolean

All search words and phrases have an implicit AND

Word Search

For example, searching: eggs bacon retuns all documents containing “eggs”
and “bacon”

Phrase Search

For example, searching “Good Morning” returns all documents containing
“good” and “morning”. However, the two words will not necessarily be
adjacent. In other words, at this time, phrase search returns the same results
as a multi-word search.

Using Baggage Files

642 | Using Baggage Files

Baggage files are PDF , HTML and ZIP files that are not part of the ePublisher
source files to be converted. ePublisher makes this determination by examining the
file extension. If the file extension matches one of the following listed below then
it’s considered a baggage file.

.pdf

.html

.htm

.shtml

.shtm

.xhtml

.xhtm

.zip

In order to a file to be processed as a Baggage file ePublisher must know about it.
This can be achieved in one of two ways.

(1) Any link from a source file being converted by ePublisher.

(2) Entry in the baggage file info list . For more information see
“Indexing Baggage Files and External URLs”.

Baggage Files will be packaged within your Output folder.

Note: In Target Settings > Links > Baggage File Target, specify whether you
want the link to open in the same browser window or in a different window.

Note: Set Target Settings > File Processing > Insert Mark of the Web
(MOTW) = Disabled. Otherwise, the link will fail in Internet Explorer on the
local file system. It will work in other browsers. It will work in IE on a web
server.

Indexing Baggage Files and External URLs
With WebWorks Reverb 2.0, files can be indexed to produce as search results with
the user’s help set. An indexable Baggage File in this context is any PDF or HTML
file that is linked from a source document that will be included in the generated
output for producing useful search results. For more detailed information on
baggage files, see “Targets”.

Note: In order to determine what baggage files are indexed, ePublisher examines
the file extension and if it matches one on the following then it will be
indexed.

.pdf

.html

.htm

.shtml

Indexing Baggage Files and External URLs | 643

.shtm

.xhtml

.xhtm

Baggage files are indexed in the same way that source documents are. Indexable
baggage files will be indexed as long as the Index baggage files Target Setting
is Enabled. External URLs will be downloaded & indexed as long as the Index
external links Target Setting is Enabled.

Using Tidy for Indexing HTML Pages
In order to index an HTML baggage file, Reverb creates an XHTML copy of the file
using Tidy (tool for cleaning up HTML files) to get a valid XML file that ePublisher
can read. As useful as Tidy is, there may be times where it does not recognize a
tag or generates something improperly. Tidy is configurable and can be adjusted to
convert the HTML in the proper way.

When Tidy does not recognize a tag in an HTML file, an error like the following is
produced:

line 33 column 3 - Error: <not_recognized_tag> is not recognized!

This error means that Tidy wasn’t able to generate an XHTML copy of the HTML file,
and therefore ePublisher won’t be able to index it as a baggage file. With the right
adjustments, this can be fixed.

Configuring Tidy To Recognize New Tags

1. Go to your Tidy directory under the installation directory in your local
computer: ...\WebWorks\ePublisher\<VERSION>\Helpers\tidy\

2. Create a Format override of this helper. To do this: in the sub-folder of your
project called: Formats , where the Format overrides live, create a new folder
called Helpers and copy the entire folder called tidy (from step 1) to this
new folder.

3. In the newly created tidy folder, open your config.txt file.

4. Depending on the kind of tag you want to add, you’ll have to uncomment line
8 or 10, or maybe both in the config.txt file.

5. Substitute the placeholder we put there and after the colon, with your new tag
name (for example: not_recognized_tag).

6. Save and close the file.

To know more about how to customize Tidy go to https://www.w3.org/People/
Raggett/tidy/.

644 | Using Tidy for Indexing HTML Pages

https://www.w3.org/People/Raggett/tidy/
https://www.w3.org/People/Raggett/tidy/

Assigning Relevance Weight to Your Source
Documents Styles
Search results are displayed in the Search tab when a user types a word to search
for. The search results are sorted by a relevancy ranking, which, in the case of
source documents, is calculated based on the Search relevance weight option
defined in your Paragraph and Marker Styles. By default, WebWorks Reverb 2.0
assigns relevance weight of 1 to all styles.

To Modify the Relevancy Ranking in Source Documents for Search Results

1. Open your project with ePublisher Designer.

2. Scan the document, to pull all styles into the Style Designer.

3. Open the Style Designer (F10 or View > Style Designer).

4. Select the style you want to assign a weight to (either in Paragraph Styles
or Marker Styles).

5. Open the Options window.

6. Change the Value of the Search relevance weight option to a decimal
number you determine or you can just ignore it (which is going to be 0),
meaning that the style is not going to be shown in your results.

Assigning Relevance Weight to Your HTML and
PDF Baggage Files
The search results are sorted by relevancy ranking, which, in case of HTML baggage
files, is calculated based on the scoring preference defined for the HTML tags in the
search_settings.xml file. By default, WebWorks Reverb 2.0 assigns relevancy
rankings based on where in a topic a particular item is found.

To Modify the Relevancy Ranking in Baggage Files for Search Results

1. Open your project with ePublisher Designer.

2. If you want to override the relevancy ranking for all WebWorks
Reverb 2.0 targets, create the Formats\WebWorks Reverb
2.0\Transforms folder in your projectname folder, where projectname is the
name of your ePublisher project.

3. If you want to override the relevancy ranking for one WebWorks
Reverb 2.0 target, create the Targets\WebWorks Reverb 2.0\Transforms
folder in your projectname folder, where projectname is the name of your
ePublisher project.

Assigning Relevance Weight to Your HTML and PDF Baggage Files | 645

4. Create a customization of your search_settings.xml file.

5. You’ll see the following block of code:

<Settings version="1.0" xmlns="urn:WebWorks-Settings-Schema">

<ScoringPrefs default-weight="0.05" pdf-weight="0.05">

<meta name="keywords" weight="1.0"/>

<meta name="description" weight="1.0"/>

<meta name="summary" weight="1.0"/>

<title weight="1.0"/>

<div class="myclass" weight="0.05"/>

<div weight="0.05"/>

<h1 weight="0.1"/>

<h2 weight="0.1"/>

<caption weight="0.1"/>

<h3 weight="0.1"/>

<th weight="0.1"/>

<h4 weight="0.1"/>

<h5 weight="0.1"/>

<h6 weight="0.1"/>

<h7 weight="0.1"/>

<p weight="0.05"/>

</ScoringPrefs>

</Settings>

6. Modify the weight attributes for any tags, such as h1 and h2 , you want to
change. You can also specify additional tags with or without class attributes
to further refine weights for your HTML baggage files. You may use decimal
values to modify the weight attribute value.

646 | Assigning Relevance Weight to Your HTML and PDF Baggage Files

Note: If you wish to set a default weight to tags that are not defined in this file
simply update the default-weight attribute value.

Note: You can change the default weight for all of the text in a PDF file by
changing the pdf-weight attribute value.

7. Save and close the search_settings.xml file.

8. Regenerate your project to review the changes.

Search Highlighting in Baggage Files
When you click on a result in your Search Results, you’ll open the associated source
document or baggage file. If what you are clicking is a baggage file and you want
to get the highlighting feature in your baggage file, you’ll have to copy next to
your file and then reference the reverb-search.js script in the <head> tag of
your HTML file. The reverb-search.js file lives in the installation directory at ...
\WebWorks\ePublisher\<VERSION>\Formats\WebWorks Reverb 2.0\API\reverb-
search.js .

To Reference the reverb-search.js File From Within Your HTML File (After
Copying the Script Next to Your HTML File)

1. Open your HTML document.

2. Locate the <head> tag.

3. Create the following line inside the <head> tag, pointing to the script you just
copied:

<script type="text/javascript" src=".../reverb-search.js"></
script>

4. Save your HTML file.

5. You can either Enable in your Target Settings under Baggage Files the
Copy baggage file dependents (this will copy the script to the Output
folder, see “Copy baggage file dependents”), or you can manually copy the file
to the Output directory, next to your baggage file.

Searching with URL Method
Search actions can be initiated via URL. For example you can go to the link here:

http://www.webworks.com/Documentation/Reverb/index.html#search/ePublisher

When clicked, the link above searches for the term “ePublisher”. This can be
changed to any search term, which will produce results accordingly.

Searching with URL Method | 647

http://www.webworks.com/Documentation/Reverb/index.html#search/ePublisher

TOC or Index with URL Method
You can toggle between the Table of Contents or the Index in the Reverb 2.0
output. For example, you can go to:

http://www.webworks.com/Documentation/Reverb/index.html#toc/

http://www.webworks.com/Documentation/DITA_1.2_Specification/
index.html#index/

Clicking on these links will bring up that part of the help as opposed to the regular
view.

Launching Context Sensitive Help for
WebWorks Reverb 2.0
WebWorks Reverb 2.0 allows you to open a specific topic. Context sensitive help is a
way to identify a topic by using a standard location combined with a topic identifier
(topic alias marker). For example, you can go to:

http://www.webworks.com/Documentation/Reverb/index.html#context/welcome/
whatsnew

You can also use just the topic name without the group context.

http://www.webworks.com/Documentation/Reverb/index.html#context/whatsnew

End-user requirements in WebWorks
Reverb 2.0
End-users must have JavaScript enabled in their browser. If not, the user will be
prompted with a localized message asking them to enable JavaScript to view the
content. Local deployments must have DOM storage enabled in the browser. Web
server deployments do not require DOM storage to be enabled. However, some
features will be disabled.

End-users must also consume a WebWorks Reverb 2.0 help set with a browser that
is not prior to Internet Explorer 11. Modern browsers are recommended for the best
possible experience. If an end-user tries to access a WebWorks Reverb 2.0 help set
with an unsupported browser, they will be presented with a message instructing
them that the browser they are using is not supported.

It is possible to customize these messages by overriding the proper Page Templates
(.asp).

648 | End-user requirements in WebWorks Reverb 2.0

Analytics Event Tracking in Reverb 2.0
In WebWorks Reverb 2.0, analytics has been expanded to anonymously track
several types of events that better allow you to understand the performance of your
content with your end-users. The updated analytics features include:

All page views are tracked with easy to read page names.

New categories and labels have been introduced to highlight high performing
and low performing pages in your reports. For more information, see “‘Was
This Helpful?’ Buttons”.

All Reverb interface components, such as toolbar buttons and menu items
have their interactions tracked as events.

All search queries, inputs, cancellations, and search result views are tracked
and recorded.

Search page results including the Was This Helpful? buttons are tracked
for easy reporting. For more information, see “‘Was This Search Helpful?’
Buttons”.

‘Was This Helpful?’ Buttons
The Was This Helpful? buttons feature allows you to provide your end-uses with
the ability to give anonymous feedback about their experience. The Was This
Helpful? buttons feature can be used to record feedback on the current page
being viewed. A Google Tracking ID is required for these buttons to record analytic
events.

‘Was This Helpful?’ Buons | 649

‘Was This Search Helpful?’ Buttons
The Was This Search Helpful? buttons feature allows you to provide your end-
uses with the ability to give anonymous feedback about their search results. The
Was This Search Helpful? buttons feature can be used to record feedback and
search queries of the search results page. A Google Tracking ID is required for these
buttons to record analytic events.

650 | ‘Was This Search Helpful?’ Buons

Document Last Modified Date in Reverb
In WebWorks Reverb 2.0, there is a target setting that allows you to display the
Last modified date of each document in your generated output pages. If you
enable this target setting, your end-users will be able to see the date of that last
time the document that generated a particular page was edited. If you examine the
image below, you can see the date string in a light colored gray.

Document Last Modified Date in Reverb | 651

Drop-down Expand/Collapse All Toggle
Button
In WebWorks Reverb 2.0, you can centrally control all of the drop-down paragraphs
on a page using the Dropdown Expand/Collapse Toggle button. It is enabled by
default, but can be disabled in the target settings. The image below highlights the
toggle button.

652 | Drop-down Expand/Collapse All Toggle Buon

Google Translate Button
In WebWorks Reverb 2.0, you can use the target settings to enable a Google
Translate button to be part of your toolbar. When your end-users select this toolbar
button, all of the text in the content area will be translated using Google’s Translate
web service. The navigation menus however are not translated, just the content
area. This feature will only be displayed when the output is deployed to a web
server, which is a requirement of the Google Translate web service.

Note: As an added benefit, Reverb 2.0 is smart enough to know when to
display the Google Translate button and when to suppress it. By not
displaying the Google Translate button when loading directly from a file

Google Translate Buon | 653

system (i.e. as packaged help), you will need only one configuration
(target) to support both your web deployment and your packaged help
deployments.

Customizable Header and Footer
In WebWorks Reverb 2.0, using target settings, a customizable Header and Footer
can be enabled. Each of these parts uses its own ASP file that can be customized.
In addition, you can specify that company information be displayed or another logo
image of your choosing.

The following image demonstrates a custom header above the Reverb 2.0 toolbar.

654 | Customizable Header and Footer

Custom TOC Menu Items
In WebWorks Reverb 2.0, you can customize specific TOC (table of contents) Menu
items based the target paragraph that the item links to. For example, if a TOC item
links to a paragraph that contains a marker assigned to the ePublisher marker type
called: TOC Entry class, then that TOC item will inherit the value of the marker as a
CSS class name. Using the class name, you can completely change the appearance

Custom TOC Menu Items | 655

of the TOC item in the Menu. See the image below for an example of a TOC Menu
item that has a different icon and blue borders.

Customizing a Bullet Icon using Font
Awesome
It is possible to use a Font Awesome icon for the bullet in a list. In order to do this,
take the following steps:

1. In the Style Designer, create a new Character Style that will represent the
Font Awesome bullet.

656 | Customizing a Bullet Icon using Font Awesome

2. In the Character Style Options, under Additional CSS Classes, add fa, a
whitespace, and the class of the icon you want to use. (For example: fa fa-
warning) For a reference of all the icons available, refer to the Font Awesome
Cheatsheet at:
https://fontawesome.com/v5/cheatsheet/free

3. Select the Paragraph Style that is to have the bullet added.

4. In the Bullet Properties area for the Paragraph Style, under the Property called
Character Style, select the name of the Character Style that has the Font
Awesome icon applied to it.

5. (Optional) If the Paragraph Style was initially an unordered list in the source
document, it is also necessary to add a single whitespace to the Bullet
Property called Text so the default bullet does not emit from the source
document.

Using the url_maps.xml reference file
In the Output Explorer, the url_maps.xml file can be used to view the links available
in an output helpset. When opened in a text editor, this file contains all of the
available links in the output. This can be useful for web designers or anyone
needing a reference to use these links externally, such as on a website or a custom
page. The file can also be used for sitemap generation if you know how to work with
XML.

The TopicMap element contains all of the Topic Alias Links in the output. The
PageMap element contains all of the Page URL links available in the output.

Using the url_maps.xml reference file | 657

PDF - XSL-FO
Why use PDF - XSL-FO output format?
PDF-XSL-FO Page Regions
PDF XSL-FO Font Inclusions

With ePublisher, you can quickly and easily create PDF output from Adobe
FrameMaker, Microsoft Word, and DITA-XML source documents. Based on your
requirements, you can either create PDF output so that it mirrors the styling and
layout of your source document’s pre-configured settings (using the PDF output
format), or you can choose to manage all these settings through ePublisher using
the PDF - XSL-FO output format.

Why use PDF - XSL-FO output format?
If you want to keep your original document’s style and layout settings, then you will
want to configure ePublisher to use the PDF output format. However, if you want
to directly control your document’s style and layout settings, then you will need to
configure ePublisher to use the PDF - XSL-FO output format.

The PDF - XSL-FO format creates a PDF file for each of your source files, a
single PDF file containing all source files within a group, or both. PDF - XSL-FO is
recommended for producing a PDF output file that conforms to the settings you
configure in ePublisher. These settings can be controlled independent of your source
file’s authoring environment or they can be used to work in conjunction with your
source file’s paragraph and character level settings. This format allows you to create
and deliver PDF files that conform to the style and layout settings that you can
centrally control in ePublisher. This format may be especially useful when mixing
documents from different input formats or different layouts and/or styles.

PDF-XSL-FO Page Regions
When creating a PDF-XSL-FO output, it can be useful to understand the regions of
the page when styling a PDF document.

658 | PDF-XSL-FO Page Regions

The numbered regions corresponding with the list items below, which can be
modified in the Page Styles section of the Style Designer.

1. Master Page Margins (Top, Left, Right, Bottom).

2. Master Page: Before Region - This is the region where a header will be
rendered

PDF-XSL-FO Page Regions | 659

3. Master Page: After Region - This is the region where a footer will be rendered

4. Master Page: Body Region - This is where the content of the page is rendered

5. Master Page: Start Region

6. Master Page: End Region

Note: It should be noted that the Start and End regions are actually rectangular
regions that span from the top to the bottom of the page. In this image the
Body Region is covering the middle of the Start and End regions, giving the
appearance of two small squares in the corners of the document.

The Extent property can be used to set the sizing of these different regions, with
the exceptions of the Master Page margins and the Body Region.

PDF XSL-FO Font Inclusions
To ensure non-standard fonts are included into your generated PDF, you may need
to modify the Apache FOP configuration files, apache-fop-2.6.xconf .

To do this, you must either create a Format or Target Override, Create the override
in one of these places, for more information on overrides, Depending on how you
prefer to set up your project, you will create one of the following:

Per target:

Targets\<target name>\Helpers\apache-fop-2.6.xconf Targets\<target
name>\Helpers\apache-fop-2.6.xconf

Per format:

Formats\<format name>\Helpers\apache-fop-2.6.xconf Formats\<format
name>\Helpers\apache-fop-2.6.xconf

Project-wide:

Formats\Helpers\apache-fop-2.6.xconf Formats\Helpers\apache-
fop-2.6.xconf

Once the override has been created, open the file in a text editor of your choosing,
and you will see the following markup:
<fonts>
 <!-- Example -->
 <!--
 <font kerning="yes" embed-url="file:///C:/Windows/Fonts/
REFSAN.TTF">

660 | PDF XSL-FO Font Inclusions

 <font-triplet name="Microsoft Sans Serif" style="normal"
 weight="normal" />

 <font kerning="yes" embed-url="file:///C:/Windows/Fonts/
REFSAN.TTF">
 <font-triplet name="Microsoft Sans Serif" style="italic"
 weight="normal" />

 -->
 <!-- automatically detect operating system installed fonts -->
 <auto-detect/>
</fonts>

Modify the lines in between the comments to reflect the font you are wanting and
the directory path in which it is located. Save this file, and now you can add them
by using ePublisher Designer.

To add fonts in ePublisher Designer

1. In ePublisher Designer, select the View -> Style Designer menu

2. With the Paragraph Styles visible, select the [Prototype] style

3. On the Properties tab, select Font then click the icon for Family

4. If your fonts are not listed, then manually add the names of your desired font
using the Custom Font Family text box

5. Select OK

PDF XSL-FO Font Inclusions | 661

Dynamic HTML
Dynamic HTML Output Viewer
Delivering Dynamic HTML

There are several HTML-related standards, such a HTML 3.2, HTML 4, and XHTML
1.0. HTML 4 is also referred to as Dynamic HTML (DHTML). In addition, there
are multiple browsers and device types that can display content based on these
standards. With all these variables, getting the content you need formatted the way
you need it for your specific environment and requirements is critical. ePublisher
provides the Dynamic HTML output format to allow you to generate the HTML-
based output you need. You can also customize this formatting to meet your
requirements.

You can use the Dynamic HTML format to produce XHTML output that conforms to
XHTML 1.0 standards and uses cascading style sheets that conform to the CSS1
standard. XHTML became a W3C recommendation in 2000. Dynamic HTML is
recommended to produce output that you will publish on a Web server and provide
to users running a Web browser, such as Firefox or Internet Explorer. You can also
customize the Dynamic HTML output format to create a powerful, full-featured web
site.

As the standards evolve, browsers and device platforms adjust to support the
newer standards. With mobile devices, additional platforms and browsers have been
introduced, which can complicate the decision about which standards your content
can use.

The Dynamic HTML output format allow you to generate HTML content to integrate
into your Web site. You can also create content for HTML-based release notes and
content for hand-held devices, such as PDAs. These output formats provide the
flexibility and control you need, with the ability to add a basic table of contents,
index, and browse navigation. You decide whether to use all the aspects of DHTML
and XHTML in the Dynamic HTML output format, or to use simplified HTML to
support a wide range of browsers and platforms, including mobile devices and
PDAs.

The Dynamic HTML output format produces HTML content that conforms to the
HTML 4 and XHTML 1.0 standards, and uses cascading style sheets that conform
to the CSS1 standard. Dynamic HTML (DHTML) is a collection of technologies
developed to make HTML more dynamic and interactive. DHTML uses the following
technologies to give the content developer control over the appearance and
behavior of HTML elements in a browser window:

Static markup language (HTML 4)

HTML 4 extends HTML with mechanisms for style sheets, scripting, frames,
embedding objects, improved support for right-to-left and mixed-direction

662 | Dynamic HTML

text, richer tables, enhancements to forms, and improved accessibility for
people with disabilities.

Presentation definition language (cascading style sheets)

Cascading style sheets (CSS) provide style definitions, such as fonts, colors,
spacing, and positioning to HTML documents.

Client-side scripting language, such as JavaScript

JavaScript and other scripting languages provide compact, object-based
scripting support for developing client and server Web applications.

Document Object Model

The Document Object Model provides a standard that allows programs and
scripts to dynamically access, process, and modify the content of a page.

XHTML is an abbreviation for Extensible Hypertext Markup Language. XHTML 1.0
is similar to HTML 4, with tagging rules that conform to the requirements of XML.
If you modify the page templates or styles in a Dynamic HTML project, make
sure your changes conform to the XHTML requirements for future maintenance.
However, as long as you create valid HTML, most current browsers can correctly
display your output.

To determine whether the Dynamic HTML output format is what you need, review
the following considerations:

If all your users have current browsers and their viewing environment is not
restricted, use the Dynamic HTML output format.

If all your users have current browsers and you want to provide enhanced
navigation controls, such as an expand/collapse table of contents, full text
search, and related topics buttons, consider using the WebWorks Help or
WebWorks Reverb output format.

Dynamic HTML Output Viewer
Dynamic HTML does not provide a multi-pane viewer. This output format is
displayed in a browser. By default, ePublisher adds a navigation bar at the top of
the files it creates. ePublisher also creates a table of contents page and an index
page.

Dynamic HTML Output Viewer | 663

You can specify whether to include the navigation bar at the top or the bottom of
the page. You can also add company information to the page, and define the table
of contents and index pages.

Delivering Dynamic HTML
When you generate output for your project, ePublisher creates the Output folder
in your project folder, and then creates a folder in the Output folder for each
generated target. Then, ePublisher creates a folder named for the project itself in
the target folder. For example, when you generate output, ePublisher creates the
following folder structure:
<Project Area>\<Project Name>\Output\<Target Name>\<Project Name>

In this folder structure, <Project Area> is the name of the ePublisher component
you are using, such as ePublisher Express , <Project Name> is the name of your
ePublisher project, and <Target Name> is the name of your ePublisher target, such
as Dynamic HTML . To deliver your Dynamic HTML generated output, you need to
deliver all the files and subfolders in the <Target Name>\<Project Name> folder.

The <Target Name>\<Project Name> folder contains the entry-point file, toc.html
by default, which displays the table of contents. When the user opens the entry-

664 | Delivering Dynamic HTML

point file, the browser uses all the files in the <Target Name>\<Project Name>
folder to display the help, including the topic files and images.

Delivering Dynamic HTML | 665

ePUB
ePUB Platforms
ePUB Considerations

ePublisher can deliver content to your mobile users and eReader platforms with the
IDPF ePUB 2.0 eBook standard. This format makes sense for long form content or
reference materials which are not suitable for web delivery. eBooks enable users
to access content offline, track their reading progress, and otherwise enjoy the
benefits of traditional press books.

ePUB Platforms
ePUB eBooks can be accessed and viewed on a variety of desktop and mobile
devices. To ensure maximum usability, this release was tested against the following
ePUB readers:

Adobe Digital Editions
http://www.adobe.com/products/digitaleditions/
Microsoft Windows

Apple iBooks
http://itunes.apple.com/us/app/ibooks/id364709193?mt=8
Apple iPad, Apple iPhone, Apple iPod Touch

Lexcycle Stanza (Apple iPad, iPhone, and iPod Touch)
http://www.lexcycle.com/iphone
Apple iPad, Apple iPhone, Apple iPod Touch, Microsoft Windows (Beta)

In addition UX tests performed on these eBook platforms, generated output was
validated using the publicly available EpubCheck tool during the development cycle.

EpubCheck 1.0.5
http://code.google.com/p/epubcheck/

By closely tracking the ePUB standard and conducting eReader specific tests,
ePublisher attempts to deliver high quality eBooks across a wide range of ePUB
capable platforms.

ePUB Considerations
The ePUB standard specifies a container and page definition syntax. ePUB eBook
readers will render this information as best they can given available screen real-
estate and platform considerations. Users who wish to maximize the ePUB reading
experiences for a broad audience should pay careful attention to ePUB specific
details.

666 | ePUB Consideraons

http://www.adobe.com/products/digitaleditions/
http://itunes.apple.com/us/app/ibooks/id364709193?mt=8
http://www.lexcycle.com/iphone
http://code.google.com/p/epubcheck/

Meta Data
You can specific standard ePUB eBook meta data in the Target Settings dialog.

Author Name

Author Name (File As)

Book Title and ID
All ePUB books contain a unique identifier. ePublisher will synthesize a unique ID for
your book, though you may require explicit control over this value. You can specify
an explicit ID via the Merge Settings dialog with the Group Context control. Further,
localized book titles can be specified in the Merge Settings dialog as well.

Long Content
The ePUB standard recommends breaking long content into smaller chunks to speed
display rendering and reduce memory requirements on mobile devices. This can be
accomplished with ePublisher's standard page break controls. You may specify a
page break priority for paragraphs and tables in the Options panel of the ePublisher
Style Designer.

Page Styles
Content page styles can be controlled using ePublisher's standard page style
support. For the ePUB format, ePublisher also allows users to select a page style
for use with the cover and index pages. These styles can be specified in the Target
Settings dialog under the Cover and Index sections.

Tables
By default, ePublisher’s ePUB format renders tables using paragraph markup. Users
may enable true table markup via the table styles Options panel in the ePublisher
Style Designer. Reasons for rendering tables using paragraph markup include:

All tested eBook readers lacked the capability to view tables larger than the
available screen space.

The Apple iBooks reader, prior to version 2.0, fails to render images inside of
table cells.
ePublisher emits conversion warnings when an image is rendered inside a
table cell.

Tables can be used effectively inside of ePUB eBooks, though authors should be
aware of the inherent space limitations associated with mobile reading devices. The

Tables | 667

addition of proportional (percentage based) table cell widths, used in conjunction
with a table width set to 100%, may provide users with sufficient control over table
rendering behavior. The behavior can be specified in the Options tab for table styles
in the ePublisher Style Designer.

Cover
ePUB books support the display of a cover page or image. This format allows users
to select a cover image via the Target Settings dialog. Additionally, users may
customize the cover page by creating overrides for the Pages\Cover.asp page
template.

When creating your cover page and image, keep the following points in mind:

eBook icons

Adobe Digital Editions uses the cover page for the eBook icon

Apple iBooks and Lexcycle Stanza use the cover image for the eBook
icon

ePublisher will embed the selected cover image into the cover page to
ensure correct operation across platforms

Cover image limitations

Certain readers, such as the Apple iBook reader, prefer images with a
3x4 aspect ratio. Otherwise, the eBook will not display a custom icon in
iTunes.

Certain readers, such as the Apple iBook reader, prefer 600x800 pixel
images. Otherwise, the eBook will not display a custom icon in iTunes.

Syncing with Apple iPad
1. Ensure iTunes 9.1 or greater is installed on your system. Ensure the Apple

iBooks application is installed on your iPad.

2. Launch iTunes.

3. Click “Add File to Library” and select your generated ePUB eBook.

4. Attach your iPad.

5. Sync your iPad normally.

6. When synchornization completes, disconnect the iPad from your computer.

7. Launch the iBooks application on the iPad.

668 | Syncing with Apple iPad

8. Within iBooks, you will see your new book on the virtual bookshelf.

These instructions also apply when adding ePUB eBooks to Apple iPhone and Apple
iPod Touch devices.

Syncing with Apple iPad | 669

Eclipse Help
Eclipse Help Viewer
Delivering Eclipse Help

To deliver help on multiple platforms, you need a solution that runs on all those
platforms. This solution helps you avoid complications of each platform and allows
you to deliver one solution that meets the needs on all your platforms. This
common solution can save development time and effort.

ePublisher supports several Java-based help output formats, such as Eclipse
Help, Oracle Help, and Sun JavaHelp, that provide a common solution for multiple
platforms without JavaScript support. WebWorks Help and WebWorks Reverb
also provide a cross-platform solution, but it requires JavaScript support. If you
are delivering a Java-based application, or if your environment does not support
JavaScript, a Java-based help solution can help you deliver your help content.

The Eclipse Help format uses a Java-based delivery environment to provide a
comprehensive help viewer. Eclipse Help delivers content in HTML files and uses an
XML-based table of contents. Once you install the Eclipse platform, you can view
Eclipse Help files. ePublisher provides a standalone viewer for Eclipse Help so you
can develop and view your Eclipse Help.

Eclipse Help requires the Eclipse integrated development environment (IDE), which
makes it a good output format choice for products that already install and use the
IDE. For more information about Eclipse Help, see the Eclipse SDK documentation
at: help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/
ua_help.htm.

You can also use Eclipse Help to deliver an Infocenter. You can use all the supported
input formats to develop content for an Infocenter. Then, ePublisher allows you to
publish that content in the required format. For more information about creating
an Infocenter, see dita.xml.org/wiki/setting-up-the-eclipse-help-infocenter-for-
publishing-dita-content.

Eclipse Help Viewer
The Eclipse Help viewer uses an embedded Apache Tomcat server. Similar to other
help viewers, the Eclipse Help viewer provides a navigation pane with multiple tabs
and a topic pane.

670 | Eclipse Help Viewer

http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/ua_help.htm
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/ua_help.htm
http://dita.xml.org/wiki/setting-up-the-eclipse-help-infocenter-for-publishing-dita-content
http://dita.xml.org/wiki/setting-up-the-eclipse-help-infocenter-for-publishing-dita-content

Delivering Eclipse Help
You can provide a help system in Eclipse Help format either as a collection of
individual files or in a single, compressed Java archive .jar file. A .jar file, similar
to a .zip file, compresses and stores a collection of files.

When you generate output for your project, ePublisher creates the Output folder
in your project folder, and then creates a folder in the Output folder for each
generated target. Then, ePublisher creates a folder named for the project itself in
the target folder. For example, when you generate output, ePublisher creates the
following folder structure:
<Project Area>\<Project Name>\Output\<Target Name>\<Project Name>

In this folder structure, <Project Area> is the name of the ePublisher component
you are using, such as ePublisher Express , <Project Name> is the name of your
ePublisher project, and targetname is the name of your ePublisher target, such
as Eclipse Help . To deliver your Eclipse Help generated output, you can provide
the complete contents of the <Target Name>\<Project Name> folder to your Java
application developers, and they can determine whether to deliver the .jar file or
the individual files to application users.

Delivering Eclipse Help | 671

HTML Help
Benefits of Microsoft HTML Help
Restrictions and Requirements for Microsoft HTML Help
HTML Help Viewer
Topic Only View in HTML Help
HTML Help Workshop
Delivering HTML Help

Delivering help information in a consistent manner on Windows computers was an
important concern for Microsoft. Initially, Microsoft provided the WinHelp format for
help content delivery. As the Windows platform advanced, Microsoft introduced the
Microsoft HTML Help format. To help authors deliver content through the HTML Help
Viewer provided with the Windows platform, Microsoft provides a help compiler and
toolkit, HTML Help Workshop, that allows you to build Microsoft HTML Help .chm
files.

The Microsoft HTML Help output format provides a standard help format for
products on computers running the Windows operating system. The Microsoft
HTML Help format delivers a single, compiled file that includes multiple source files
compressed into one .chm file. Unlike the RTF-based Microsoft WinHelp format,
the Microsoft HTML Help format is based on HTML/XHTML. Microsoft HTML Help is
recommended to produce online help for 32-bit applications that run on a computer
running Microsoft Windows 95 or later, including Windows Vista:

Microsoft HTML Help provides a comprehensive help format, including a table of
contents, index, full-text search, and favorites in one integrated viewer window.
The HTML Help Viewer uses standard Internet Explorer components and supports
many Web technologies, such as HTML, ActiveX, Java, JavaScript, JScript and other
scripting languages, and the Web image formats, such as .gif , .jpg , and .png .

In HTML Help, writers list a collection of source files in a help project .hhp file
with other project-related settings. The writers then use HTML Help Workshop to
compile the help and create the .chm file. During compilation, HTML Help Workshop
uses the help project .hhp file to determine how HTML topic files, image files,
contents .hhc files, index .hhk files, and any other elements appear in the single,
compressed help file. ePublisher automates this process and integrates it into help
generation.

Benefits of Microsoft HTML Help
The Microsoft HTML Help output format generates output files that conform to the
HTML 4 and XHTML 1.0 standards. The content uses Cascading Style Sheets that
conform to the CSS1 standard. This output format produces all the files required to
create the Microsoft HTML Help .chm file.

ePublisher streamlines the help generation process. ePublisher uses your Stationery
and project settings to transform your source documents to the input files needed

672 | Benefits of Microso HTML Help

by Microsoft HTML Help Workshop. Then, ePublisher uses the help compiler to
build the help project and create the .chm file. This integrated process simplifies
the authoring environment, but it also creates all the underlying files to help you
customize the process, if needed.

Microsoft HTML Help provides several important benefits:

You have a single, compressed .chm output file to deliver.

Your audience can read your content in the standard Windows HTML Help
Viewer.

The HTML Help Viewer provides a powerful search engine that supports partial
words, synonym searching, and other advanced search options.

Restrictions and Requirements for
Microsoft HTML Help
The Microsoft HTML Help output format is recommended to produce standard help
for 32-bit applications that run on a computer running Windows 95 or later. For
more information, see “Requirements”. Review the following considerations when
deciding whether to deliver HTML Help:

Your audience cannot read the .chm file over a network or over the Web. The
.chm file must be installed on the local computer.

On some systems, CHMs cannot be viewed if they were generated in an
ePublisher project that is located on a network drive. To resolve the problem,
move the entire ePublisher project to a local drive, on the same computer
where ePublisher is installed. It is OK to keep the source documents on a
network drive.

Some security settings can interfere with .chm file use.

A .chm file supports many Web technologies, such as scripting languages,
which also allow them to contain and transport viruses and security risks.
For this reason, many email systems remove .chm files when attached to an
email message.

HTML Help Viewer
When you open a Microsoft HTML Help .chm file, Windows displays the content
in the Help Viewer window. Microsoft HTML Help Workshop allows the writer to
compile and customize the .chm file. ePublisher uses your source documents to
generate all the files needed to compile the .chm file.

HTML Help Viewer | 673

By default, the tripane HTML Help Viewer includes a table of contents, index, full-
text search, and favorites in one, integrated viewer window. You can customize
this viewer window. The user also has options to show or hide the navigation pane,
based on the options you defined.

The default tripane view includes the following panes:

The toolbar pane displays buttons that provide additional functions and
navigation options to the user. HTML Help Workshop allows you to select
which buttons to include in your help file.

The navigation pane displays tabs to access the table of contents, index,
full-text search, and favorite topics. HTML Help Workshop allows you to select
which tabs to include in your help file.

The topic pane displays the information contained in the source documents.

Toolbar Pane in HTML Help
The toolbar pane provides several buttons that provide additional functions, such as
returning to the previously viewed topic, showing and hiding the navigation pane,
and printing a help topic. The writer can customize which buttons are included

674 | Toolbar Pane in HTML Help

in the toolbar pane through HTML Help Workshop. The following table lists the
supported buttons.

Toolbar Pane in HTML Help | 675

Button Description

Hide/Show Opens or closes the Navigation pane.

Back Displays the previously viewed topic like the Back
button in a browser.

Forward Displays the previously viewed topic if the user clicked
the Back button. This button functions like the Forward
button in a browser.

Stop Stops retrieving the file information and contents.

Refresh Updates the topic that is currently displayed in the topic
pane.

Home Displays the default topic you defined for the help file.

Options Opens a menu that provides many commands, such
as Home, Show, Back, Stop, Refresh, Print, Search
Highlight On/Off, and Internet Options. This menu also
includes commands for all the buttons included on help
windows.

Print From the Contents tab, this button allows the user to
print the selected topic, and optionally all subtopics.
From the Index or Search tab, opens the Print dialog
box to print the current topic.

Locate Displays in the table of contents the location of the
current topic is not listed in the table of contents, this
command will not work.

Jump 1 Jumps to an author-designated Web page or help topic.

Jump 2 Jumps to an author-designated Web page or help topic.

676 | Toolbar Pane in HTML Help

Navigation Pane in HTML Help
By default, the navigation pane provides the following tabs, which you can include
or exclude from your help output through HTML Help Workshop:

Contents tab

Displays the table of contents in the form of a expand/collapse tree view. The
table of contents includes all paragraph styles that you assigned a TOC level
in Style Designer. When the user selects an entry in the Contents tab, the
information from that topic is displayed in the topic pane. You can customize
the icons used for specific topics within the table of contents.

Index tab

Displays an alphabetical list of keywords associated with topics in the source
documents. Writers use their source document authoring tool to create
standard index markers or field codes that define these keywords in their
source documents.

Search tab

Provides a powerful full-text search feature with several advanced search
options. The user can type a search string and then select Display to view a
list of topics that contain the word or phrase specified.

Favorites tab

Displays a list of topics in the help that the user has added to his or her
personal list of favorites. This tab allows users to bookmark help topics they
often use or want to quickly find in the future. When the user selects a topic
on this tab, the information from that topic is displayed in the topic pane.

Topic Pane in HTML Help
The output pages generated from your source documents are displayed in the topic
pane. When a user selects a topic on any of the tabs in the navigation page, the
content of that topic is displayed in the topic pane.

Topic Only View in HTML Help
The show/hide button in the toolbar pane allows users to add or remove the
navigation pane. The writer can also define a window in HTML Help Workshop
that does not include the navigation pane, or with the navigation pane hidden by
default. Without the navigation pane, more screen area is available to display the
help topic content, or for the application itself. However, the navigation pane helps

Topic Only View in HTML Help | 677

users view where they are in the organization of topics, and quickly browse and
access other topics in the table of contents.

HTML Help Workshop
HTML Help Workshop is a help authoring tool that allows you to create and manage
Microsoft HTML Help projects and their related files. You can use this tool, which
is installed with ePublisher, to further customize your help, such as changing the
appearance of the Contents and Search tabs. You can also create an override for
your project .hhp file in your ePublisher project, which allows you to implement the
custom HTML Help Viewer window you need. For more information about Microsoft
HTML Help and its related files and customization options, see the help for HTML
Help Workshop.

HTML Help Project File (.hhp)
The HTML Help project .hhp file identifies all the elements of an HTML Help project.
This project file is separate from the ePublisher project. The HTML Help project file
contains the information HTML Help Workshop needs to combine the source files,
images, index, and table of contents into a single, compiled help .chm file.

The HTML Help project file also defines the appearance and behavior of the HTML
Help Viewer window. ePublisher creates the HTML Help project file based on the
template.hhp file and the settings in your ePublisher project. You can override
the default template.hhp file to adjust the default appearance of your HTML
Help, such as the default size and position of the HTML Help Viewer window or
the buttons displayed in the toolbar pane. You can also define additional windows
in the template.hhp file, such as a window without the navigation pane. For
more information, see “Adjusting the HTML Help Viewer Window Size and Toolbar
Buttons” and “Creating an Additional HTML Help Window Definition”.

HTML Help Contents File (.hhc)
The HTML Help contents .hhc file defines the table of contents for the help. This file
includes entries for each occurrence of the paragraph styles for which you assigned
a TOC level in your ePublisher project. HTML Help displays the contents of this file
on the Contents tab of the navigation pane. ePublisher generates the toc.hhc file
for your project using the template.hhc file.

HTML Help Index File (.hhk)
The HTML Help index .hhk file defines the index for the help. This file includes
entries based on the index markers and field codes in your source documents.
HTML Help displays the contents of this file on the Index tab of the navigation pane.
ePublisher generates the index.hhk file for your project using the template.hhk
file.

678 | HTML Help Index File (.hhk)

HTML Help Mapping File (.h)
The HTML Help mapping .h file identifies the mapping information for context-
sensitive help links. This file includes an entry for each TopicAlias marker or field
code in your source documents. Application developers build this file with their
project and use the defined aliases to display the appropriate topic in the help. This
file is linked in the MAP section of the .hhp file, and its entries coordinate with the
entries in the ALIAS section of the .hhp file.

Delivering HTML Help
When you generate output for your project, ePublisher creates the Output folder
in your project folder, and then creates a folder in the Output folder for each
generated target. Then, ePublisher creates a folder named for the project itself in
the target folder. For example, when you generate output, ePublisher creates the
following folder structure:
<Project Area>\<Project Name>\Output\<Target Name>\<Project Name>

In this folder structure, <Project Area> is the name of the ePublisher component
you are using, such as ePublisher Express , <Project Name> is the name of your
ePublisher project, and <Target Name> is the name of your ePublisher target, such
as Microsoft HTML Help 1.x .

By default, ePublisher compiles the .chm and stores it in the <Target Name> folder.
To deliver your HTML Help, you need to deliver the .chm file.

If you created context-sensitive help, your application developer needs to build
with the <Target Name>\<Project Name>\<Project Name>.h file. If you created
What’s This field-level help, your application developer also needs to build with the
<Target Name>\<Project Name>\whatisthis.h file. For more information about
these mapping files, see “Using Context-Sensitive Help in HTML Help” and “Defining
What's This (Field-Level) Help in HTML Help”.

Delivering HTML Help | 679

Oracle Help
Oracle Help Viewer
Oracle Help Files
Delivering Oracle Help

To deliver help on multiple platforms, you need a solution that runs on all those
platforms. This solution helps you avoid complications of each platform and allows
you to deliver one solution that meets the needs on all your platforms. This
common solution can save development time and effort.

ePublisher supports several Java-based help output formats, such as Eclipse
Help, Oracle Help, and Sun JavaHelp, that provide a common solution for multiple
platforms without JavaScript support. WebWorks Help and WebWorks Reverb
also provide a cross-platform solution, but it requires JavaScript support. If you
are delivering a Java-based application, or if your environment does not support
JavaScript, a Java-based help solution can help you deliver your help content.

The Oracle Help format is a Java-based help format that produces the complete set
of files required to deliver online help based on the Oracle Help for Java technology.
Oracle Help for Java is a set of Java components and an API for developing
and displaying HTML-based help content in a Java environment. Oracle Help is
recommended to produce help for an application written in the Java programming
language.

Note: Oracle also offers a separate technology called Oracle Help for the Web.
ePublisher does not support Oracle Help for the Web.

To view Oracle Help, users must have a Java Virtual Machine (JVM) installed. If
you produce help for a Java application, the JVM will be installed on computers
running the application. The Oracle Help components must also be installed on the
computer.

The Oracle Help output format produces content that conforms to the HTML 4 and
XHTML 1.0 standards and uses Cascading Style Sheets that conform to the CSS1
standard. This output format also produces files that are specifically required for
Oracle Help. For more information about the Oracle Help technology, see the Oracle
Web site at www.oracle.com/technology/tech/java/help.

When deciding whether to use the Oracle Help output format, review the following
considerations:

Oracle Help is one of the output formats you can use to produce help for a
Java application. You can also use the Oracle Help output format to produce
content for the Web if all your users have, or are prepared to install, a Java
Virtual Machine.

680 | Oracle Help

http://http://www.oracle.com/technology/tech/java/help

If you need to produce help for a pure Java application, you may also consider
using the Eclipse Help and Sun JavaHelp output formats. Each output format
has slightly different requirements, appearance, and behavior.

If you need to produce help for a Web-based application hosted on a Web
server or on an intranet server that is not a pure Java application, you may
consider using the WebWorks Help or WebWorks Reverb output format.

Oracle Help Viewer
The Oracle Help output format produces Java-based online help. Oracle Help
includes a navigation pane and a topic pane that is similar to other help viewers.

Oracle Help Files
Oracle Help has several files that work together to define and create the Oracle Help
solution. ePublisher incorporates these files into the compressed helpset file, so you
do not need to distribute them to users.

Helpset .hs File in Oracle Help
The helpset .hs file contains descriptive information about your Oracle Help
helpset. ePublisher generates this file using the template.hs page template. For
more information about the helpset file, see the Oracle Help documentation.

Helpset .hs File in Oracle Help | 681

Control .xml Files
The control .xml files define the table of contents, index, and topic aliases in
your Oracle Help project. These files are named projectTOC.xml , projectMap.xml ,
projectLinks.xml , and projectIndex.xml , where project is the name of your
ePublisher project. For more information about these files, see the Oracle Help
documentation.

Full Text Search .idx Index File
The internal full text search .idx index file provides support for the full text search
feature.

Manifest .mft File
ePublisher automatically generates the manifest .mft file. This internal file is used
to create the final Java archive .jar file that you distribute to users.

Delivering Oracle Help
You can provide a help system in Oracle Help format either as a collection of
individual files or in a single, compressed Java archive .jar file. A .jar file, similar
to a .zip file, compresses and stores a collection of files.

When you generate output for your project, ePublisher creates the Output folder
in your project folder, and then creates a folder in the Output folder for each
generated target. Then, ePublisher creates a folder named for the project itself in
the target folder. For example, when you generate output, ePublisher creates the
following folder structure:
<Project Area>\<Project Name>\Output\<Target Name>\<Project Name>

In this folder structure, <Project Area> is the name of the ePublisher component
you are using, such as ePublisher Express , <Project Name> is the name of your
ePublisher project, and <Target Name> is the name of your ePublisher target, such
as Oracle Help . To deliver your Oracle Help generated output, you can provide
the complete contents of the <Target Name>\<Project Name> folder to your Java
application developers, and they can determine whether to deliver the .jar file or
the individual files to application users.

682 | Delivering Oracle Help

Sun JavaHelp
Sun JavaHelp Files
Delivering Sun JavaHelp

Similar to other help systems, Sun JavaHelp provides a navigation pane and a
topic pane. The navigation pane provides Contents, Index, Favorites, and Search
tabs. The topic pane displays the content of the help topic selected on a tab in the
navigation pane.

Sun JavaHelp Files
Sun JavaHelp delivers content in HTML files. The table of contents, index, and
helpset .hs files use the Extensible Markup Language (XML) format.

Helpset .hs File in Sun JavaHelp
The helpset .hs file contains configuration information in XML format that Sun
JavaHelp needs to display your help system. The following figure shows a sample
helpset file:
<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp
 HelpSet Version 1.0//EN" "http://java.sun.com/products/javahelp/
helpset_1_0.dtd">

Helpset .hs File in Sun JavaHelp | 683

<helpset version="1.0">
 <title>Interesting help project</title>
 <maps>
 <homeID>home</homeID>
 <mapref location="test.jhm" />
 </maps>
 <view>
 <name>TOC</name>
 <label>Interesting help project</label>
 <type>javax.help.TOCView</type>
 <data>testt.xml</data>
 </view>
 <view>
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>testi.xml</data>
 </view>
 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <data engine="com.sun.java.help.search.DefaultSearchEngine">
 JavaHelpSearch
 </data>
 </view>
</helpset>

The helpset file begins with an XML declaration. The next part of the file, as shown
in the following sample, defines the help version, the title of the help, and the
location of the mapping file that is used to support context-sensitive help:
<helpset version="1.0">
 <title>Interesting help project</title>
 <maps>
 <homeID>home</homeID>
 <mapref location="test.jhm" />
 </maps>

The remaining sections of the file define several views, such as the table of contents
(TOC), index, and search. Each <view> tag includes several tags that define the
view, such as the <name> tag that specifies the name of the view and the <data>
tag that specifies the data file for the view.

You can also define your own views in Sun JavaHelp by overriding the template.hs
file. For example, you can create an alternate list of topics and provide that list as a
separate view.

Contents toc.xml File in Sun JavaHelp

684 | Contents toc.xml File in Sun JavaHelp

The contents toc.xml file defines the items in the table of contents as shown in the
following example file:
<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE toc PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp TOC
 Version 1.0//EN" "http://java.sun.com/products/javahelp/toc_1_0.dtd">
<toc version="1.0">
 <tocitem target="tutorial_htm_1003580" text="Hybrid Web/CD:">
 <tocitem target="tutorial_htm_1004263" text="Roadmap"/>
 <tocitem target="tutorial_htm_1005107" text="Explosion"/>
 <tocitem target="tutorial_htm_999374" text="Bandwidth"/>
 ...
</tocitem>
</toc>

Index ix.xml File in Sun JavaHelp
The index ix.xml file lists your index entries as shown in the following example
file:
<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE index PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp
 Index Version 1.0//EN" "http://java.sun.com/products/javahelp/
index_1_0.dtd">
<index version="1.0">
 <indexitem target="tutor4_htm_999680" text="1996 Telecom Act"/>
 <indexitem target="tutor11_htm_999661" text="active catalog"/>
 <indexitem target="tutor10_htm_999632" text="ATM"/>
 <indexitem target="tutor10_htm_999634" text="audio synchronization"/
>
 <indexitem text="bandwidth">
 ...
</index>

Map .jhm File in Sun JavaHelp
Sun JavaHelp supports context-sensitive help through a mapping .jhm file. The
mapping file contains information that links your Sun JavaHelp topics to particular
locations in the Java application. For more information, see “Using Context-
Sensitive Help in Oracle Help and Sun JavaHelp”.

Delivering Sun JavaHelp
You can provide a help system in Sun JavaHelp format either as a collection of
individual files or in a single, compressed Java archive .jar file. A .jar file, similar
to a .zip file, compresses and stores a collection of files.

Delivering Sun JavaHelp | 685

When you generate output for your project, ePublisher creates the Output folder
in your project folder, and then creates a folder in the Output folder for each
generated target. Then, ePublisher creates a folder named for the project itself in
the target folder. For example, when you generate output, ePublisher creates the
following folder structure:
<Project Area>\<Project Name>\Output\<Target Name>\<Project Name>

In this folder structure, <Project Area> is the name of the ePublisher component
you are using, such as ePublisher Express , <Project Name> is the name of your
ePublisher project, and <Target Name> is the name of your ePublisher target, such
as JavaHelp . To deliver your Sun JavaHelp generated output, you can provide the
complete contents of the <Target Name>\<Project Name> folder to your Java
application developers, and they can determine whether to deliver the .jar file or
the individual files to application users.

686 | Delivering Sun JavaHelp

WebWorks Help
The Frameset View in WebWorks Help
Topic Only View in WebWorks Help
WebWorks Help Output Files
Delivering WebWorks Help
Searching WebWorks Help

Delivering help content on multiple platforms and browsers can be a challenge.
You need a solution that provides advanced help features, such as full-text search,
expand/collapse sections, browse and breadcrumb navigation, related topics, and
a table of contents tree control. WebWorks Help delivers these features and others
on multiple platforms and browsers. Whether your help needs to be viewed on the
Macintosh or Windows operating system, displayed with Firefox, Safari, or Internet
Explorer, WebWorks Help provides the flexible, adaptable help solution you need.

Note: Users considering a web help output should first consider a Reverb
2.0 output before choosing Reverb or WebWorks Help. Reverb 2.0 is
designed to work across modern browsers, and includes our latest
features. WebWorks Help 5 is recommended for web server use only.

The WebWorks Help format combines standard XHTML, CSS1, and CSS2 with
JavaScript to provide many online help navigation controls and features, including
an expandable/collapsible table of contents, an index, full text search, and
Related Topics menus. You can easily integrate WebWorks Help with applications
written in C, C++, Java, or Visual Basic, as well as Web-based applications. This
comprehensive help format allows you to quickly create and deploy context-
sensitive help and comprehensive help that you can fully customize to match your
corporate branding.

WebWorks Help enables you to publish your content in a variety of ways:

On a Web server

On a network server available to multiple users through a share

On the local computer where the application is installed

On a CD-ROM

The Frameset View in WebWorks Help
When you open WebWorks Help, you can choose whether to display the navigation
pane and the content, or only the content in the browser. You can control the way
WebWorks Help opens based on whether the user selected a context-sensitive help
link or opened the comprehensive help. This flexibility allows you to deliver your
content the way the user needs it.

The Frameset View in WebWorks Help | 687

The frameset view divides the browser window into several areas:

Navigation pane

Provides multiple tabs for navigation elements, such as the table of contents
and full-text search.

Toolbar pane

Provides several standard toolbar buttons to perform common tasks, such
as show or hide the navigation pane, browse to the next topic, and print the
content.

Topic pane

Displays the content of the topic selected in the navigation pane.

Navigation Pane in WebWorks Help
By default, the navigation pane displays several tabs that provide core navigational
features for your help:

Contents tab

688 | Navigaon Pane in WebWorks Help

Displays the table of contents, including entries for each style that you
assigned a TOC level value in Style Designer. When a user clicks on item in
the Contents tab, the selected topic is displayed in the topic pane. This tab
displays the table of contents as an expand/collapse tree view. Each book icon
represents a table of content entry that has subentries.

Index tab

Displays an alphabetical list of keywords associated with topics. To view
index entries, select a letter to display the entries that start with that letter.
When the user clicks on an index entry, the related topic is displayed in the
topic pane. The writer defines the keywords as index entries in the source
documents.

Search tab

Provides a full-text search. When the user clicks Go, WebWorks Help lists
the titles of the topics whose content contains the words specified in the
Search field. This tab provides Rank and Title columns. Each listed topic
has a relevancy ranking number, which reflects how well the topic matches
the search criteria. The ranking is specified in the wwh_files.xsl file. For
more information about how to modify the ranking, see “Modifying the Search
Ranking”.

Favorites tab

Lists the topics that the current user added to his or her list of personal
favorites. In WebWorks Help, users can add frequently accessed or important
help topics to their personal list of favorites. When the user clicks on a
topic on the Favorites tab, the help topic is displayed in the topic pane. The
Favorites tab also provides a Remove button that allows users to delete any
unwanted topics from their list.

Toolbar Pane in WebWorks Help
By default, the toolbar pane displays a set of buttons that provide users with
additional features. These buttons allow users to navigate through the help and
access common functions, such as printing the displayed topic and emailing a link
to a topic. The standard WebWorks Help toolbar includes the following buttons:

Show in Contents button

Allows users to locate the topic they are viewing in the table of contents.
When a user clicks this button, WebWorks Help highlights the entry in the
Contents tab that corresponds to the currently displayed topic.

Show Navigation button

Toolbar Pane in WebWorks Help | 689

Allows users to show the hidden navigation pane. When a context-sensitive
help link displays a topic with the navigation pane hidden, this button is
displayed in the toolbar. When a user clicks this button, WebWorks Help
displays the navigation pane and highlights the entry in the Contents tab that
corresponds to the currently displayed topic.

Previous button

Allows users to navigate back to topics that precede the currently displayed
topic in the help.

Next button

Allows users to navigate forward to topics that follow the currently displayed
topic in the help.

PDF button

Displays a PDF file of the source document from which the currently displayed
topic was generated.

Related Topics button

Displays a list of topics that share a common or related theme with the
currently displayed topic. The writer must define related topics in the source
documents and the Stationery designer must enable related topics support for
the help to display them. For more information, see “Defining Related Topics”.

Print button

Prints the currently displayed topic.

Email button

Allows you to collect feedback from your users. This button opens a blank
email message addressed to the email address you specify. The subject line
of the email message identifies the displayed topic when the user clicked the
Email button.

Topic Pane in WebWorks Help
This pane displays the content of the help topics generated from your source
documents. When a user selects a topic on the Contents, Search, Index, or
Favorites tab, the topic pane displays the content of that topic.

Topic Only View in WebWorks Help

690 | Topic Only View in WebWorks Help

You can display a topic-only view, which hides the navigation pane and displays
only the toolbar pane and the topic pane.With this topic-only view, an application
can open a smaller browser window that leaves more area on the screen for the
application itself. Context-sensitive help often uses the topic-only view.

WebWorks Help Output Files
When you generate the WebWorks Help output format, ePublisher creates all the
files required to deliver and display WebWorks Help. The index.html file is the
default entry file that defines the frameset used by the help. To open the help,
users open this entry file. ePublisher creates the .html , .css , .js , and various
image files included in the WebWorks Help output.

Delivering WebWorks Help
When you generate output for your project, ePublisher creates the Output folder
in your project folder, and then creates a folder in the Output folder for each
generated target. Then, ePublisher creates a folder named for the project itself in
the target folder. For example, when you generate output, ePublisher creates the
following folder structure:
<Project Area>\<Project Name>\Output\<Target Name>\<Project Name>

In this folder structure, <Project Area> is the name of the ePublisher component
you are using, such as ePublisher Express , <Project Name> is the name of your
ePublisher project, and <Target Name> is the name of your ePublisher target, such
as WebWorks Help . To deliver your WebWorks Help generated output, you need to
deliver all the files and subfolders in the <Target Name>\<Project Name> folder.

The <Target Name>\<Project Name> folder contains the entry-point file,
index.html by default, which establishes the help set appearance. When the
user opens the entry-point file, the browser uses all the files in the <Target
Name>\<Project Name> folder to display the help, including all the topic files,
generated .css files, .pdf files, images, and WebWorks Help components.

Searching WebWorks Help
Use the following guide to assist users in finding terms in a WebWorks Help 5.0 help
system:

Boolean

All search words and phrases have an implicit AND

Word Search

Searching WebWorks Help | 691

For example, searching: eggs bacon returns all documents containing “eggs”
and “bacon”

Phrase Search

For example, searching “Good Morning” returns all documents containing
“good” and “morning” where the two words are adjacent

Wildcard

For example, searching e* returns all documents containing words that start
with e.

To further customize the way the search results are displayed, See Modifying the
Search Ranking

692 | Searching WebWorks Help

Designing, Deploying, and
Managing Stationery

Understanding Stationery
Designing Stationery
Deploying Stationery
Managing and Updating Stationery

This section outlines the Stationery design, deployment, and management process.
ePublisher Express projects use Stationery designed in ePublisher Designer to
define the appearance and behavior of generated output. You can use Stationery
to define a standard for one or more projects to use. You can also customize the
design to meet your specific needs.

Writers use the Stationery when they create projects. When the Stationery designer
changes or updates the Stationery a project uses, ePublisher prompts writers
to synchronize their projects with the updated Stationery associated with their
projects. This powerful feature allows you to quickly deploy and manage Stationery
updates across your organization.

Understanding Stationery
ePublisher projects use Stationery designed in ePublisher Designer by a Stationery
designer to define the appearance and behavior of generated output. Stationery is
a complete set of processing rules and styles that define all aspects of the output.
Writers use the Stationery created by the Stationery designer when they create
projects and generate output. Once the Stationery designer changes or updates the
Stationery, ePublisher prompts writers when they open projects associated with that
Stationery to synchronize their projects with the updated Stationery.

Stationery design projects are not based on Stationery. These projects are
created in ePublisher Designer and are used to create and maintain Stationery. To
modify or update Stationery, you need to update the Stationery design project and
then save it as Stationery.

Stationery stores all the style and behavior settings. Stationery also captures the
transformation process and isolates it from changes in future ePublisher releases.
Since you can always use ePublisher Designer to create new Stationery, you can
easily maintain the existing Stationery and move forward with a new ePublisher
release. You can also limit the number of formats included in a Stationery to
reduce complexity and potential confusion in your working environment. Each
output format, such as HTML Help, WebWorks Help, and Dynamic HTML, requires
certain files to generate output. Without these files, the formats do not have the
components required to generate the correct output.

Understanding Staonery | 693

To create a new project, ePublisher Express users must have Stationery. For more
information about Stationery and how it works, see “Stationery, Projects, and
Overrides”.

Stationery Components
Stationery includes the following components:

Stationery .wxsp file

Contains the style definitions and target settings for the selected output
formats and targets. This file stores the style definitions including paragraph,
character, table, page, graphic, and marker styles. This file also stores the
conditions, variable values, cross-reference definitions, and target settings for
each target.

Manifest file

Identifies the files in the Files , Formats , and Targets folders associated
with the Stationery. Any time a Stationery designer adds, removes, or
modifies a file in one of these folders and saves the Stationery, ePublisher
updates the Stationery manifest file.

Files folder

Contains all the files and folders you want to include in the project. ePublisher
copies these files and folders to the output location and includes them in the
output.

Formats folder

Contains a complete copy of all the run-time files required to transform your
source documents for specific output formats. In your Stationery design
project, this folder contains the customized files for specific output formats
needed to transform your source documents and create your output files. This
folder includes a subfolder for each defined output format with customized
files. These files override the default files used by ePublisher to generate the
associated output format. New ePublisher releases may include changes to
the default transformation files. By storing the customized files in a separate
location, ePublisher can override the default files by using these customized
files and it can also protect these customized files when you install a new
ePublisher release.

Targets folder

Contains the customized files for specific targets needed to transform
your source documents and create your output files. This folder includes a
subfolder for each defined target with customized files. These customized files

694 | Staonery Components

override the files stored in the Formats folder for the output format related to
the target. For example, you can create a customized Page.asp page layout
file for a specific target.

Understanding Stationery Synchronization
ePublisher projects use Stationery designed in ePublisher Designer to define the
appearance and behavior of generated output. Stationery is a complete set of
processing rules and styles that define all aspects of the output. Writers use the
Stationery created by the Stationery designer when they create projects and
generate output.

Once the Stationery designer changes or updates the Stationery, ePublisher
prompts writers when they open projects associated with that Stationery to
synchronize their projects with the updated Stationery. ePublisher Express prompts
you to synchronize your project with its Stationery under the following conditions:

The project manifest file differs from the Stationery manifest file.

The Stationery settings have been modified.

When writers synchronize their projects with the updated Stationery, all settings
in the project are updated to match the Stationery. For more information, see
“Synchronizing Projects with Stationery”.

Designing Stationery
ePublisher projects use Stationery designed in ePublisher Designer to define the
appearance and behavior of generated output. You can use Stationery to define
a standard for one or more projects to use. You can also customize the design
to meet your specific needs. Writers then use the Stationery when they create
projects.

There are many considerations when designing and developing Stationery. A well-
designed Stationery is less costly to maintain and manage into the future.

Creating a Stationery Design Project
Stationery design projects are not based on Stationery. You create a Stationery
design project in ePublisher Designer and use it to create and maintain Stationery.
To create Stationery, you need to save a project as Stationery. To modify or update
Stationery, you need to update the Stationery design project and then save it as
Stationery.

The ePublisher workflow improves productivity and saves time for writers who need
to manage online content. You create Stationery that defines a set of reusable
settings to apply to any project. Without any additional work, writers can load these

Creang a Staonery Design Project | 695

settings into their projects, and update them automatically when a change to the
Stationery is made.

Note: To create a new Stationery design project from an existing Stationery design
project, you can manually copy the existing Stationery design project .wep
file and associated files and folders.

To create a Stationery design project

1. Open ePublisher Designer.

2. On the File menu, click New Project.

3. In the Project name field, type the name for your Stationery project.

4. In the Format field, select the default output format you want to include in
your Stationery, and then click Next. You can add other output formats at a
later time.

5. Click Add and select your standard sample source files to add them to the
Source Documents list box. These files provide all the standards for each
input format.

6. When all your sample source files are listed in the Source Documents list
box, click Finish.

7. On the Project menu, click Scan All Documents to add all elements defined
in your sample source documents to the project. This process ensures you can
define how ePublisher processes each of these elements, such as styles and
variables.

8. On the File menu, click Save to save your Stationery design project.

Next, you can add all the other output formats you want to include in your
Stationery.

Adding Output Formats to Your Stationery
Design Project
You can include one or more output formats in your Stationery. To simplify your
Stationery, define only the output formats you need. Writers can then use these
output formats defined in the Stationery to create one or more targets in their
projects.

Each output format creates a target in your Stationery design project. You can also
define multiple targets with the same output format. For example, you can define
multiple targets, one for each standard OEM partner you may have. Each of these
targets may generate the same output format with settings, such as company name
and address, customized for each partner.

696 | Adding Output Formats to Your Staonery Design Project

The Stationery Designer properties and options are shared across all targets
and output formats. Some settings, such as the target settings, variable values,
conditions, and cross-reference formats, are defined per target. Some targets and
output formats also offer additional features and customizations.

Adding a Target to Your Stationery Design
Project
When you create your Stationery design project, you select the default output
format. ePublisher adds the target for that output format to your project. You can
then add more targets and output formats to your project.

To add a target to your Stationery design project

1. Open your Stationery design project.

2. On the Project menu, click Manage Targets.

3. Click Add.

4. In the Format Type field, select an output format for the target.

5. In the Target Name field, type a name for the target, and then click OK.

Selecting an Active Target in Your Stationery
Design Project
The active target is the target currently selected for your project. ePublisher uses
the active target to identify what output to generate. If you modify settings, such as
variable values, that are applied to an individual target and are not shared across
targets in a project, ePublisher saves those changes for the active target. ePublisher
applies the settings defined through the options on the Target menu to the active
target.

To select the active target

1. Open your Stationery design project.

2. On the Project menu, click the target you want in the Active Target menu
option.

Updating a Project to Include All Styles
ePublisher transforms your source documents into content that you can deliver
to virtually any online format or platform. To make sure your content is properly
displayed and easy to use for your audience, you may want to modify the
appearance of the online content, as well as add features your audience wants and

Updang a Project to Include All Styles | 697

needs. However, you do not want to modify the original source documents multiple
times to produce the different types of output you need, such as print, online help,
and Web site content.

ePublisher enables you to maintain your source documents as you need to for
print delivery. You can then use Style Designer to define how you want your
content transformed for your other output formats. ePublisher helps you create the
appearance you want and the functionality you need for your online output.

Your project defines how to transform your content based on the paragraph,
character, table, graphic, page, and marker styles in your source documents. If you
add new elements to your source documents, you need to scan your documents to
include these new elements, such as new paragraph styles, in your project.

To scan all your source documents

1. Open your Stationery design project.

2. On the Project menu, click Scan All Documents.

Understanding Style Designer
Style Designer allows you to modify how various styles appear in your generated
output. You can define how paragraphs, characters, tables, and images are
displayed. You can also modify other aspects of your content, such as page layout
and how page breaks are established. Style Designer defines the appearance of
your online content, such as the color or font of a paragraph style, the style of
a table border, the layout of a page, and the file format of your images in your
generated output.

ePublisher uses the styles in your source documents to define how to transform and
present your content online. ePublisher intelligently senses the styles in the source
documents and presents a list of these styles in Style Designer. You can then define
your generated output by specifying properties and options for each style. By using
styles in your source documents, you have great control over your output. In Style
Designer, the Properties tab controls the appearance of the selected style and the
Options tab controls the behavior of the selected style in your generated output.

For example, if you are using a style called Heading 1 in your source document,
ePublisher lists this style in your project with the other styles used in your source
documents. If you select Heading 1 from the list of styles in Style Designer, you
can then define all content that has that style to appear a specific way in your
generated output. These modifications do not affect your source documents.
ePublisher is essentially a filter that transforms your source documents into the
output format you need.

You can also use a custom CSS file to modify the appearance of your content
instead of using Style Designer for HTML-based output formats. For more
information, see “Using a Custom CSS to Modify the Appearance of Content”.

698 | Understanding Style Designer

Modifying Output with CSS Properties and
Attributes
Cascading style sheet (CSS) properties give you detailed control over the
appearance of your generated output. Style Designer provides an intuitive interface
to help you modify your output using CSS properties. In addition to the online help,
additional knowledge of CSS properties and attributes can help you achieve the
results you want. For more information about CSS principals, see W3 Schools at
www.w3schools.com and the World Wide Web Consortium (W3C) at www.w3.org.

Because your online output is HTML- and CSS-based, the appearance of your output
can be inconsistent between different browsers. This inconsistency is a limitation of
HTML and CSS, since not all browsers implement the standards defined by the W3C
in a consistent way. In addition, some output formats do not support all HTML and
CSS features. In these cases, ePublisher disables or hides the incompatible options.

Understanding the CSS Box Model
In accordance with the CSS2 specification, each element on a Web page generates
its own invisible, rectangular box, sometimes referred to as the box model. This
box delimits the space that the element occupies on the page and consists of
a content area surrounded by optional blocks related to the border, margin, or
padding around the content. For example, consider the following HTML snippet of a
paragraph on a Web page:
<p>That's one small step for a man, one giant leap for mankind.</p>

Since this content is a paragraph, the text uses a <p> tag and is contained in a P
box, or paragraph box. Assuming this paragraph has only a margin applied to it
(and no border or padding), its box can be represented as shown in the following
figure:

Other paragraph blocks, heading blocks, table blocks, and so forth may precede or
follow this paragraph, and all blocks fit together inside a page block, which contains
all other elements of the page. Boxes usually correspond to HTML <h> , <p> , or
<div> tags and often contain inline elements within them. Inline formatting, such

Understanding the CSS Box Model | 699

http://www.w3schools.com
http://www.w3.org

as a bold word within a sentence, creates inline invisible boxes within the paragraph
text.

For Western languages, the boxes, and therefore the content within them, are
arranged in a left-to-right, top-to-bottom flow, which is called normal flow. You can
reverse normal flow for Eastern languages that flow from right to left. The normal
flow includes all styles unless you move them outside of the normal flow using the
Float or Positioning properties. With the Float or Positioning properties, you
can create multi-column pages and other layouts that, in CSS1, required you to use
tables. For more information about the CSS2 visual formatting model and normal
flow, see the W3C documentation at www.w3.org/TR/REC-CSS2/visuren.html.

Inheriting Style Properties and Options
Many elements of your online design may have similar properties or options. For
example, paragraphs, bulleted list items, and numbered list items may all use the
same font and vertical spacing. You may also identify elements that should use
settings from your source documents. For example, you may want tables to use the
size defined in your source files. Style Designer allows you to specify a precise value
for a property, or you can specify from where a property inherits its value. When
using inheritance for properties, you can specify the source of the inheritance using
the following values:

Explicit

Ignores all inheritance values and uses the value you specify for this property.

Do not emit

Excludes the property from the generated output for the selected style. This
option can help you troubleshoot a design issue and determine which property
or element is associated with the issue.

Inherit from style

Inherits the value for the property from the parent style. You can organize
styles in a hierarchy and then use inherited properties to reduce maintenance
costs for future changes. For example, if you have a Heading 1 and a
Heading 2 style, you could make Heading 2 a child of Heading 1. If you select
Inherit <style name or target> property for a property of Heading 2, it
inherits the value for that property from Heading 1. For more information, see
“Organizing and Managing Styles”.

Document paragraph style

Inherits the value for the property from the style definition in your source
document. By choosing this option for a property, ePublisher uses the
formatting from your source document for that property.

Document style catalog

700 | Inhering Style Properes and Opons

http://www.w3.org/TR/REC-CSS2/visuren.html

Inherits the value for the property from the style definition in the source
documents. When you select this option for a property, ePublisher uses the
source document definition and ignores all manual changes made to the style
in the source document.

Understanding Options in Style Designer
The Options tab allows you to define the behavior of the selected item in Style
Designer. For example, you can set the options for a paragraph style to create an
expand/collapse section or to split the content and start a new output file. The
available options depend on the selected item, such as a paragraph style or a
marker style, and the active target, such as WebWorks Help or Eclipse Help.

Note: The options you specify for a parent style can be inherited by child styles if
the child style does not explicitly set the option value.

Organizing and Managing Styles
In Style Designer, you can organize your styles in a hierarchy and then use
inherited properties to reduce design and maintenance time. You can create a
hierarchy of similar styles, set the style property values once, and have those
values inherited by child styles.

The Prototype style, which is essentially the parent style for all styles, allows
you to quickly define properties for all styles. This style allows you to make global
changes across all styles that inherit properties from the Prototype style. For
example, you may have all styles inherit their font and vertical spacing from the
Prototype style.

By default, all style properties and options of a parent style are inherited by its
child styles. If you change the property or option values of a parent style, those
changes are inherited by the child styles of that parent style. You can override
specific properties or options for a child style to make those not inherited from its
parent style. Once the value of a specific property or option is set at the child level,
changes you make to the parent style for that property do not affect the child style.

To organize styles in Style Designer

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. Click the type of styles you want to organize, such as Paragraph Styles.

4. If you want to make a style the child of another style, drag and drop the
child style on top of the style you want to make its parent style.

Organizing and Managing Styles | 701

5. Click on the child style and review the properties for that style to make sure it
inherits the property values you want from its parent style.

Previewing the Output from a Source File
Once you specify or change settings in your Stationery design project, you should
generate your output to review and verify your changes. You can also generate
output for an individual source document. As you develop your Stationery, you will
often modify a few settings, generate your output and review the results, and then
continue the process until you have the final results you want.

To quickly review your changes, you can also display a preview of a source
document. A preview allows you to quickly see the affects of the changes you
made, without requiring you to generate output for the project. The preview
provides a close approximation of how your generated output will look, but your
generated output may not exactly match the preview.

Note: At intervals while you develop your Stationery, you may want to create a
backup copy of your Stationery design project to serve as a snapshot. This
backup gives you a version to return to and use if you make some changes
that you no longer want. For more information, see “Saving a Snapshot
(Backup Copy) of Your Project”.

To display a preview of a source document

1. Open your Stationery design project.

2. In Document Manager, select the source document for which you want to
generate a preview.

3. On the Project menu, click Display Preview.

ePublisher displays a preview of the source document on a preview tab labeled with
the name of the source document you selected. The preview provides you with an
idea of how modifications you made to project settings affect the appearance of
your output. However, some output features are not displayed or active within the
preview, such as popup windows, links, and conditions.

Defining New Pages (Page Breaks)
By default, ePublisher transforms each source document into one output page.
You can associate a page break with specific paragraph styles to split your content
into multiple pages, where each page creates a new output file. By dividing your
content, you can present information to your audience in smaller chunks, organize
and focus your content, reduce redundant information through links, and reduce
scrolling by your audience. To avoid empty topics when multiple heading styles
occur in a row, you can also define page break handling based on whether the

702 | Defining New Pages (Page Breaks)

previous style created a new page. This flexibility enables you to deliver your
content your way.

To create new pages based on styles

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Paragraph Styles, select the style for which you want to create a page
break.

5. On the Options tab, assign a value to the Page break priority option. For
more information about this option, click Help.

6. Review the target settings to ensure the Page break handling setting will
correctly process your priority level values by completing the following steps:

a. On the Project menu, select the Active Target you want to specify
settings for.

b. On the Target menu, click Target Settings.

c. Set the Page break handling setting to the appropriate value. For
more information about this setting, click Help.

Defining TOCs and Mini-TOCs
ePublisher does not use the table of contents (TOC) in your source document when
it generates the online table of contents. This process allows ePublisher to correctly
apply conditions and variables to the TOC, and to format the TOC as needed for
the output format. ePublisher bases the TOC on paragraphs from your source
document. Depending on the output format you select, you can specify whether to
generate the TOC and what file name to assign to the TOC. For more information,
see “Generating and Naming the Table of Contents File”. You can also modify the
appearance of the table of contents for some output formats. For more information,
see “Customizing the Navigation Pane in WebWorks Help” and “Modifying the
Appearance of the Table of Contents in Dynamic HTML”.

Defining the Table of Contents Structure
(Levels)
By default, ePublisher attempts to automatically determine your source content’s
TOC levels. You can manually adjust those levels if the settings do not meet your
requirements.

Defining the Table of Contents Structure (Levels) | 703

To define the table of contents structure (levels)

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Paragraph Styles, select the style you want to include in your TOC.

5. On the Options tab, specify a value for the Table of contents level option.
The default value, Auto-Detect, attempts to infer the necessary information
based on your source content. Specify a value that indicates the level of the
table of contents entry for the selected paragraph style. When working with
Adobe FrameMaker, you can determine the levels by examining the PDF
Bookmark levels for paragraphs that appear in the table of contents. Here is
an example of the Bookmarks tab from FrameMaker 11, to navigate here,
you would select File > Print.... Then click the PDF Setup... button.

When working with Microsoft Word sources, the auto-detect values are based on
the Outline level of each paragraph style. Below is a screenshot of the Word 2010

704 | Defining the Table of Contents Structure (Levels)

interface for each paragraph’s outline level, to navigate here, you use the key
combination Shift + F1.

Once you click the Outline Level hyperlink, you can select the desired level from
the following window.

Defining the Table of Contents Structure (Levels) | 705

DITA XML auto-toc is taken from the map hierarchy. A good example would be
from the sample input provided in the Exp_Design project located in the ePublisher
directory in the Documents library, or by the [program files]\WebWorks
\ePublisher\[version]\Helpers\dita-ot\samples

Generating and Naming the Table of Contents
File

706 | Generang and Naming the Table of Contents File

By default, once you have defined your table of contents structure using Style
Designer, ePublisher generates the table of contents for your output. The Dynamic
HTML format provide additional capabilities for users to prevent generation of the
table of contents or to change the file name of the generated table of contents.

In the File Processing section of the target settings, you can also specify
whether to include the table of contents, front matter, and index from your source
documents in your generated output.

To specify additional table of contents target settings

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. If you want to prevent ePublisher from generating the table of
contents, set Generate table of contents to Disabled.

4. If you want to change the file name of the generated table of
contents, specify the file name you want in the Table of Contents filename
field.

Defining the Table of Contents from an Irregular
Heading Hierarchy
Many authors follow a regular heading hierarchy in their source documents. A
regular heading hierarchy is one in which no levels are skipped in the hierarchy,
as shown in the following example:
First Heading 1
 First Heading 2
 First Heading 3
 Second Heading 3
 Second Heading 2
Another Heading 1
 Another Heading 2
 Yet Another Heading 2

Note: If you use a regular heading hierarchy, this section does not affect your
output.

Some documentation methodologies and processes require authors to skip levels in
the hierarchy, which produces irregular heading hierarchies like the one shown in
the following example:
First Heading 1
 First Heading 4
 Second Heading 4

Defining the Table of Contents from an Irregular Heading Hierarchy | 707

 First Heading 3
Second Heading 1
 Another Heading 3
 Still Another Heading 3
Final Heading 1

This heading hierarchy in a source document, produces an irregular table of
contents hierarchy. The previous example is irregular because all Heading 2 levels
are skipped and several Heading 3 levels are skipped in the hierarchy.

Since your generated table of contents is created from paragraphs in the source
documents, irregular hierarchies can cause an aesthetically displeasing table of
contents in your output. ePublisher provides several settings for how to transform
irregular heading hierarchies, such as Fully collapse, Don’t collapse, Smart
collapse, and Re-label. By default, ePublisher uses Smart collapse.

To specify how ePublisher transforms irregular heading hierarchies

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. If you want to eliminate skipped levels from the table of contents
except where needed to preserve the correct relative hierarchy, set
Collapse table of contents to Smart collapse. ePublisher removes skipped
heading levels from the table of contents. However, if removing skipped levels
results in, for example, a Heading 3 and Heading 4 displaying at the same
level, ePublisher automatically inserts an entry into the table of contents to
preserve the correct relative hierarchy. The irregular hierarchy in the previous
example would be generated as follows.

4. If you want to eliminate all skipped levels from the table of contents,
set Collapse table of contents to Fully collapse. ePublisher removes all
skipped levels, regardless of the level at which they appear in the source
documents. The irregular hierarchy in the previous example would be
generated as follows.

708 | Defining the Table of Contents from an Irregular Heading Hierarchy

5. If you want to duplicate the heading hierarchy of the source
document with empty entries in the table of contents, set Collapse
table of contents to Don’t collapse. ePublisher automatically inserts empty
table of contents entries for the skipped levels. The irregular hierarchy in the
previous example would be generated as follows.

6. If you want to duplicate the heading hierarchy of the source
document with labels in the table of contents, set Collapse table of
contents to Re-label. ePublisher automatically inserts labeled entries for
the skipped levels. The heading text from the entry level appearing beneath
the current entry is used as the label. The irregular hierarchy shown in the
previous example would be generated as follows.

Defining the Table of Contents from an Irregular Heading Hierarchy | 709

Understanding the Table of Contents and Merge
Settings
Not only can the table of contents be generated from defining your heading
paragraph styles, the table of contents can also be generated using Merge Settings.
Merge Settings allow you to combine multiple top-level groups into a single
hierarchy. Not all output formats support merging. For more information see
“Merging Top-level Groups (Multivolume Help)”.

Note: Since your Stationery design project is used to create Stationery, and Merge
Settings are not stored in Stationery, you do not need to configure Merge
Settings for your Stationery design project. You can configure the Merge
Settings in your ePublisher Express projects, since these settings vary based
on individual project needs.

Defining the Icon for a Table of Contents Entry
For some output formats, ePublisher allows you to add a marker to a heading
that defines the icon to use for the table of contents entry for that heading.
For example, you can use a unique icon for new topics, or for specific types
of information. ePublisher provides the TOCIconWWHelp, TOCIconHTMLHelp,
TOCIconJavaHelp, and TOCIconOracleHelp markers.

Creating a Miniature Table of Contents
A miniature table of contents (mini-TOC), also known as a partial table of contents,
provides a list of the topics in the upcoming section. The topic titles are displayed
as links beneath the current topic heading for easier navigation within the section.
By default, ePublisher does not create a mini-TOC in topics within your output. You
can configure ePublisher to generate mini-TOCs and you can define your mini-TOC
levels in Style Designer. Before you begin, define the main table of contents for
your projects. For more information, see “Defining the Table of Contents Structure
(Levels)”. Your mini-TOC is derived from the table of contents level settings you
define for the project.

To create a mini-TOC

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Paragraph Styles, select the style you want to include a mini-TOC after.

5. On the Options tab, specify a value for the Mini-TOC level option. Specify
a value that indicates the levels of the table of contents entries to include in

710 | Creang a Miniature Table of Contents

the mini-TOC that follows the selected paragraph style. For more information
about this option, click Help.

Modifying the Appearance of Mini-TOC Entries
ePublisher stores CSS settings that control the appearance of mini-TOC entries in
the webworks.css file. You can create an override file to modify these settings for
specific levels of the mini TOC or for the entire mini TOC. For example, you can
define a different font size and margin for each level in the mini TOC.

For more information about override files and locations, see “Stationery, Projects,
and Overrides”.

To modify the appearance of the mini TOC

1. If you want to override the CSS settings for an output format, complete
the following steps:

a. In your Stationery design project, on the View menu, click Format
Override Directory.

b. Create the Formats\ formattype\Pages\css folder in your project
folder, where formattype is the name of the output format you want to
override, such as Microsoft HTML Help 1.x .

2. If you want to override the CSS settings for a target, complete the
following steps:

a. In your Stationery design project, on the View menu, click Target
Override Directory.

b. Create the Targets\ targetname\Pages\css folder in your project
folder, where targetname is the name of the target you want to override.

3. Copy the webworks.css file from the following folder to the override folder
you created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats
\ formattype\Pages\css

4. Open the webworks.css file you copied to your project override folder.

5. If you want to modify the appearance of the entire mini TOC, find the
code for div.WebWorks_MiniTOC and modify the values specified within the
braces:

To modify the background color, specify the desired RGB color value for
the background-color option.

Modifying the Appearance of Mini-TOC Entries | 711

To modify the border color, specify the desired RGB color value for the
border-color option.

To modify the border width, specify the number of pixels you want for
the border-width option.

To modify the type of border, specify the appropriate border style value
for the border-style option.

To modify the spacing between the border and the text, specify the
number of pixels you want for the padding option.

To modify the font, specify the name of the font you want for the font-
family option.

6. If you want to modify the appearance of a specific level of the mini
TOC, find the code for div.WebWorks_MiniTOC_Levelx, where x is the level
number you want to modify. Then, specify the values within the braces to
modify the font or margin:

To modify the font of all mini-TOC entries for the specified level, specify
the name of the font you want, such as font-family: Arial; .

To modify the font size of all mini-TOC entries for the specified level,
specify the size of the font you want, such as font-size: 14pt; .

To modify the left margin indent of all mini-TOC entries for the specified
level, specify the indent you want, such as margin-left: 10px; .

7. Save the webworks.css file.

8. Regenerate your project to review the changes.

For example, the following figure illustrates how you could customize your mini-TOC
entries.
div.WebWorks_MiniTOC_Level1
{ font-size: 14pt;
 font-family: Arial;
 margin-left: 6px;
}
div.WebWorks_MiniTOC_Level2
{ font-size: 12pt;
 font-family: Arial;
 margin-left: 16px;
}
div.WebWorks_MiniTOC_Level3
{ font-size: 10pt;
 font-family: Arial;

712 | Modifying the Appearance of Mini-TOC Entries

 margin-left: 16px;
}

Modifying the Appearance of Paragraphs
One of the most common modifications for online output is changing the
appearance of text. Using Style Designer, you can select a paragraph style and then
define the appearance of that style. This efficient method allows you to globally
change all paragraphs with the same style at once, which increases your control
and reduces maintenance costs.

The Prototype Style for Paragraphs
The Prototype style is the parent to all other styles. When you set a property
for the Prototype paragraph style, other paragraph styles inherit the value of
that property. You can then override that value for specific styles as needed. The
Prototype paragraph style allows you to quickly change a default property and
apply that change to all paragraph styles within your Stationery project.

Depending on how you organized your styles in Style Designer, you may not have
one style as the parent style on which all others are based. In Microsoft Word,
usually all styles are based on Normal, but that may not always be the case. The
Prototype style ensures that each of your styles has a parent style within your
Stationery project.

Setting the Background Color of a Paragraph
In terms of the CSS box model, the background for a paragraph refers to the
background of the content and the padding areas. If you increase the padding for
a paragraph style, the background color area for that style also increases. If you
decrease the padding for a paragraph style, the background color area for that style
also decreases.

To set the background color of a paragraph

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Paragraph Styles, select the style you want to modify.

4. On the Properties tab, click Background.

5. In the Color field, select a color from the drop-down menu, or type the RGB
value of the color you want, such as FFFFFF .

Setting the Border Style and Color of a
Paragraph

Seng the Border Style and Color of a Paragraph | 713

Borders are lines that can be drawn around any or all of the four sides of a
paragraph. In terms of the CSS box model, increasing the padding for a paragraph
style increases the space between the paragraph and the border.

Not all browsers display border styles the same way. For example, some browsers
may not differentiate dotted lines from solid lines. The size and spacing of the dots
in a dotted line may also be different between various browsers and operating
systems.

To set the border style and color of a paragraph

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Paragraph Styles, select the style you want to modify.

4. On the Properties tab, click Border.

5. Click the tab for the side of the paragraph you want to display a border, and
then specify the color, style, and width for that border. For more information
about a property, click Help.

Setting the Font for a Paragraph
Setting fonts for online output is an important step in making sure your content is
properly displayed for your audience. Because many browsers and help systems
use only the fonts available on the user’s computer, you may not be able to use
specific fonts, such as Times New Roman, as some computers may not have those
fonts installed. You can specify a font family, such as sans-serif, to ensure a font
of a similar type is used on each computer. You can also specify multiple fonts,
separated by commas, to allow the browser to display the first available font.

To set the font of a paragraph

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Paragraph Styles, select the style you want to modify.

4. On the Properties tab, click Font.

5. Specify the family, size, style, and other properties you want to modify. For
more information about a property, click Help.

Setting the Width, Height, and Positioning of a
Paragraph

714 | Seng the Width, Height, and Posioning of a Paragraph

In regards to the CSS box model, modifying the width and height of a paragraph
adjusts the content box, which essentially defines the space that the paragraph
uses. For example, if an existing paragraph stretches across the entire page, but
you then adjust the width to 200 px, the paragraph is then limited to only 200
pixels wide.

To set the width, height, and positioning of a paragraph

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Paragraph Styles, select the style you want to modify.

4. On the Properties tab, click HTML.

5. Specify the appropriate values for the width, height, and positioning
properties. For more information about a property, click Help.

Adjusting the Space Around a Paragraph
You can adjust the white space around a paragraph by adjusting the margin and the
padding. In terms of the CSS box model, modifying the padding property adjusts
the space inside the border area. For example, if you create a border or background
color for a paragraph and you increase the size of the padding, the border moves
away from the text in the paragraph.

Modifying the margin properties adjusts the space outside the border area. For
example, if you create a border or background color for a paragraph and you
increase the size of the margins around the paragraph, the border remains
the same distance from the text in the paragraph. However, the position of
the paragraph changes since there is more white space between the modified
paragraph and the other elements on the page. Review the following additional
considerations:

Set the right margin on paragraph styles to provide spacing between the text
and the right edge of the window.

For paragraphs used within bulleted and numbered lists, carefully adjust the
left margin to correctly align with the text of the bulleted and numbered list
items. Those list items may have different left margins to leave space for
the bullet or number. For more information, see “Defining the Appearance of
Bulleted Lists” and “Defining the Appearance of Numbered Lists”.

When defining the left margin for a paragraph style used in a table, consider
the size and weight of the font as well. For example, bold table headings need
less pixels in their left margin than non-bold table text paragraphs so that
both types of text align with each other.

Adjusng the Space Around a Paragraph | 715

To set the margin and padding of a paragraph

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Paragraph Styles, select the style you want to modify.

4. On the Properties tab, click Margin.

5. Specify a value and select the unit of measure for the Left, Right, Top, and
Bottom margin properties.

6. On the Properties tab, click Padding.

7. Specify a value and select the unit of measure for the Left, Right, Top, and
Bottom padding properties.

Setting the Text Color and Other Characteristics
of a Paragraph
In general, ePublisher generates output based on the properties of the content
from the original source documents. You can modify the appearance of your online
content without modifying your source documents. The text properties allow you to
modify several important characteristics of the text:

Color

Kerning between letters and words

Space between lines of a paragraph, also known as letting or line height

Underlining, overlining, and strikethrough text

Horizontal and vertical alignment of a paragraph

Indentation of a paragraph

To set the text characteristics of a paragraph

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Paragraph Styles, select the style you want to modify.

4. On the Properties tab, click Text.

716 | Seng the Text Color and Other Characteriscs of a Paragraph

5. Specify the appropriate values for the text-related properties, such as Color
and Line height. For more information about a property, click Help.

Modifying Paragraphs for Bidirectional
Languages
In some documents, such as those written with Arabic or Hebrew script, and in
some mixed-language contexts, text within a single paragraph may appear with
mixed directionality. For example, some characters are read from left to right, while
others within the paragraph may be read from right to left. This phenomenon is
called bidirectionality, or bidi for short.

If a document contains right-to-left characters, and if the browser is able to
display the language with the proper character set, the browser must apply
the bidirectional algorithm. The proper character set means to not display
arbitrary substitutes such as a question mark, a hex code, or a black box for some
characters.

ePublisher allows you to make sure the browser correctly displays the content by
offering the Unicode Direction and Unicode Bidi (bidirectional) properties.

To set the Unicode properties of a paragraph

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Paragraph Styles, select the style you want to modify.

4. On the Properties tab, click Text.

5. Under Unicode, set the appropriate values for the Direction and Unicode
Bidi properties. For more information about these properties, click Help.

Disabling Autonumbering in Output
In your source documents, you may have autonumbering enabled for print delivery
purposes, such as printed manuals and PDFs. This function allows you to add
autogenerated numbers to your chapters, headings, and figure captions. However,
for some online delivery, you may not want to include the autonumbering in your
online help.

To disable autonumbering

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

Disabling Autonumbering in Output | 717

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Paragraph Styles, select the style that has the autonumbering.

5. On the Options tab, set the Keep paragraph numbering option to
Disabled.

6. Repeat steps 4-5 for every paragraph style for which you want to disable
autonumbering.

Defining the Appearance of Notes, Tips,
Cautions, and Warnings
If you have the word note , tip , caution , or warning at the start of the
paragraph, and the paragraph is defined with a hanging indent, increase the Left
margin property in ePublisher to correctly align the word with the appropriate
paragraph styles. ePublisher uses the Left margin property to define the hanging
indent margin. It also uses the Text Indent property to place the first line of the
paragraph to the left of the rest of the paragraph. For instructions on changing the
handing indent, see “Fixing Paragraph Indentation Including Hanging Indent”.

You may want to add an image to the left of each note, caution, tip, or warning in
your generated output. ePublisher does not use images from Adobe FrameMaker
reference pages. You can use the Bullet properties of a paragraph format to insert
an image to the left of the paragraph. This process is similar to using an image for
the bullet itself.

Defining the Appearance of Bulleted Lists
By default, ePublisher generates output for bulleted lists based on the properties
of the content from the original source documents. Some tools use the Symbol
or Wingdings font for bullets. These fonts may not be available on all computers,
which can cause the bullets in your output to not be displayed correctly. You can
address this issue by using an image for your bullets, or you can create a character
style with a font family assigned, such as sans-serif, and then apply that character
style through ePublisher to the characters you choose to define for your bullets.

You may also need to increase the left margin of your bulleted list item styles
to provide the correct spacing for the bullet and to allow the text to be properly
aligned. In addition, you may need to adjust the left margins of both bulleted and
numbered list items to get them to line up with each other. This alignment can
reduce the number of vertical columns on a page, which can help the user scan
the information. This alignment can also let you use the same paragraph formats
for paragraphs within either a bulleted or numbered list. For more information
about additional margin adjustments, see “Fixing Paragraph Indentation Including
Hanging Indent”.

718 | Defining the Appearance of Bulleted Lists

To create custom bullets

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Paragraph Styles, select the style you want to modify.

5. On the Properties tab, click Bullet.

6. If you want to create a custom bullet based on an image, complete the
following steps:

a. Make sure the image you want to use as your bullet image is stored in
the Files folder in your project. You can copy the image file to this
folder.

b. In the Image field under Bullet Info, select the image you want to
use.

7. If you want to create a custom bullet based on a special character,
complete the following steps:

a. In the Text field, type the special character you want to use. You can
type a special character using the Windows Alt key code.

b. In the Separator field, type the separator characters, such as a non-
breaking space, that you would like to use between the bullet and the
beginning of the first line of text.

c. In the Character Style field, select the defined character style you
want to apply to the special character specified in the Text field. You
can specify any character style that already exists in your project. The
character style should use a font available on your users’ computers.
Avoid custom fonts, which can cause bullet characters to be displayed
differently on various computers.

Defining the Appearance of Numbered Lists
When you define the appearance of numbered list items, you need to define
margins that leave the correct alignment for the numbers and the hanging indent.
Since numbered items have a hanging indent, ePublisher uses a table in the
generated output to create the appropriate format. Increase the Left margin
property in ePublisher to correctly align the the hanging indented text. Then, set
the Flow Indent text property for the paragraph to a negative value to leave
enough space for double-digit numbered steps. For example, if your standard

Defining the Appearance of Numbered Lists | 719

paragraph Left margin property is 30 pixels, you may want to set the Left margin
property for your numbered list items to 70 pixels and set the Flow Indent text
property to -30 pixels for your numbered list items. For instructions on changing the
handing indent, see “Fixing Paragraph Indentation Including Hanging Indent”.

You may also need to work with the left margins of both bulleted and numbered list
items to get them to line up with each other. This alignment can reduce the number
of vertical columns on a page, which can help the user scan the information. This
alignment can also allow you to use the same paragraph formats for paragraphs
within either a bulleted or numbered list.

Fixing Paragraph Indentation Including Hanging
Indent
It is very common to create paragraphs that use a hanging indent to offset the first
line to the left of the rest of the paragraph. This can occur with headings, numbered
lists, bulleted lists, and any other paragraph type.

The following figure shows a heading paragraph that has a hanging indent that is
not large enough in the generated output. Also, notice that there is not enough
white space between the auto-number and the paragraph text.

Using ePublisher’s Paragraph Style Designer it is easy to increase the size of the
hanging indent and thus increase the amount of white space between the auto-
number and the paragraph text.

Steps for chaning the Hanging Indent

1. Open the Stationery Design project.

2. On the View menu, click Style Designer.

720 | Fixing Paragraph Indentaon Including Hanging Indent

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports the Margin Left and Text Ident properties.

4. In Paragraph Styles, select the style you want to modify.

5. On the Properties tab, click the name of the paragraph style to modify.

6. Select Margin and then for the Left, specify a value with units.

7. Select Text and then for the Flow Indent, specify the same value with units.
However, the value must be the negative of that used for the Margin Left.

You may want to experiment with different values until you get something that
looks good in the output. When generated it will look similar to the updated output
shown below.

Fixing Paragraph Indentaon Including Hanging Indent | 721

Modifying the Appearance of Characters
To modify the appearance of individual characters or words within a paragraph, you
can use Style Designer to adjust the appearance of any character styles used in the
source documents. This process allows you to optimize styles for print, using the
styles in the source documents, and optimize the content for online presentation
using the styles defined in ePublisher.

The Prototype Style for Characters
The Prototype style is the parent to all other styles. When you set a property
for the Prototype character style, other character styles inherit the value of
that property. You can then override that value for specific styles as needed. The
Prototype character style allows you to quickly change a default property and
apply that change to all character styles within your Stationery project.

Depending on how you organized your styles in Style Designer, you may not have
one style as the parent style on which all others are based. The Prototype style
ensures that each of your styles has a parent style within your Stationery project.

Setting the Background Color of a Character
In terms of the CSS box model, the background for a style refers to the background
of the content and the padding areas. If you increase the padding for a style, the
background color area for that style also increases.

To set the background color of a character

1. Open your Stationery design project.

722 | Seng the Background Color of a Character

2. On the View menu, click Style Designer.

3. In Character Styles, select the character style you want to modify.

4. On the Properties tab, click Background.

5. In the Color field, select a color from the list, or specify the RGB value of a
color, such as FFFFFF .

Setting the Border Style and Color of Characters
Borders are lines that can be drawn around any or all of the four sides of a style. In
terms of the CSS box model, increasing the padding for a style increases the space
between the content and the border.

Not all browsers display border styles the same way. For example, some browsers
may not differentiate dotted lines from solid lines. The size and spacing of the dots
in a dotted line may also be different between various browsers and operating
systems.

To set the border style and color of a character

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Character Styles, select the character style you want to modify.

4. On the Properties tab, click Border.

5. Click the tab for the side of the character you want to display a border, and
then specify the color, style, and width for that border. For more information
about a property, click Help.

Setting the Font for a Character
Setting fonts for online output is an important step in making sure your content is
properly displayed for your audience. Because many browsers and help systems
use only the fonts available on the user’s computer, you may not be able to use
specific fonts, such as Times New Roman, as some computers may not have those
fonts installed. You can specify a font family, such as sans-serif, to ensure a font
of a similar type is used on each computer. You can also specify multiple fonts,
separated by commas, to allow the browser to display the first available font.

To set the font of a character

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

Seng the Font for a Character | 723

3. In Character Styles, select the character style you want to modify.

4. On the Properties tab, click Font.

5. Specify the family, size, style, and other properties you want to modify. For
more information about a property, click Help.

Adjusting the Space Around Characters
You can adjust the white space in all directions around characters by adjusting the
margin and the padding. You can also adjust horizontal spacing by adjusting the
kerning.

In terms of the CSS box model, modifying the padding property adjusts the space
inside the border area. For example, if you create a border or background color for
a character and you increase the size of the padding, the border moves away from
the character.

Modifying the margin properties adjusts the space outside the border area. For
example, if you create a border or background color for a character and you
increase the size of the margins around the character, the border remains the same
distance from the character. However, the position of the character changes since
there is more white space between the modified character and other elements on
the page.

To set the margin, padding, and kerning of a character

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Character Styles, select the character style you want to modify.

4. On the Properties tab, click Margin.

5. Specify a value and select the unit of measure for the Left, Right, Top, and
Bottom margin properties.

6. On the Properties tab, click Padding.

7. Specify a value and select the unit of measure for the Left, Right, Top, and
Bottom padding properties.

8. On the Properties tab, click Text.

9. In the Letter spacing field, specify a value and select the unit of measure to
adjust the kerning. For more information about a property, click Help.

724 | Adjusng the Space Around Characters

Setting the Color and Other Characteristics of
Characters
In general, ePublisher generates output based on the properties of the content
from the original source documents. You can modify the appearance of your online
content without modifying your source documents. The text properties allow you to
modify several important characteristics of characters:

Color

Kerning between letters and words

Underlining, overlining, and strikethrough text

Vertical alignment to create subscripts and superscripts

To set the text characteristics of a character

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Character Styles, select the character style you want to modify.

4. On the Properties tab, click Text.

5. Specify the appropriate values on the text-related properties, such as Color
and Letter spacing. For more information about a property, click Help.

Modifying Characters for Bidirectional
Languages
In some documents, such as those written with the Arabic or Hebrew script, and
in some mixed-language contexts, text within a single paragraph may appear with
mixed directionality. For example, some characters are read from left to right, while
others within the paragraph may be read from right to left. This phenomenon is
called bidirectionality, or bidi for short.

If a document contains right-to-left characters, and if the browser can display the
language with the proper character set, the browser must apply the bidirectional
algorithm. If you prefer to control the handling of a particular phrase, you can
apply a character style to that phrase and then define the character style with the
Direction and Unicode Bidi properties.

To set the Unicode direction of a character

1. Open your Stationery design project.

Modifying Characters for Bidireconal Languages | 725

2. On the View menu, click Style Designer.

3. In Character Styles, select the character style you want to modify.

4. On the Properties tab, click Text.

5. Under Unicode, set the appropriate values for the Direction and Unicode
Bidi properties. For more information about these properties, click Help.

Defining the Appearance of Tables
Modifying the appearance of tables is different from modifying other elements
in your content, such as paragraphs. The properties of tables are controlled by
different layers. Some objects are in front of, or behind, other objects within the
table. For example, the background property of the entire table is the first layer.
The body, header, and footer properties reside in the next layer, which is on top
of the background property. Paragraph properties are on top of that, followed by
character properties, which are on the topmost layer.

With this model, you may have difficulty achieving the results you want when
you try to adjust the appearance of a property for a table. You may need to
experiment with the different property layers to fine-tune the appearance of tables.
For example, if you try to create a transparent table by properly setting the body
background property, but the table is not transparent, another layer may not be
transparent. You need to make sure the background property is properly set for
each layer in the table, including the table header, the paragraph, and the character
styles.

Paragraph styles, such as CellHeading, CellBody, CellStep, and CellBullet give you
additional control over formatting within tables in your generated output. When
defining the left margin for a paragraph style used in a table, consider the size and
weight of the font. For example, bold table headings need less pixels in their left
margin than non-bold table text paragraphs so that both types of text align with
each other.

The Prototype Style for Tables
The Prototype style is the parent to all other styles. When you set a property for
the Prototype table style, other table styles inherit the value of that property. You
can then override that value for specific styles as needed. The Prototype table
style allows you to quickly change a default property and apply that change to all
table styles within your Stationery project.

Setting the Background Color or Image of a
Table

726 | Seng the Background Color or Image of a Table

You can specify a color to use as the background of a table. You can also make the
background transparent or specify an image to use as the background. In addition,
you can specify alternative colors or images to alternate the appearance of rows or
columns. Alternate shading of rows or columns is a useful layout to help minimize
the number of lines and amount of information displayed, while organizing the data
in a way that users can easily read and understand.

The background image for a table is behind other elements in a table. If you set a
background color for the table, you cannot see the background image for the table.
In addition, make sure the image is stored in the Files folder so it is part of the
project.

To set the background color or image of a table

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Table Styles, select the table style you want to modify.

4. On the Properties tab, click Body Background.

5. If you want to specify a color for the background of a table, select a
color in the Color field, or type the RGB value of the color you want, such as
FFFFFF . To make the table transparent, click the Web tab in the Color field,
and then click Transparent.

6. If you want to specify an image for the background of a table,
complete the following steps:

a. Save the image file in the Files folder for the project. ePublisher copies
files from the Files folder when you generate the project.

b. In the Image field under Background Image, select the image you
want to use. ePublisher lists only the image files stored in the Files
folder.

c. Specify the tiling, scrolling, and position properties to position the image
as you want it.

7. If you want to alternate the appearance of rows or columns in the
table, specify the appropriate values for the Alternate Information
properties. For more information about a property, click Help.

Setting the Border Style and Color of a Table
The border properties modify the appearance of the border that surrounds the
outside of the table. However, some browsers display this information in different
ways. For example, some browsers use the color and not the style of the border

Seng the Border Style and Color of a Table | 727

properties to define all other borders inside the table, unless that color has been
previously defined.

For example, if you choose a red, dotted border for your table, the preview pane
displays the outer edge of the table as a red, dotted border. All table cells inside the
table have a red, solid border, unless the border properties for Body and Header
(if applicable) are also defined. Not all browsers display the table the same way, so
verify the results in multiple browsers when defining the table border and style.

To set the border style and color of a table

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Table Styles, select the table style you want to modify.

4. On the Properties tab, click Border.

5. Click the tab for the side of the table you want to display a border, and then
specify the color, style, and width for that border. For more information about
a property, click Help.

Setting the Width and Height of a Table
You can define a fixed width and height for a table style. Make sure all the content
of your tables will fit within the fixed height and width you specify. You can also use
the table cell widths defined in your source documents.

To set the height and width of a table

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Table Styles, select the table style you want to modify.

4. If you want to define a fixed width and height for the table style,
complete the following steps:

a. On the Properties tab, click HTML.

b. Specify the appropriate values for the Width and Height properties. For
more information about a property, click Help.

5. If you want to use the cell widths defined in your source documents,
on the Options tab, set Use document cell widths to Enabled.

Setting the Vertical and Horizontal Alignment
within a Table

728 | Seng the Vercal and Horizontal Alignment within a Table

You can specify the vertical and horizontal alignment of content within table cells.
To define the vertical alignment, set the Alignment property for the table. To
define the horizontal alignment, set the Horizontal alignment property for the
paragraph style of the text in the table. These property values take effect unless
a value is set at the paragraph style level, or a value is set for the table Body,
Header, or Footer properties, if applicable.

To set the alignment of content within a table

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Table Styles, select the table style you want to modify.

4. If you want to define the vertical alignment, complete the following
steps:

a. On the Properties tab, click Table.

b. Specify the appropriate value in the Vertical field under Alignment.

5. If you want to define the horizontal alignment, complete the following
steps:

a. In Paragraph Styles, select the paragraph style you want to modify.

b. On the Properties tab, click Text.

c. Specify the appropriate value in the Horizontal field under Alignment.

Adjusting the Space Within and Around a Table
After creating the external borders for your table, you can define the padding to
specify the distance between the content and the borders within the table. This
feature, which is enabled through CSS, is not supported by all browsers. View the
output in several different browsers to verify your results.

You can also define the space around the table by adjusting the margin properties.
Modifying the margin properties adjusts the space outside of the border area. For
example, if you create a border for a table and you increase the size of the margins
around the table, the border remains the same distance from the content of the
table. However, the effective size of the table increases since there is more space
between the table border and the other elements on the page.

To adjust the padding and margin of a table

1. Open your Stationery design project.

Adjusng the Space Within and Around a Table | 729

2. On the View menu, click Style Designer.

3. In Table Styles, select the table style you want to modify.

4. On the Properties tab, click Table.

5. Specify a value and select the unit of measure for the Left, Right, Top, and
Bottom padding properties.

6. On the Properties tab, click Margin.

7. Specify a value and select the unit of measure for the Left, Right, Top, and
Bottom margin properties.

Modifying Header, Footer, and Body Rows of a
Table
In addition to modifying the appearance of an entire table, you can modify portions
of a table, such as the header row, the footer row, and rows within the body of the
table. To modify the appearance of a section of a table, you need to correctly define
the parts of the table in your source documents. For example, in Microsoft Word,
you need set the table property to define the header row. If you do not create a
header row for a table in your source document, you cannot modify the header row
appearance in your output. The first row of a table is not, by default, a header row.

To define the appearance of the header rows, specify the appropriate values for the
Header and Header background properties for your table styles. These property
values override the values specified for the Table, Border, and Background
properties.

To define the appearance of the body rows, specify the appropriate values for the
Body and Body background properties for your table styles. These property
values override the values specified for the Table, Border, and Background
properties.

To define the appearance of the footer rows, specify the appropriate values for the
Footer and Footer background properties for your table styles. These property
values override the values specified for the Table, Border, and Background
properties.

Tables created in Microsoft Word do not identify footer rows. To control footer rows
with Microsoft Word and ePublisher, set up your table in your source document to
reflect the desired appearance, or use footer paragraph styles in the footer row of
the table. Then, ePublisher can use the table set up from your source document and
you can use the footer paragraph styles to modify the appearance as needed.

730 | Modifying Header, Footer, and Body Rows of a Table

Tables created in Adobe FrameMaker identify the footer rows of tables, which allows
you to specify the Footer and Footer background properties to modify footer
rows for online delivery.

Modifying Cells of a Table
Modifying certain aspects of a table cell may also require you to modify the
properties associated with the paragraphs that reside in the table cell. For example,
if you make a table background color transparent, you may also need to modify the
background color of the paragraphs in the table to make those cells transparent.

Cell spacing is used to create a transparent space between cells of a table. This
capability allows you to create unique border structures, as the background color
of a table can be seen through the space between table cells, which can have a
different background color.

To adjust the spacing between cells

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Table Styles, select the table style you want to modify.

4. On the Properties tab, click Table.

5. In the Cell spacing field, specify an appropriate value.

Defining the Appearance of Images
In general, ePublisher automatically transforms images from your source document
to an optimized version for online distribution. However, if necessary, you can
manually modify individual images or groups of images by applying a graphic style
to the specific image or images you want to control. For example, you can define
how images are resized, the maximum height and width for images, and the format
for those images.

Supported Image Formats
ePublisher supports several image formats and rasterizes all other formats:

.jpg files

Provides a good format for photographs and images with many gradual
variations in color. Although this format is compressed, the large number of
colors can increase the size of the file when compared to the other supported
image formats. The lossy data compression also reduces detail each time

Supported Image Formats | 731

you save an image in this format. This format is not recommended for screen
shots.

.gif files

Provides a good format for screen shots, since the number of colors can
be reduced and the need for gradual variations in color is minimal. This
format supports transparency and animation. However, this format supports a
reduced color palette of 256 RGB colors (8-bit).

.png files

Provides a good multipurpose format for online presentation. This format
supports up to 16 million RGB colors (24-bit) and uses lossless data
compression.

.svg files

Provides a powerful format that is not supported in all output formats. Some
browsers do not support .svg image files. If you use .svg image files, you
need to configure the .svg options to specify whether to rasterize these
images.

You can use passthrough conditions and coding to include any type of file
within your final output, such as Flash .swf files. For example, you can create a
paragraph style in your source documents that is not included in the print version
of your documentation. You can apply a condition to this paragraph that has the
passthrough setting selected in ePublisher. Then, this paragraph can provide the
exact coding to include in your output. Be sure to include any referenced files in
your Files folder of your project so ePublisher copies those files to your output
location.

Image Quality and Processing
If ePublisher cannot use an original image in the output, or if ePublisher determines
it needs to modify the image based on how it is included in the source document,
ePublisher rasterizes the image using the options you define for your graphic styles
in Style Designer. For example, you can define the dots per inch (DPI) and format
for the final images. Rasterization of an image can cause the image to be blurry or
distorted in the output.

For more information and specific considerations about your images, see “Image
Formats and Considerations in FrameMaker” and “Image Styles and Considerations
in Word”.

The Prototype Style for Images
The Prototype style is the parent to all other styles. When you set a property for
the Prototype graphic style, other styles inherit the value of that property. The

732 | The Prototype Style for Images

Prototype graphic style allows you to quickly change a default property and apply
that change to all graphic styles within your Stationery project.

Defining Graphic Styles
All images are, by default, set to the Prototype style. If you need to modify any
image properties, you can do so through the Prototype style. However, if you
want to control a smaller set of images, even just one image, you need to assign a
unique graphic style to those images.

To define a graphic style

1. Create a marker named GraphicStyle in your FrameMaker template.

2. Open your Stationery design project.

3. On the View menu, click Style Designer.

4. In Graphic Styles, define a set of graphic styles. Writers can use a marker or
field code to specify the graphic style to apply to each image.

Setting the Border Style and Color of an Image
Borders are lines that can be drawn around any or all of the four sides of an image.
In terms of the CSS box model, increasing the padding for a graphic style increases
the space between the image and the border.

Not all browsers display border styles the same way. For example, some browsers
may not differentiate dotted lines from solid lines. The size and spacing of the dots
in a dotted line may also be different between various browsers and operating
systems.

To set the border style and color of an image

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Graphic Styles, select the graphic style you want to modify.

4. On the Properties tab, click Border.

5. Click the tab for the side of the image you want to display a border, and then
specify the color, style, and width for that border. For more information about
a property, click Help.

Modifying the Width, Height, and Positioning of
an Image

Modifying the Width, Height, and Posioning of an Image | 733

ePublisher automatically transforms images in your source document into Web-
ready formats. However, the size of your print image may not be appropriate for
online delivery. ePublisher provides several ways to modify the size of your images
for online delivery without affecting the original images.

If you know the exact dimensions you want to assign to an image, you can use
the height and width properties of a graphic style. However, you are defining the
dimensions of all images that use that graphic style. Unless you want all your
images to be the same size, such as 150 pixels high and 275 pixels wide, this
option is not the most effective way to modify the size of your images. For most
situations, it is more efficient to define the maximum height and width for an
image as opposed to assigning a fixed height and width. For more information, see
“Setting the Maximum Width and Height for Images” and “Modifying Image Size by
Scale”.

In most cases, you probably want to leave your images positioned as they are in
your source documents. To visually enhance the layout and presentation of your
online images, ePublisher allows you to set the position of any image according to
CSS rules.

To set the width, height, and positioning of an image

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Graphic Styles, select the graphic style you want to modify.

4. On the Properties tab, click HTML.

5. Specify the appropriate values for the width, height, and positioning
properties.

Adjusting the Space Around Images
You can adjust the white space around images by adjusting the margin and the
padding. In terms of the CSS box model, modifying the padding property adjusts
the space inside the border area. For example, if you create a border or background
color for an image and you increase the size of the padding, the border moves away
from the image.

Modifying the margin properties adjusts the space outside the border area. For
example, if you create a border or background color for an image and you increase
the size of the margins around the image, the border remains the same distance
from the image. However, the position of the image changes since there is more
white space between the modified image and other elements on the page.

To set the margin and padding of an image

734 | Adjusng the Space Around Images

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Graphic Styles, select the graphic style you want to modify.

4. On the Properties tab, click Margin.

5. Specify a value and select the unit of measure for the Left, Right, Top, and
Bottom margin properties.

6. On the Properties tab, click Padding.

7. Specify a value and select the unit of measure for the Left, Right, Top, and
Bottom padding properties.

Using Thumbnails for Images
ePublisher allows you to automatically reduce the size of images in your online
content to thumbnails, which are reduced versions of your images. Users can view
the full-sized image by clicking on the thumbnail. If you set the width and height
values for thumbnails, ePublisher automatically creates the thumbnails you need
and links them to the full-sized images. If you do not set a width and height for
thumbnails, ePublisher inserts the image itself in your output and does not use
thumbnails.

To use thumbnails for images

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Graphic Styles, select the graphic style you want to modify.

5. On the Options tab, specify values, in pixels, for the Maximum thumbnail
width and Maximum thumbnail height options.

Setting the Maximum Width and Height for
Images
Most images in your content vary in width and height. For your online content, you
need to ensure that all your images fit within the display area. In most cases, you
have a maximum width or height constraint. For example, although some of your
images may only be 250 pixels wide, you want to make sure that none of your
images are wider than 275 pixels.

Seng the Maximum Width and Height for Images | 735

ePublisher allows you to set maximum width and height values for the size of your
images. By modifying the size of your images in this way, you ensure that the
resized images retain their original aspect ratio.

To set the maximum width and height of images

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Graphic Styles, select the graphic style you want to modify.

5. On the Options tab, specify values, in pixels, for the Maximum image
width and Maximum image height options.

Modifying Image Size by Scale
If you are not concerned with actual width and height of an image, you can specify
a scaling percentage to apply to all images with the selected graphic style. This
option allows you to modify the size of all images associated with the graphic style
in relation to their original sizes. Modifying images in this way retains the original
aspect ratio of each image.

To resize images based on a percentage

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Graphic Styles, select the graphic style you want to modify.

5. On the Options tab, specify a percentage value for the Scale % option. For
example, if you specify 50, each image with the selected graphic style will be
reduced to half its original size.

Modifying Image Resolution
If the resolution of the images in your source documents is set for print, such as a
resolution of 300 dots per inch (dpi) or higher, you may want to reduce the image
resolution for online delivery. High dpi images create larger files that require more
time to download. In addition, most monitors display a resolution of 96 dpi, so
higher resolutions do not increase the quality of the image displayed online.

736 | Modifying Image Resoluon

Although transforming an image from 300 dpi to 96 dpi helps optimize your images
for online delivery, the width and height of your images is also affected. Because a
resolution of 300 dpi contains more dots per inch than a resolution of 96 dpi, when
ePublisher transforms the image, the image will be roughly 68% smaller than the
original image. For example, a 300 dpi image that is 100 x 100 pixels will be 32 x
32 pixels when transformed to a 96 dpi image.

To counter this effect, use the Scale % option in conjunction with the Render
DPI option to control the size of your images. In the example of transforming a
300 dpi image to 96 dpi, set the Scale % option to 312, which then generates
an image that has roughly the same dimensions as the original source image. You
can also use the Scale % and Render DPI options together with the Maximum
image height and Maximum image width options to make sure your images are
correctly sized for online delivery.

To set the image resolution (dpi)

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Graphic Styles, select the graphic style you want to modify.

5. On the Options tab, specify a value in dpi for the Render DPI option.

Setting Color Bit Depth
The range of colors available through digital computer images is usually expressed
in terms of bit depth. This expression refers to the number of bits of data carrying
the color information. Common bit depth levels for images include 8-bit and 24-
bit color. In general, more bits of data make more colors available. The Color bit
depth option applies only to .gif and .png images. .jpg images always generate
32-bit images.

To set the color-bit depth for .gif and .png images

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Graphic Styles, select the graphic style you want to modify.

5. On the Options tab, select a value for the Color bit depth option.

Seng Color Bit Depth | 737

Choosing an Image File Format and Quality
Level
By default, if ePublisher needs to rasterize an image, it transforms the image in
your source documents, regardless of what file format it is, to a Web-ready .jpg
image. In some instances, you may want to use other image formats for online
delivery. For example, .gif images can produce similar quality images as .jpg ,
but the file size is smaller. .gif images can also support transparent colors. You
can also create .png images, which combine some of the better qualities of both
.jpg and .gif .

If you select JPG in the Format options for a graphic style, you can specify the
quality of the images. The quality level impacts both the visual aspects of your
images and the size of the generated files. Higher-quality images require larger
files, which require more time to download and display. The JPG Quality option
does not affect .gif or .png images.

To choose the file format and quality for online images

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Graphic Styles, select the graphic style you want to modify.

5. On the Options tab, select a value for the Format option.

6. In the Output file extension field, specify the proper file extension based on
the value you selected for the Format option, such as .jpg, .gif, or .png.

7. If you selected JPG in the Format option, in the JPG Quality field,
specify the percentage value you want for your online images. A value of 100
creates the highest quality image that mimics your original image.

Creating Grayscale Images
ePublisher allows you to transform your original color images into grayscale
versions for online viewing. If you enable the Grayscale option, ePublisher
removes the color saturation of the original images when those images are
transformed with your online content. ePublisher displays the color versions of your
images in the preview pane to generate the preview more quickly.

To create grayscale images

1. Open your Stationery design project.

738 | Creang Grayscale Images

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Graphic Styles, select the graphic style you want to modify.

5. On the Options tab, set the Grayscale option to Enabled.

Setting Transparency for .gif and .png Images
In some images, you may want to set a color to transparent. For example, if your
source document has a white background, images with a white background appear
as though they do not have a background. However, if your online content has
a different color background, the background of these images appear as white
areas. You can enable the transparency option in ePublisher to transform the
white background into a transparent one. Only .gif and .png images support
transparent colors.

Note: Some browser versions do not support transparent colors, especially in .png
images.

To set transparency for .gif and .png images

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Graphic Styles, select the graphic style you want to modify.

5. On the Options tab, set the Transparent option to Enabled.

Defining the Appearance of Pages
The way you present your online content greatly impacts the usability and
readability of that content in the online environment. Information layout and
design for print and online content are usually very different. ePublisher allows you
to format your source documents to optimize for printed delivery, and then use
ePublisher to deliver the content optimized for online presentation.

Unlike printed content, online documentation can include extra navigation features,
follow different rules regarding topic length and page breaks, and include unique
page layouts for specific types of information. While each output format varies
in the types of files that are delivered, most output formats are based on HTML.

Defining the Appearance of Pages | 739

Therefore, when you decide how to present your content online, consider the layout
of your content on an HTML page.

In ePublisher, the overall appearance of each topic of your output is controlled by
page styles. You can modify page style properties with Style Designer to define
whether to include navigation browse buttons on each page, whether to include
company logo and contact information, and other design elements for each page
that uses a specific page style. To deliver your online content as individual chunks,
or pages of information, define page breaks based on paragraph styles, such as
headings. For more information, see “Defining New Pages (Page Breaks)”.

The Prototype Style for Pages
The Prototype style is the parent to all other styles. When you set a property for
the Prototype page style, other page styles inherit the value of that property. You
can then override that value for specific styles as needed. The Prototype page
style allows you to quickly change a default property and apply that change to all
page styles within your Stationery project.

Displaying Company Logo and Information on a
Page
Most HTML-based output formats support adding company information, such as
company name, email address, and company logo, as part of a page. Once you
specify your company information in the Target Settings for your project, you can
select different locations in which to place the content on each page. If you specify
a value for Company webpage, ePublisher links the specified company name
to the specified Web page. If you specify Company email address, ePublisher
creates a mailto: link to the specified address.

If you add a logo image to your project, ePublisher displays the logo next to your
company contact information on the top or the bottom of your output pages. To
include a logo, you must first store the image file in the Files folder of your
project.

To specify your company information and the location on the page

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. Specify the appropriate values for the Company Information settings, such
as Company name and Company phone number. If you do not see these
fields in the list of target settings, the output format for the active target does
not support this feature. For more information about a setting, click Help.

4. Click OK to save the target settings.

740 | Displaying Company Logo and Informaon on a Page

5. On the View menu, click Style Designer.

6. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

7. In Page Styles, select the page style you want to modify.

8. On the Options tab, specify the appropriate values for the Company info...
options. For more information about an option, click Help.

Note: Company information is not displayed in the Preview pane.

Modifying the Appearance of the Company
Information
You can modify the appearance of the company information by creating an override
for the Page.asp file. This file controls the content coding for each page of your
content. When you modify this file, you need to change the appropriate part of
the file based on whether you want to modify the appearance of the company
information at the top of the page or at the bottom of the page. You can also
modify many other aspects of your content pages.

To modify the appearance of the company information

1. Create an override file for the Page.asp file by copying it from the installation
folder to your format or target override folder in your project, based on
whether you want to modify the appearance of the company information for
an output format or for a specific target. For more information, see “Format
and Target Overrides”.

2. Open the Page.asp file you copied to the Formats\ formatname\Pages or
Targets\ targetname\Pages folder in your project.

3. Locate the code at the top or bottom of the Page.asp file, based on whether
you want to change the appearance of the information at the top or the
bottom of the page.

To modify the top of the page, find the following line of code:

<table wwpage:condition="company-info-top" align="left"
wwpage:attribute-align="company-info-top-alignment">

To modify the bottom of the page, find the following line of code:

<table wwpage:condition="company-info-bottom" align="right"
wwpage:attribute-align="company-info-bottom-alignment">

Modifying the Appearance of the Company Informaon | 741

4. If you want to modify the appearance of the company name, create
an override for webworks.css from the Formats\[your format]\Pages\css
installation directory. Then, find td.WebWorks_Company_Name_Top in Pages
\css\webworks.css , and modify the CSS attributes, such as the font-size
or font-family , and required.

5. If you want to modify the appearance of the company phone number,
find the following code immediately after the line of code you found at the top
or bottom of the file:

<tr wwpage:condition="company-phone-exists">

<td class="WebWorks_Company_Phone_Bottom">

or <td class="WebWorks_Company_Phone_Top">

Look for td .WebWorks_Company_Phone_Bottom or
td.WebWorks_Company_Phone_Top in Pages\css\webworks.css and change
the font-size or font-family

6. If you want to modify the appearance of the company fax number, find
the following code immediately after the line of code you found at the top or
bottom of the file:

<tr wwpage:condition="company-fax-exists">

<td class="WebWorks_Company_Fax_Bottom">

or <td class="WebWorks_Company_Fax_Top">

Look for td .WebWorks_Company_Fax_Bottom or
td.WebWorks_Company_Fax_Top in Pages\css\webworks.css and change
the font-size or font-family

7. If you want to modify the appearance of the company email address,
find the following code immediately after the line of code you found at the top
or bottom of the file:

<tr wwpage:condition="company-email-exists">

<td class="WebWorks_Company_Email_Bottom">

or <td class="WebWorks_Company_Email_Top">

Look for td .WebWorks_Company_Email_Bottom or
td.WebWorks_Company_Email_Top in Pages\css\webworks.css and change
the font-size or font-family

742 | Modifying the Appearance of the Company Informaon

Setting the Background Color or Image of a
Page
You can specify a color to use as the background of a page. You can also specify an
image to use as the background. This capability allows you to include a watermark,
such as DRAFT for initial internal versions of your online content. The background
image for a page is behind other elements on the page. If you set a background
color for the page, you cannot see the background image for the page. Make sure
the image is stored in the Files folder for the project so the image file is copied to
your output folder. Also make sure the image does not make the text too difficult to
read.

To set the background color or image of a page

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Page Styles, select the page style you want to modify.

4. On the Properties tab, click Background.

5. If you want to specify a color for the background of a page, select a
color in the Color field, or type the RGB value of the color you want, such as
FFFFFF .

6. If you want to specify an image for the background of a page,
complete the following steps:

a. Save the image file in the Files folder for the project. ePublisher copies
files from the Files folder when you generate the project.

b. In the Image field under Background Image, select the image you
want to use. ePublisher lists only the image files stored in the Files
folder.

c. Specify the tiling, scrolling, and position properties to position the
image. For more information about a property, click Help.

Setting the Border Style and Color of a Page
Borders are lines that can be drawn around any or all of the four sides of a page. In
terms of the CSS box model, increasing the padding for a page style increases the
space between the content within the page and the border of the page.

Not all browsers display border styles the same way. For example, some browsers
may not differentiate dotted lines from solid lines. The size and spacing of the dots
in a dotted line may also be different between various browsers and operating

Seng the Border Style and Color of a Page | 743

systems. Some browsers may not display page borders at all. If you want a page
border, view the generated output in multiple browsers to verify that your settings
create the appearance you want.

To set the border style and color for a page

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Page Styles, select the page style you want to modify.

4. On the Properties tab, click Border.

5. Click the tab for the side of the page you want to display a border, and then
specify the color, style, and width for that border. For more information about
a property, click Help.

Adjusting the Space Around a Page
You can adjust the white space around a page by adjusting the margin and the
padding. In terms of the CSS box model, modifying the padding property adjusts
the space inside the border area. For example, if you create a border or background
color for a page and you increase the size of the padding, the border moves away
from the content in the page.

Modifying the margin properties adjusts the space outside the border area. For
example, if you create a border or background color for a page and you increase
the size of the margins around the page, the border remains the same distance
from the content in the page. However, the position of the content changes because
the space outside the border increases.

To set the margin and padding of a paragraph

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Page Styles, select the page style you want to modify.

4. On the Properties tab, click Margin.

5. Specify a value and select the unit of measure for the Left, Right, Top, and
Bottom margin properties.

6. On the Properties tab, click Padding.

7. Specify a value and select the unit of measure for the Left, Right, Top, and
Bottom padding properties.

744 | Adjusng the Space Around a Page

Using a Custom CSS to Modify the Appearance of
Content
You can use a custom CSS file to modify the appearance of your content instead of
using Style Designer for HTML-based output formats. By using style names in your
source document that match the classes defined in your custom CSS file, such as
div.Heading1, you can make sure your content uses your custom CSS file. You do
not need to create any other association between styles in your source documents
and the styles in Style Designer. Make sure you define each tag and class from your
generated output in your custom CSS file.

To use a custom CSS file with your project

1. Store your custom CSS file in the Files folder in your project.

2. Open your Stationery design project.

3. On the View menu, click Style Designer.

4. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

5. In Page Styles, select the page style you want to modify.

6. On the Options tab, select your custom CSS file in Custom document css
file.

Modifying the Location and Separators of
Breadcrumbs
Breadcrumbs form a linked path to show users the location of the current topic
in your online content. This clickable path steps you through the topics in the
hierarchy above the current topic. You can display breadcrumbs at the top of the
page, at the bottom of the page, or both. The breadcrumb trail at the top of the
output page is enabled by default.

To modify the location of the breadcrumb trail

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Page Styles, select the page style you want to modify.

Modifying the Locaon and Separators of Breadcrumbs | 745

5. On the Options tab, select the appropriate value for the Breadcrumbs
shown at top of page and Breadcrumbs shown at bottom of page
options.

6. On the Properties tab, click Navigation.

7. Specify the appropriate values for the Breadcrumbs Separator and
Alignment properties. For more information about a property, click Help.

Modifying the Appearance of Breadcrumbs
Breadcrumbs form a linked path to show users the location of the current topic in
your online content. If you enabled breadcrumbs for your output, you have several
options to define the appearance of the breadcrumbs. For more information, see
“Modifying the Location and Separators of Breadcrumbs”.

For more information about override files and locations, see “Stationery, Projects,
and Overrides”.

To modify the appearance of the breadcrumb trail

1. If you want to override the CSS settings for an output format, complete
the following steps:

a. In your Stationery design project, on the View menu, click Format
Override Directory.

b. Create the Formats\ formattype\Pages\css folder in your project
folder, where formattype is the name of the output format you want to
override, such as Microsoft HTML Help 1.x .

2. If you want to override the CSS settings for a target, complete the
following steps:

a. In your Stationery design project, on the View menu, click Target
Override Directory.

b. Create the Targets\ targetname\Pages\css folder in your project
folder, where targetname is the name of the target you want to override.

3. Copy the webworks.css file from the following folder to the override folder
you created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats
\ formattype\Pages\css

4. Open the webworks.css file you copied to your project override folder.

746 | Modifying the Appearance of Breadcrumbs

5. Find the code for div.WebWorks_Breadcrumbs and modify the values
specified within the braces:

To modify the text color, specify the desired RGB color value for the
color option.

To modify the font, specify the name of the font you want for the font-
family option.

To modify the size of the font, specify the size you want for the font-
size option.

6. Save the webworks.css file.

7. Regenerate your project to review the changes.

Choosing the Location of Navigation Browse
Buttons
If you have included navigation buttons in your output, you can specify whether
to display the browse buttons at the top or the bottom of each page. You can
also specify whether to align the button along the right or left side. Not all output
formats support navigation browse buttons.

To modify the location of navigation browse buttons

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Page Styles, select the page style you want to modify.

5. On the Options tab, select the appropriate value for the Navigation links
shown at top of page and Navigation links shown at bottom of page
options.

6. On the Properties tab, click Navigation.

7. Specify the appropriate values for the Navigation Alignment properties. For
more information about a property, click Help.

Modifying the Navigation Browse Buttons
You can use customized navigation browse buttons in your online content. For
more information about customizing the WebWorks Help navigation buttons, see
“Customizing the Toolbar in WebWorks Help”.

Modifying the Navigaon Browse Buons | 747

To change the navigation button images

1. If you want to override the images for an output format, complete the
following steps:

a. In your Stationery design project, on the View menu, click Format
Override Directory.

b. Create the Formats\ formattype\Pages\Images folder in your project
folder, where formattype is the name of the output format you want to
override, such as Dynamic HTML .

2. If you want to override the images for a target, complete the following
steps:

a. In your Stationery design project, on the View menu, click Target
Override Directory.

b. Create the Targets\ targetname\Pages\Images folder in your project
folder, where targetname is the name of the target you want to override.

3. Paste the .gif files you want to use with names identical to those you want
to replace in the Images folder you created. The following table lists the
default button images and their file names and sizes.

748 | Modifying the Navigaon Browse Buons

Image Name Image Size Description

prev.gif Width: 0.722
inch

Height: 0.333
inch

Sends the user
to the previous
HTML document.

prevx.gif Width: 0.722
inch

Height: 0.333
inch

Displayed
when there is
no previous
HTML document
available.

next.gif Width: 0.722
inch

Height: 0.333
inch

Sends the user
to the next HTML
document.

nextx.gif Width: 0.722
inch

Height: 0.333
inch

Displayed when
there is no next
HTML document
available.

4. Regenerate your project to review the changes.

Associating a Page with a Page Style
By default, output is associated with the Prototype page style in ePublisher.
Therefore, you do not have to do anything to associate pages with the Prototype
page style. However, if you want to have more than one page layout, you need to
use additional page styles.

To associate a page with a page style

1. Define page breaks based on paragraph styles, such as heading styles.

2. Define additional page styles in the Stationery.

3. If you want to associate a page with a page style other than the
Prototype page style, add a PageStyle marker or field code in your source

Associang a Page with a Page Style | 749

document after the new page style, such as the heading that starts the page.
The PageStyle marker or field code identifies what page style to use for that
page.

Provide writers with the defined page style names they need to specify in their
PageStyle markers or field codes.

Defining the Appearance of Links
You can customize the appearance of links, also known as hyperlinks and hypertext
links. You can define the color and text decoration, such as underline, for the
currently selected link (active link), links you have previously visited, links you
hover over, and the links you have not previously visited. These link settings are
stored in the webworks.css file. You can create an override for the webworks.css
file and then modify the tags that define the links.

Note: These changes do not affect output formats that do not use cascading style
sheets.

In your source files, apply a character style to identify the text to include in each
link. The character style can also affect the appearance of the link.

To change the color of links

1. In your Stationery design project, go to Advanced menu bar item and either
click
Manage Format Customizations or Manage Target Customizations.

2. Navigate to Pages\css in this window.

3. Double click the webworks.css file and it will be bolded to indicate that a
customization has been created.

4. Double click again, and the CSS file should be opened in a text editor:

5. Find the following code and modify the values specified within the braces:

a:link:active { color: #0000CC }
a:link:hover { color: #CC0033 }
a:link { color: #3366CC }
a:visited { color: #9999CC }

To modify the text color, specify the desired RGB color value for the
color option of the appropriate link type and state.

To add text decoration, such as an underline, add the text-
decoration: underline; option to the type of link you want to have
an underline, and add the text-decoration: none; option to the other
types of link.

750 | Defining the Appearance of Links

To make the link text bold when you hover over the link, add the font-
weight: bold; option to the a:link:hover definition.

6. Save the webworks.css file.

7. Save and close your project.

8. Reopen your project and regenerate to review the changes.

Saving a Snapshot (Backup Copy) of Your
Project
As you continue to make changes to your Stationery design project, you may want
to revert to a previous state, before you implemented a specific feature. You can
save a backup copy of your project and then use this backup copy at a later time, if
needed.

As you develop your Stationery design project, periodically save a snapshot of your
project. You can use this snapshot to revert to your Stationery design project at
a specific point in time. This snapshot can also help you if your design project or
Stationery become corrupted in the future. For more information about the specific
files and folders, see “Backing Up Your Stationery Design Project, Stationery, and
Projects”.

To save a snapshot (backup copy) of your project

1. Save your project and close ePublisher.

2. Copy your project folder and all its subfolders and files, and your source
documents folder, maintaining the same structure, to another location. For
example, create a folder with the date from today as the name. Then, copy
your project folder and your source documents folder into the folder you
created. This copy is your snapshot.

Defining Marker Types
If you want to create your own markers, you can define the behavior of each
marker you create. ePublisher provides many default markers to provide various
built-in features and capabilities.

Defining Marker Types | 751

Default Marker Name Description

AbbreviationTitle Specifies alt text for an abbreviation, such as SS#.
This text is displayed when a user hovers over the
abbreviation in the output.

AcronymTitle Specifies alt text for an acronym, which is displayed
when a user hovers over the acronym in the output.

Citation Specifies a citation as alt text for a quote, which is
displayed when a user hovers over the citation in the
output.

Context Plugin Specifies context plug-ins for Eclipse help systems.
Other Eclipse plug-ins can use the context plug-in IDs
to call the Eclipse help system. For more information,
see “Using Markers to Specify Context Plug-ins in
Eclipse Help”.

Description Specifies a formal description for the generated HTML
page that from the source content at this location of
the source file. In WebWorks Reverb 2.0, it is used for
the contents of the search result summary. In all HTML-
based formats, specifies the description to include in
the META tag for the topic. This META tag can improve
the search experience on the Web.

DropDownEnd Marks the end of an expand/collapse section. For more
information, see “Defining Expand/Collapse Sections
(Drop-Down Hotspots)”.

Filename Specifies the name of an output file for a page or
an image. For more information, see “Defining File
Names”.

GraphicScale Specifies a percentage to resize an image, such as 50
or 75 percent.

GraphicStyle Specifies the name of a graphic style defined in
the project to apply to an image. This marker is

752 | Defining Marker Types

Default Marker Name Description
an internal marker name that is not displayed in
Stationery Designer. You cannot create a marker with a
different name and assign it this functionality. For more
information, see “Defining the Appearance of Images”.

ImageAltText Specifies alt text for an image. This text is added to the
alt attribute of the img tag in the output.

ImageAreaAltText Specifies alt text for clickable regions in an image map.
This text is displayed when a user hovers over the
region in the output.

ImageLongDescByRef Specifies the path to the file that contains the long
description for an image. This description is used when
you create accessible content.

ImageLongDescNotReq Specifies that a long description is not required for an
image, which bypasses this accessibility check for that
image.

ImageLongDescText Specifies the long description for an image. This
description is used when you create accessible content.

Keywords Specifies the keywords to include in the META tag for
the topic. This META tag improves searchability on the
Web.

PageStyle Specifies the name of a page style defined in the
project to apply to a topic. This marker is an internal
marker name that is not displayed in Stationery
Designer. You cannot create a marker with a different
name and assign it this functionality. For more
information, see “Defining the Appearance of Pages”.

PassThrough Specifies that ePublisher place the contents of the
marker directly into the generated output without
processing the content in any way. For example, you
could use a PassThrough marker if you wanted to
embed HTML code within your generated output.

Defining Marker Types | 753

Default Marker Name Description

Popup Specifies the start of the content to include in a popup
window. The content is displayed in a popup window
when you hover over the link. When you click the link
in some output formats, the topic where the popup
content is stored, such as the glossary, is displayed. For
more information, see “Defining Popup Windows”.

PopupEnd Marks the end of the content to include in a popup
window.

PopupOnly Specifies the start of the content to include in a popup
window. The content is displayed in a popup window
when you hover over or click the link.

RubiComposite No longer supported.

SeeAlsoKeyword Specifies an internal identifier for a topic. SeeAlsoLink
markers in other topics can list this identifier to create
a link to this topic. For more information, see “Defining
See Also Links”.

SeeAlsoLink Identifies an internal identifier from another topic to
include in the list of see also links in this topic.

SeeAlsoLinkDisplayType Specifies whether to display the target topics on a
popup menu or in a window. By default, the links are
displayed in the Topics Found window. To display a
popup menu, set the value to menu . This marker is
supported only in HTML Help.

SeeAlsoLinkWindowType Specifies the name of the window defined in the hhp
file, such as TriPane or Main, that the topic opens in
when the user clicks the link. This marker is supported
only in HTML Help.

TableStyle Specifies the name of a table style defined in the
project to apply to a table in versions of Microsoft Word
that did not support table styles. This marker is an
internal marker name that is not displayed in Stationery

754 | Defining Marker Types

Default Marker Name Description
Designer. You cannot create a marker with a different
name and assign it this functionality.

TableSummary Specifies a summary for a table, which is used when
you create accessible content.

TableSummaryNotReq Specifies that a summary is not required for a table,
which bypasses this accessibility check for that table.

TOCIconHTMLHelp Identifies the image to use as the table of contents icon
for this topic in the HTML Help output format.

TOCIconJavaHelp Identifies the image to use as the table of contents icon
for this topic in the Sun JavaHelp output format.

TOCIconOracleHelp Identifies the image to use as the table of contents icon
for this topic in the Oracle Help output format.

TOCIconWWHelp Identifies the image to use as the table of contents icon
for this topic in the WebWorks Help output format.

TopicAlias Specifies an internal identifier for a topic that can be
used to create a context-sensitive link to that topic. For
more information, see “Defining Context-Sensitive Help
Links”.

TopicDescription Specifies a topic description for a context-sensitive help
topic in Eclipse help systems. For more information,
see “Using Markers to Specify Topic Descriptions for
Context-Sensitive Help Topics in Eclipse Help”.

WhatIsThisID Identifies a What’s This help internal identifier for
creating context-sensitive What’s This field-level help in
the HTML Help output format.

WindowType Specifies the name of the window defined in the help
project that the topic should be displayed in. In HTML

Defining Marker Types | 755

Default Marker Name Description
Help, the window names are defined in the hhp file.
This marker is supported in HTML Help and Oracle Help.

Defining File Names
By default, ePublisher automatically assigns file names to your generated output
files for topics (pages) and images (graphics). ePublisher assigns output file names
using a default naming rule. You can customize this naming convention using one of
the following methods:

Specifying a different topic (page) or image (graphic) naming pattern for
ePublisher to use in the target settings for your output.

Inserting Filename markers into source documents that specify the topic
(page) or image (graphic) file name ePublisher should use for the file when
generating output.

Specifying File Names for Pages Using Page
Naming Patterns
By default, ePublisher uses the following values when specifying file names for
pages:

$D;.$DN;.$PN

This specifies that ePublisher name the files using the following syntax when it
generates page files for a target:

SourceDocumentName.SourceDocumentNumber.TopicNumber

The parts of the default naming rule are defined as follows:

SourceDocumentName

Identifies the name of the source document that the topic came from without
the file extension.

SourceDocumentNumber

Identifies the number of the source document in the order it is included in its
containing group in the project, such as 1 for the first source document in a
group and 2 for the second source document in a group. This value starts at 1
for the first source document in each group in your project.

TopicNumber

756 | Specifying File Names for Pages Using Page Naming Paerns

Identifies the number of the topic (output page) generated from the source
document, such as 1 for the first topic generated from a source document and
2 for the second topic generated from a source document. This value starts at
1 for the first topic in each source document.

For example, if you have a MyFile.fm source document that contains three
topics that start with a paragraph style that has a page break priority set in
Style Designer, ePublisher generates the following default output file names:
MyFile.1.1.html , MyFile.1.2.html , and MyFile.1.3.html . You can change the
default file extension for each page style.

You can use the following values to specify a page file naming pattern for a target:

Note: Each value you specify must begin with a dollar sign ($) character and end
with a semicolon (;) character. Inserting a period (.) character immediately
before the value specifies that ePublisher use a period to separate the values
when generating output.

Specifying File Names for Pages Using Page Naming Paerns | 757

Value Description

$P; Includes the name of the project in the file name.

$T; Includes the name of the target in the file name.

$G; Includes the name of the group in Document Manager
that contains the file name.

$C; Includes the project to project linking context value
of the group in the file name. WebWorks Help and
WebWorks Reverb use the context value when
generating merged, or multivolume help that includes
context-sensitive help. In WebWorks Help/Reverb,
you need to include this context and the TopicAlias
value in the help call to display the correct help topic.
For more information, see “Merging Top-level Groups
(Multivolume Help)” and “Opening Context-Sensitive
Help in WebWorks Help using Standard URLs”.

$H; Includes the heading text or title of the topic in the file
name.

$D; Includes the name of the source document that the
topic came from in the file name.

$DN; Includes the source document number in the file name.
The source document number is the number that
identifies the position of the source document in the
project.

$PN; Includes the page number in the file name. The page
number is the number of the page that the topic is on
in the source document.

You can also specify if you want ePublisher to convert spaces in file names to
underscore (_) characters when generating output. If you enable this setting,
when you generate output, spaces in file names are replaced with the underscore
character. For example, with this setting disabled, file names display as Word1

758 | Specifying File Names for Pages Using Page Naming Paerns

Word2.html . With this setting enabled, when you generate output file names
display as Word1_Word2.html .

To specify a page file naming patterns for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under Files, specify the appropriate values for the page file naming pattern
you want to use. For more information about file settings and values, click
Help.

Specifying File Names for Images Using Graphic
Naming Patterns
ePublisher preserves the original file names for images imported by reference. If
images are inserted directly into a source document, or if ePublisher cannot process
the image by reference, then ePublisher assigns a file name using a graphic naming
pattern.

By default ePublisher uses the following values when specifying file names for
images:

$D;.$DN;.$PN;$.GN

This specifies that ePublisher name the files using the following syntax when it
generates image files for a target:

SourceDocumentName.SourceDocumentNumber.TopicNumber.ImageNumber

The parts of the default naming rule are defined as follows:

SourceDocumentName

Identifies the name of the source document that the topic came from without
the file extension.

SourceDocumentNumber

Identifies the number of the source document in the order it is included in its
containing group in the project, such as 1 for the first source document in a
group and 2 for the second source document in a group. This value starts at 1
for the first source document in each group in your project.

TopicNumber

Specifying File Names for Images Using Graphic Naming Paerns | 759

Identifies the number of the topic (output page) generated from the source
document, such as 1 for the first topic generated from a source document and
2 for the second topic generated from a source document. This value starts at
1 for the first topic in each source document.

ImageNumber

Identifies the number of the image in the topic generated from the source
document, such as 1 for the first image generated in a topic and 2 for the
second image generated in a topic. This value starts at 1 for the first image in
each topic.

For example, if you have a source document named MyFile.doc that contains
two images in the first topic that generates an output file, and three images in
the second topic that generates an output file, and all the images are directly
included in the source document, ePublisher generates the following default output
image file names: MyFile.1.1.1.jpg , MyFile.1.1.2.jpg , MyFile.1.2.1.jpg ,
MyFile.1.2.2.jpg , and MyFile.1.2.3.jpg . You can change the default format
and file extension for each graphic style.

You can use the following values to specify an image (graphic) file naming pattern
for a target:

Note: Each value you specify must begin with a dollar sign ($) character and
end with a semicolon (;) character. Inserting a period (.) character
immediately before the value specifies that ePublisher use a period to
separate the values when generating output.

760 | Specifying File Names for Images Using Graphic Naming Paerns

Value Description

$P; Includes the name of the project in the file name.

$T; Includes the name of the target in the file name.

$G; Includes the name of the group in Document Manager
that contains the file name.

$C; Includes the project to project linking context value
of the group in the file name. WebWorks Help and
WebWorks Reverb use the context value when
generating merged, or multivolume help that includes
context-sensitive help. In WebWorks Help/Reverb,
you need to include this context and the TopicAlias
value in the help call to display the correct help topic.
For more information, see “Merging Top-level Groups
(Multivolume Help)” and “Opening Context-Sensitive
Help in WebWorks Help using Standard URLs”.

$H; Includes the heading text or title of the topic in the file
name.

$D; Includes the name of the source document that the
topic came from in the file name.

$DN; Includes the source document number in the file name.
The source document number is the number that
identifies the position of the source document in the
project.

$PN; Includes the page number in the file name. The page
number is the number of the page that the topic is on
in the source document.

$GN; Includes the graphic number in the file name. The
graphic number is the sequential number of the graphic

Specifying File Names for Images Using Graphic Naming Paerns | 761

Value Description
in the generated output, and it is based on the position
of the graphic in the generated output.

You can also specify if you want ePublisher to convert spaces in file names
to underscore (_) characters when generating output. If you enable this
setting, when you generate output, spaces in file names are replaced with
the underscore character. For example, with this setting disabled, file
names display as Word1 Word2.jpg . With this setting enabled, when you
generate output file names display as Word1_Word2.html .

To specify an image (graphic) file naming pattern for a target

1. On the Project menu, select the target next to Active Target for which you
want to specify settings.

2. On the Target menu, click Target Settings. You must have target
modification permissions to modify target settings. For more information, see
“Working with Target Settings”.

3. Under Files, specify the appropriate values for the graphic file naming pattern
you want to use.

Using Markers to Define File Names
You can use markers and field codes to specify the file name for a topic or image.
Writers insert a Filename marker into their source documents and specify the file
name they want to assign to the topic of image in the marker.

The default name for this marker type or field code is Filename. You can define your
own marker style with a different name in your Stationery and assign the Filename
marker type to it. Then, writers can use this marker type or field code to specify the
output file name for each topic and included image.

Note: ePublisher uses page and graphic naming patterns to assign file names to
all topics and images that do not include a Filename marker type or field
code. For more information, see “Specifying File Names for Pages Using
Page Naming Patterns” and “Specifying File Names for Images Using Graphic
Naming Patterns”.

To assign file name behavior to file name markers

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Marker Styles, select the marker style you want to modify.

762 | Using Markers to Define File Names

4. On the Options tab, set Marker type to Filename.

Defining Context-Sensitive Help Links
Context-sensitive help links provide content based on the context of what the user
is doing. In many cases, this help content is based on the window that is open and
active. For example, the Help button on a window in a software product can open a
specific help topic that provides important information about the window:

What the window allows you to do

Brief concepts needed to understand the window

Guidance for how to use the window

Descriptions about each field on the window, valid values, and related fields

Links to related topics, such as concepts and tasks related to the window

The help topic can also be embedded in the window itself, such as an HTML pane
that displays the content of the help topic. Providing this content when and where
the user needs it, without requiring the user to search through the help, keeps
the user productive and focused. This type of help also makes the product more
intuitive by providing answers when and where needed.

There are several methods for creating context-sensitive help. In addition, output
formats use different mechanisms to support context-sensitive help. You can
reference a topic in the following ways:

File name

Use a Filename marker to assign a file name to a topic. Each topic can have
no more than one Filename marker by default. However, you can create a
custom mapping mechanism using file names. Then, you can open the specific
topic with that file name. However, if your file naming changes, you need
to change the link to the topic. This file naming approach delivers context-
sensitive help capabilities in output formats that do not provide a mapping
mechanism.

Internal identifier (topic alias)

Use a TopicAlias marker to define an internal identifier for each topic. The
benefit of using an internal identifier is that it allows file names to change
without impacting the links from the product. The writer inserts this marker
in a topic and specifies a unique value for that topic. Then, the mapping
mechanism of your output format determines how that internal identifier is
supported. Some output formats, such as HTML Help, use a mapping file that

Defining Context-Sensive Help Links | 763

defines these topic aliases. You can create more than one TopicAlias marker in
a topic to allow multiple context-sensitive links to display the same topic.

To simplify the coding of your source documents, you can use the same marker to
define both the file name and the topic alias for each topic file. In Style Designer,
set the Marker type option for the marker you want to use to Filename and topic
alias.

For more information about using markers to enable context-sensitive help links,
see the following topics:

“Defining Filename Markers for Context-Sensitive Help Links”

“Defining Filename Markers for Context-Sensitive Help Links”

For more output format-specific information about using and customizing context-
sensitive help, see the following topics:

“Using Context-Sensitive Help in WebWorks Help”

“Using Context-Sensitive Help in HTML Help”

“Using Context-Sensitive Help in Oracle Help and Sun JavaHelp”

“Using Context-Sensitive Help in WebWorks Reverb”

“Using Context-Sensitive Help in WebWorks Reverb 2.0”

Defining Filename Markers for Context-Sensitive
Help Links
To enable context-sensitive help links using file names, you need to enable the
Filename marker. By default, ePublisher sets the Marker type option for a marker
named Filename to Filename. You can create a marker with a different name and
set the Marker type option for that marker to Filename.

Then, writers can use this marker in the source documents to define a file name
for each topic that will be opened by the application. File names must follow these
guidelines:

Must be unique

Can only contain characters valid for file names

To assign file name behavior to file name markers

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

764 | Defining Filename Markers for Context-Sensive Help Links

3. In Marker Styles, select the marker style you want to modify.

4. On the Options tab, set Marker type to Filename.

Defining TopicAlias Markers for Context-
Sensitive Help Links
To enable context-sensitive help links using topic IDs, you need to enable the
TopicAlias marker. By default, ePublisher sets the Marker type option for a marker
named TopicAlias to Topic alias. You can create a marker with a different name
and set the Marker type option for that marker to Topic alias.

Then, writers can use this marker in the source documents to define a topic ID
in each topic that will be opened by the application. Topic IDs must follow these
guidelines:

Must be unique

Must begin with an alphabetical character

May contain alphanumeric characters

May not contain special characters or spaces, with the exception of
underscores (_)

To assign topic alias behavior to topic alias markers

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In Marker Styles, select the marker style you want to modify.

4. On the Options tab, set Marker type to Topic alias.

To avoid duplicate topic Alias markers in Word, follow these steps:

1. Always insert topic alias markers at the end of Word headings, never at the
start or middle.

2. When you edit the headings, always display hidden text. Otherwise, you
might inadvertently move a topic alias to the middle of the heading, causing
problems.

Defining Expand/Collapse Sections (Drop-
Down Hotspots)

Defining Expand/Collapse Secons (Drop-Down Hotspots) | 765

You can create sections of content that expand and collapse when you click a link
or hot spot. This structure allows you to create items, such as bulleted lists, that
are easy to scan, and then the users can expand individual items to get additional
information. You can also use this structure to provide definitions.

When you identify the paragraph styles to start expand/collapse sections, you
define whether those sections should initially be expanded (shown) or collapsed
(hidden). ePublisher inserts an image indicating the state of the link. When a user
clicks on a hotspot with the initial content collapsed, the content expands under
the hotspot. If the user clicks a second time on the hotspot, the content is hidden
again.

Using Styles and Markers for Expand/Collapse
Sections
To use expand/collapse sections, you need the paragraph styles you want to start
these sections, and you need the DropDownEnd marker in your source documents.
Decide which paragraph styles should provide the link and start an expand/collapse
section. For example, you could make Heading 4, Procedure Title, and Bullet
Expand paragraph styles start expand/collapse sections.

To enable expand/collapse sections in your Stationery

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Paragraph Styles, select the paragraph style you want to define as the
link for the start of an expand/collapse section.

5. On the Options tab, set Dropdown to Start open or Start closed, based
on whether you want the expand/collapse section to be displayed or hidden by
default.

6. On the Options tab, set Dropdown toggle icon position to Left or Right,
based on whether you want the expand/collapse button to be on the left or
right of your paragraphs.

7. Repeat steps 3-4 for each paragraph style you want to start expand/collapse
sections.

When writers use these styles, they can identify the end of each expand/collapse
section with the DropDownEnd marker. All other paragraph styles should have the
Dropdown option set to Continue to be included in the expand/collapse sections as
needed.

766 | Using Styles and Markers for Expand/Collapse Secons

Modifying Images for Expand/Collapse Sections
You can replace the default images ePublisher uses to indicate the state of an
expanded or collapsed hotspot. For more information about override files and
locations, see “Stationery, Projects, and Overrides”.

To modify expand/collapse images

1. If you want to override the images for an output format, complete the
following steps:

a. In your Stationery design project, on the View menu, click Format
Override Directory.

b. Create the Formats\ formattype\Files\images folder in your project
folder, where formattype is the name of the output format to override,
such as Dynamic HTML .

2. If you want to override the images for a target, complete the following
steps:

a. In your Stationery design project, on the View menu, click Target
Override Directory.

b. Create the Targets\ targetname\Files\images folder in your project
folder, where targetname is the name of the target you want to override.

3. Paste the .gif files you want to use with names identical to those you want
to replace in the Images folder you created. The following table lists the
default images and their file names and sizes.

Modifying Images for Expand/Collapse Secons | 767

Image Image Name Image Size

expanded.gif Width: 8 pixels (0.111
inch)

Height: 6 pixels (0.083
inch)

collapse.gif Width: 6 pixels (0.083
inch)

Height: 8 pixels (0.111
inch)

Note: If you are generating with WebWorks Reverb output, you will modify the
expand/collapse images in the skin.png file located in Pages\images in the
Format or Target override directory for this output. For more information, See
“Changing the Appearance of WebWorks Reverb”.

4. Regenerate your project to review the changes.

Defining Popup Windows
You can use popup windows to display brief additional information about a word or
phrase, such as a glossary definition for a term in a topic. A popup window displays
a link in a topic, which indicates to users they can hover over or click on the link,
which displays the additional content. Popup windows streamline the initial content
and allow users to choose whether the want to view the additional content.

To create a popup window, writers first create a link in the original text to the
content it should display. Writers create this link using the link features in their
source document application. Then, the writers can implement the popup window
using markers or paragraph styles.

You need to assign popup behavior options to your paragraph and marker styles in
your Stationery.

Using Marker Styles to Create Popup Windows
The default marker styles that define popup windows are Popup, PopupOnly, and
PopupEnd. The writer inserts these markers into the source documents to specify
what content to display through the popup window, and whether the popup content
is displayed in only a popup window or in both a popup window and a clickable

768 | Using Marker Styles to Create Popup Windows

link that displays the content in a different topic. Some output formats support
displaying the content only in a popup window.

Using Paragraph Styles To Create Popup
Windows
You can define paragraph styles in your source documents to create popup
windows. This approach avoids the need for markers, but you may need to create
more styles in your source document templates. You can define both marker styles
and paragraph styles to create different popup windows in your content.

To define paragraph styles for popup windows

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Paragraph Styles, select the paragraph style you want to define as the
first paragraph of a popup window.

This paragraph style is applied only to the first paragraph of content that
should be displayed in a popup window. If a popup window may contain more
than one paragraph of content, you need to create a second paragraph style
and apply it to all paragraphs following the first paragraph that should be
displayed in the popup window.

5. On the Options tab, select the appropriate value for the Popup option,
such as Define or Define with no output. For more information about this
option, click Help.

6. Select the paragraph style you want to define as one of the paragraphs of a
popup window that follows the first paragraph of the popup window.

7. On the Options tab, select the appropriate value for the Popup option, such
as Append or Append with no output. For more information about this
option, click Help.

Assigning a Page Style to Popup Windows
If you have popup windows in your content, the appearance of the popup windows
matches the rest of your topic pages, including breadcrumbs and company
information. If you want to assign a different page style to your popup windows,
you need to create a new page style and assign it to your popup paragraph styles.

Assigning a Page Style to Popup Windows | 769

Note: If you are using marker styles to create popup windows, you cannot use page
styles to control the appearance of your popup windows. This process applies
only to popup windows created with paragraph styles.

To assign a page style to popup windows

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. Create a new page style for popup windows by completing the following steps:

a. In Page Styles, click the New Style button. ePublisher adds a new
page style called Untitled.

b. Enter the name for the new page style, such as Popup Windows .

c. On the Properties tab and the Options tab, select the options you
want to assign to this page style.

5. In Paragraph Styles, select your popup paragraph style.

6. On the Options tab, set Popup page style to the page style you created for
popup windows, such as Popup Windows .

Defining Related Topics
Related topics provide a list of other topics that may be of interest to the user
of the current topic. For example, you could have a section called Creating Web
Pages in your help. You may also have many other topics, such as HTML Tags and
Cascading Style Sheets, that relate to creating Web pages. Identifying these related
topics for users can help them find the information they need and identify additional
topics to consider. However, providing these types of links as cross references within
the content itself may not be the most efficient way to present the information.

Related topics and See Also links provide similar capabilities, but there are several
important differences:

Related topics can link to headings in a help set that do not start a new page.

Related topics links are static and defined in the source documents as links.
You must have all the source documents to create the link and generate the
output.

770 | Defining Related Topics

If a related topics list contains a broken link in the source document, that link
is broken in the generated output. In a See Also link list, the broken link is not
included in the output.

You can configure related topics to be displayed in the following ways:

Included as a list in the topic itself.

Displayed in a popup window when the user clicks a button, as shown in the
following figure.

Note: If a related topic link is broken in the source document, in most cases that
link is broken in the generated output. WebWorks Help and WebWorks Reverb
provide an additional feature by removing broken links from related topics
lists that are displayed in a popup window when a user clicks the Related
Topics button.

Using a Paragraph Style for Related Topics Lists
You can use a paragraph style to define a related topics list. Create a unique
paragraph style to use specifically for the related topics list items. The writer should
create a list of links in a topic in the source document, and apply the paragraph
style to each list item.

Using a Paragraph Style for Related Topics Lists | 771

To define a paragraph style for a related topics list

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. In Paragraph Styles, select the paragraph style you want to define as the
related topics list. This paragraph style is applied to all paragraphs in a related
topics list.

5. On the Options tab, select the appropriate value for the Related topic
option. For more information about this option, click Help.

To display the list of related topics in the body of the topic, select
Define.

To display the list of related topics only when the Related Topics
button is clicked, select Define with no output.

Note: The Show related topics inline button and the Show related topics
toolbar button target settings specify whether to include related topics
buttons and where to include them. If you select Define for your related
topics paragraph style and you enable the Show related topics inline
button setting, both the list of related topics and the related topics button
itself are displayed in the topics with related topics.

Defining See Also Links
See Also links are associative links (Alinks) that identify other topics that may be
of interest to the user of the current topic. These links use internal identifiers to
define the links and the list is built dynamically based on the topics available when
the user displays the links. See Also links are important to use with larger help sets
and merged help sets.

Related topics and See Also links provide similar capabilities, but there are several
important differences:

See Also links must link to styles that start a new topic, such as a heading.

See Also links are dynamic and the lists of links are built at display time
instead of during help generation.

Since See Also link lists are dynamically built, they do not include links to
topics that are not available when the user displays the links. If a related

772 | Defining See Also Links

topics list contains a broken link in the source document, that link is broken in
the generated output for most output formats.

Enabling See Also Functionality
If you want to create a See Also link as inline text without a button, create a unique
character style and select the See Also option for that style. If you want to use
a button to display the See Also links, create a unique paragraph style, select the
See Also option for that style, and type the See Also text on that paragraph. The
properties you select for the paragraph style in Style Designer affect the text of
the See Also button. To modify the appearance of the button itself, see “Modifying
the Appearance of the See Also Button”. You also need to create a SeeAlsoLink and
SeeAlsoKeyword marker.

HTML Help also supports the SeeAlsoLinkDisplayType and SeeAlsoLinkWindowType
markers. These markers allow you to change how the See Also links are displayed
in HTML Help. For example, you can display the links as a popup menu.

Note: If paragraph and marker styles are created in your source document after
you create a project, scan the document in the project again for the changes
to take effect.

To enable See Also functionality in your Stationery

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. On the Project menu, click a target in the Active Target menu option that is
an output format that supports this option.

4. If you want to use buttons for See Also links, complete the following
steps:

a. In Paragraph Styles, select the paragraph style to use for See Also
links.

b. On the Options tab, set See Also to Enabled.

5. If you want to use inline text for See Also links, complete the following
steps:

a. In Character Styles, select the character style to use for See Also
links.

b. On the Options tab, set See Also to Enabled.

6. In Marker Styles, select the SeeAlsoKeyword marker style.

7. On the Options tab, set Marker type to See Also Keywords.

Enabling See Also Funconality | 773

8. In Marker Styles, select the SeeAlsoLink marker style.

9. On the Options tab, set Marker type to See Also Link Keywords.

Modifying the Appearance of the See Also Button
The properties you select for the paragraph style in Style Designer affect the text
of the See Also button. In some output formats, you can modify the color of the
See Also button background and borders. You must separately modify each button
border. You can also modify each of the See Also button colors.

Note: To change the color of the See Also button, you modify the content.xsl file.
If you modify the content.xsl file, you will be responsible for maintaining
your customizations to the file as needed each time you update your
Stationery to work with a new version of ePublisher.

For more information about override files and locations, see “Stationery, Projects,
and Overrides”.

To change the color of the See Also button

1. If you want to override the processing for an output format, complete
the following steps:

a. In your Stationery design project, on the View menu, click Format
Override Directory.

b. Create the Formats\ formattype\Transforms folder in your project
folder, where formattype is the name of the output format you want to
override, such as WebWorks Help 5.0 .

2. If you want to override the processing for a target, complete the
following steps:

a. In your Stationery design project, on the View menu, click Target
Override Directory.

b. Create the Targets\ targetname\Transforms folder in your project
folder, where targetname is the name of the target you want to override.

3. Copy the content.xsl file from the following folder to the override folder you
created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats
\ formattype\Transforms

4. Open the content.xsl file you copied to your project override folder.

5. Find the following code section.

774 | Modifying the Appearance of the See Also Buon

<html:table border="0" cellspacing="0" cellpadding="0"
onclick="{$VarCargo/wwalinks:ALink[1]/@onClick}" summary="">
 <html:tr>
 <html:td height="2" colspan="4" bgcolor="#FFFFFF"></html:td>
 <html:td width="2" height="2" background="{$Var_seertup}"></
html:td>
 </html:tr>
 <html:tr>
 <html:td width="2" height="2" bgcolor="#FFFFFF"></html:td>
 <html:td height="2" colspan="3" bgcolor="#EEEEEE"></html:td>
 <html:td width="2" height="2" background="{$Var_seeright}"></
html:td>
 </html:tr>
...

6. Modify the RGB color values in the bgcolor attributes within this table to
adjust the colors of the margins that form parts of the See Also button.

7. Save the content.xsl file.

8. Regenerate your project to review the changes.

Define the Default Settings for Each Target
You can have one or more output formats in your Stationery. You can also define
multiple targets in your Stationery. The Stationery Designer properties and options
are shared across all targets and output formats. Some settings, such as the target
settings, variable values, conditions, and cross-reference formats, are defined
per target. Some targets and output formats also offer additional features and
customizations.

For each target in your Stationery, define the following default settings in your
Stationery. If a writer installs the support with ePublisher Express, that writer can
modify these settings in each project based on the Stationery:

Target settings, such as the company information and navigation on each
page. To specify the target settings for a target, select the target, and then
click Target Settings on the Target menu. For more information about a
setting, click Help.

Index settings. For more information, see “Defining the Default Index
Settings”.

Variable values. For more information, see “Defining the Default Processing of
Variables”.

Condition visibility. For more information, see “Defining the Default Processing
of Conditions”.

Define the Default Sengs for Each Target | 775

Cross Reference formats and rules. For more information, see “Defining the
Default Processing of Cross References”.

PDF integration. For more information, see “Defining Default PDF Generation
Settings”.

Output format-specific customizations and features. For more information, see
“Customizing Stationery for Output Format-Specific Features”.

Reporting options, such as accessibility reporting. For more information, see
“Defining the Accessibility Report to Validate Content” and “Defining Other
Reporting Options”.

Defining the Default Index Settings
The index provides the user with a point-and-click resource for quickly navigating
your online content. ePublisher generates the index by default for the available
formats, using the native indexing features of the source document tool used to
create the printed index.

The groups and order of index entries in your online index are determined
through index entries defined in the source document, the locales.xml file in
the ePublisher installation folder, and the output format display environment.
The locales.xml file also defines the text that identifies See and See also
style entries in your index. For more information about customizing the index
appearance, see “Modifying the Appearance of the Index in Dynamic HTML”.

Depending on your output format, you can specify the file name for the generated
index whether to generate the index. With the power of many full-text search
engines, you may choose not to include an index in your generated output.

Note: If you selected the WebWorks Help or WebWorks Reverb output format,
you must generate an index with the given file name. These options are
predefined and cannot be changed.

To enable index generation in your online content

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. Set Generate index to Enabled.

4. If you want to change your index file name and your output format
supports it, specify the new file name in Index filename.

Defining the Default Processing of Variables

776 | Defining the Default Processing of Variables

A variable provides a placeholder for standard terms and for names that may
change. By defining variables in your source documents, you have global control
over the values contained within those variables. For example, you can create
a variable for the copyright date of your documentation. You can then use that
variable as needed in your content. Each year when you need to update the
copyright, you can change the variable value in a single location instead of using
the search and replace method through your documents.

In your project, you can specify the value of any variable. When you change the
value of a variable in your project, it changes the value only in your generated
output. The variable value is not changed in your source documents. You can also
use the value of the variable defined in your source documents. To use the value
defined in a source document for a variable, select Use Document Value for that
variable.

To specify a variable value

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Variables.

3. Find the variable you want to modify.

4. In the Value column, select its current definition and make the desired
changes, or select Use Document Value.

Defining the Default Processing of Conditions
In your source documents, you can define conditions and use them to show or
hide parts of your content. ePublisher allows you to define the visibility for each
condition in your project. The conditions that are available in your project come
directly from your source documents. You can modify the value for any of your
conditions, which affects how your conditional text is incorporated into your
generated output. You can also select passthrough for a condition to insert the
content directly into your output without being transformed and coded for your
output format. This option allows you to directly add HTML coding or multimedia
files to your output.

Note: You can also use PassThrough markers and the Pass Through paragraph style
and character style options to insert content directionly into your output
without being transformed and coded for your output.

To modify the value of a condition

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Conditions.

Defining the Default Processing of Condions | 777

3. Find the condition you want to modify.

4. In the Value column, select the visibility option you want to use for that
condition.

Defining the Default Processing of Cross
References
Cross-references help users navigate through your content. ePublisher
automatically transforms cross-references to links in the generated output.
However, you often want cross-references in your online content to use a different
format than your printed content. For example, you usually include page numbers
only in your printed content. ePublisher enables you to add, edit, and delete cross-
reference formats for your online output.

Note: This option is available only for specific source document types and each
defined cross reference rule applies only to the selected source document
type.

To define and manage cross-reference formats

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Cross Reference Rules.

3. In Document type, select the source document type for which you want to
define the cross-references.

4. If you want to add a cross reference format, complete the following
steps:

a. Click Add New Cross Reference.

b. In Name, type the format or name of the cross reference format you
want to define. For example, to remove the phrase see page followed
by a page number from a Word source document, type: see page
{PAGEREF \h} . You can find the correct syntax for the search pattern by
inspecting your source documents for the values.

c. In Replacement, type the format or text you want to replace the
format you specified in Name. To replace the format with nothing, leave
the Replacement field blank.

d. Click OK.

5. If you want to modify a defined cross-reference format, complete the
following steps:

778 | Defining the Default Processing of Cross References

a. Double-click an existing cross-reference format you want to modify.

b. In Replacement, type the format or text you want to replace the
format you specified in Name. To replace the format with nothing, leave
the Replacement field blank.

c. Click OK.

6. If you want to change the order in which ePublisher processes the
cross-reference formats, select a cross reference rule in the list, and then
use the arrow buttons to arrange the formats from top to bottom in the order
you want ePublisher to process them:

7. If you want to delete a defined cross-reference format, select the cross
reference rule in the list, and then click Delete Cross Reference:

8. Click OK to close the Cross Reference Rules window.

Defining Default PDF Generation Settings
ePublisher provides PDF options that enable you to generate a PDF file for each
source document or to generate a PDF file for each top-level group in a project. If
you generate a PDF for each top-level group, ePublisher combines all the source
documents within a single top-level group, and then generates a single PDF file for
those documents.

You can deliver the PDF files separate from your help system, or in some output
formats you can add a PDF button to your toolbar that displays the PDF files in the
window. The PDF file displayed when the user clicks the PDF button depends on
which PDF generation options you chose in your project. If you have selected to:

Generate PDF files only for the top-level groups, the window displays the PDF
file for the top-level group in which the currently viewed topic is located when
the user clicks the PDF button.

Generate PDF files only for each source document, the window displays the
PDF file for the source document in which the currently viewed topic is located
when the user clicks the PDF button.

Generate PDF files for all source documents and for all top-level groups, the
window displays the PDF file for the source document in which the currently
viewed topic is located when the user clicks the PDF button.

To specify the PDF file generation settings and enable the PDF toolbar
button

1. On the Project menu, select the Active Target you want to specify settings
for.

Defining Default PDF Generaon Sengs | 779

2. On the Target menu, click Target Settings.

3. If you want to generate a PDF file for each source document, set
Generate a PDF per document to Enabled.

4. If you want to generate a PDF file for each top-level group of source
documents, set Generate a PDF per top level group to Enabled.

5. Set Show PDF button to Enabled.

6. Click OK.

Defining the Accessibility Report to Validate
Content
Content that must be accessed by people with disabilities must conform to
guidelines published by both the W3C and the United States government. These
guidelines are intended to help authors produce accessible content. ePublisher helps
you produce online content that conforms to the W3C Web Content Accessibility
Guidelines 1.0 (WCAG), Section 508 of the U.S. Rehabilitation Act of 1998, and the
Americans with Disabilities Act (ADA).

If you take certain steps in creating your source documents and setting up your
project, your generated output is accessible through assistive technologies such as
screen readers. When you generate your project, ePublisher can perform several
checks to verify that you embedded information and conform to the accessibility
standard in these areas:

Alternate text for all images (ImageAltText marker)

Alternate text for clickable regions in all image maps (ImageAreaAltText
marker)

Long descriptions for all images (ImageLongDescText and
ImageLongDescByRef markers)

Summaries for all tables (TableSummary marker)

Note: ePublisher does not check to ensure that you have provided expansion
text for abbreviations or acronyms nor does it verify that you have
included citation markers for quotations. You can use the AbbreviationTitle,
AcronymTitle, and Citation markers to add this information to your content.

For more information about producing accessible content, and to check your content
further for compliance, see the following Web sites:

www.w3c.org/TR/WCAG10-CORE-TECHS

780 | Defining the Accessibility Report to Validate Content

http://www.w3c.org/TR/WCAG10-CORE-TECHS

www.w3.org/WAI

www.w3.org/WAI/Policy/

ePublisher does not perform accessibility validation by default. You must enable
accessibility validation of the content. ePublisher validates that all images and
image maps have alternate text, all images have long descriptions, and all tables
have summaries. You can choose which accessibility validation checks you want
ePublisher to run.

Note: If you disable any of the accessibility validation checks, you cannot consider
your content to be accessible or Section 508 compliant.

To define the accessibility report that validates online content for
accessibility compliance

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. Set Generate accessibility report to Enabled.

4. If you want to exclude the alternate text check for images, disable
Validate accessibility image alternate tags.

5. If you want to exclude the alternate text check for image maps,
disable Validate accessibility image map alternate tags.

6. If you want to exclude the long description check for images, disable
Validate accessibility image long descriptions.

7. If you want to exclude the summary check for tables, disable Validate
accessibility table summaries.

When a project based on this Stationery is generated, the accessibility report is
created with the information you selected to include in that report.

Defining Other Reporting Options
In addition to the accessibility reporting features, ePublisher provides reports to
help you identify and resolve potential transformation issues. You can define which
conditions are informational messages, warnings, or errors. Errors force ePublisher
AutoMap to return a non-zero return code and stops the output deployment
process.

To define the other report options

Defining Other Reporng Opons | 781

http://www.w3.org/WAI
http://www.w3.org/WAI/Policy/

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. Review and define the settings for the following categories of report settings:

Filenames Report

Links Report

Styles Report

Topics Report

4. Click OK.

Saving and Testing Stationery
Once you have defined your Stationery design project, you need to save and test
the Stationery. This process allows you to adjust the Stationery as needed before
further customizing your design and deploying the Stationery for use.

Note: Document-specific information, such as groups, documents, and changes
made with Document Designer, are not saved in Stationery files.

When you save the Stationery design project as Stationery, ePublisher stores all
the style information, settings, and definitions from the project in the Stationery.
ePublisher also copies the user, output format, and format target override files, and
saves them as part of your Stationery.

To save your Stationery design project as Stationery and test it

1. Open your Stationery design project.

2. On the File menu, click Save as Stationery.

3. Specify the Stationery name, location to store the Stationery, and the targets
to include in the Stationery. For more information about an option, click Help.

4. Click OK.

5. Close ePublisher Designer.

6. Open ePublisher Express.

7. On the File menu, click New Project.

8. Specify the project name and the location to store the project.

782 | Saving and Tesng Staonery

9. In Stationery, specify your Stationery file, and then click Next.

10. Add your standard sample source document to the project, and then click
Finish. For more information about an option, click Help.

11. On the Project menu, click Scan All Documents.

12. On the Project menu, select the active target you want to test.

13. On the Project menu, click Generate All.

14. Review the generated output.

15. Repeat steps 12-14 for each target in your project.

Once you finish customizing your Stationery, store it in a central location where
writers can use it. If you move the Stationery, ePublisher Express notifies the
writers when they open their projects that it cannot find the Stationery associated
with the project. The writers then need to update their projects to use the
Stationery in its new location.

Backing Up Your Stationery Design Project,
Stationery, and Projects
You should save a backup copy of your Stationery design project, your Stationery,
and any individual projects you have. These snapshots can help you revert your
project to a specific stage at a point in time. This snapshot can also help you if your
project or Stationery become corrupted or lost.

Backing Up Your Staonery Design Project, Staonery, and Projects | 783

Element to Back Up Description of Process and Considerations

Stationery design project Copy all your sample files, the .wep file, and the
Files , Formats , and Targets folders and subfolders.
Maintain the same structure of these files and folders.

Stationery You can create a .zip file of your Stationery to back
it up. If needed, you can also recreate your Stationery
from your Stationery design project. Copy the .wxsp
file, the .manifest file, and the Files , Formats , and
Targets folders and subfolders. Maintain the same
structure of these files and folders.

Individual project To recreate your generated output, you need the
source documents, the Stationery you used, and your
individual project file. Copy your source documents
and the .wrp file. Maintain the same structure of your
source files and the .wrp file.

Deploying Stationery
Once you have saved, tested, and finished customizing your Stationery, you need to
deploy it so writers can use the Stationery for their projects. Review the following
considerations when deploying your Stationery for writers to use in their projects:

Store your Stationery in a central location where writers have read access.

When you save the Stationery design project as Stationery, ePublisher stores
all the style information, settings, and definitions from the project in the
Stationery. ePublisher also copies the user, output format, and format target
override files, and saves them as part of your Stationery.

If you move the Stationery, ePublisher Express notifies the writers when they
open their projects that it cannot find the Stationery associated with the
project. The writers then need to update their projects to use the Stationery in
its new location.

Make sure your source document templates and standards support your
Stationery. Keep these files updated as a unit. If you add a style to your Word
or FrameMaker template, also add it to your Stationery design project and
update your Stationery.

784 | Deploying Staonery

If the source documents for an existing project use only the styles in your
standard templates, writers can use ePublisher Express to synchronize their
project with your Stationery. This process allows you to update the project
using the current Stationery for the project, or you can select a different
Stationery to associate with the project.

Schedule a training session with the team about each of the features they can
use in their help, how to use styles and markers to define those features, and
how to use ePublisher Express and their projects to achieve the results they
need.

Make sure your Stationery has the output formats and targets you need.
Since all output formats in the Stationery share Style Designer properties and
options, if you want different output formats to have different behaviors or
appearance, you may need to create and maintain more than one Stationery.

Determine whether writers should change target-specific settings, such
as variables, conditions, cross reference rules, and target settings in their
projects. When writers install ePublisher Express, they can specify whether to
enable these menu options.

To save your Stationery design project as Stationery

1. Open your Stationery design project.

2. On the File menu, click Save as Stationery.

3. Specify the Stationery name, location to store the Stationery, and the targets
to include in the Stationery. For more information about an option, click Help.

4. Click OK.

Managing and Updating Stationery
Once you deploy your Stationery, manage its use to make sure it continues to meet
your needs. Your source document templates and standards can change over time.
Make sure your source document templates support your Stationery and keep these
files updated as a unit. If you add a style to your Word or FrameMaker template,
also add it to your Stationery design project and update your Stationery.

You may also decide to add a feature to your output, such as expand/collapse
sections or popup windows. To add a feature, you may need to make changes to
both your source document templates and your Stationery. Then, you need to put
together a deployment or roll-out plan to help writers decide when and how each
project should use the features.

If you move or change the Stationery, ePublisher Express notifies the writers when
they open their projects. The writers have the opportunity to synchronize their

Managing and Updang Staonery | 785

projects with the Stationery and bring their projects inline with your new standards.
For more information, see “Synchronizing Projects with Stationery”.

Be careful when you update your Stationery to make sure you have the files you
need. Review the following considerations for properly maintaining your Stationery:

Store your Stationery design project and supporting files in a version control
system. This process allows you to monitor how it changes over time and
ensures you can return to a previous version, if needed.

Create a subfolder in your Stationery design project and store a sample of
each source document type in that folder. These files help you test and verify
the output as you modify your source document styles and your ePublisher
styles and settings.

Do not directly open and modify the Stationery files. To make sure your
Stationery is properly updated, always open the Stationery design project
for the Stationery, make your changes, and then save a new copy of the
Stationery.

Consider saving your updated project as Stationery to a new location and
have several writers test some smaller projects with the updated Stationery
before you update your Stationery for all projects.

When you save your Stationery, ePublisher creates the following folders that contain
information about any customizations or overrides you created when you developed
the Stationery:

StationeryName\Formats\OutputFormat

StationeryName\Formats\OutputFormat.base

where StationeryName is the name you specified for the Stationery, and
OutputFormat is the type of output format you specified for a target in the
Stationery. You can use these folders to help you identify any customizations or
overrides you specified for your Stationery when updating your Stationery.

The StationeryName\Formats\OutputFormat folder contains any customizations
or overrides you specified when designing the Stationery. ePublisher Express
synchronizes with the files in the OutputFormat folder and uses the information
about customizations and overrides contained in files in the OutputFormat folder to
generate output.

Note: The Stationery may have one or more OutputFormat folders, based on the
settings you specified in your Stationery.

The StationeryName\Formats\OutputFormat.base folder contains copies of all
the files located in the \Program Files\WebWorks\ePublisher\2024.1\Formats
\OutputFormat folder. These files define the default output format and transforms
and are installed by default when you install ePublisher.

786 | Managing and Updang Staonery

You can do a compare, or diff, between the files located in these folders to quickly
see any customizations or overrides specified for the Stationery. You can use this
information to help you reapply customizations and overrides as needed when
designing a newer version of the Stationery in ePublisher Designer.

To update your Stationery

1. Open your Stationery design project.

2. Make the desired changes.

3. On the File menu, click Save as Stationery.

4. Specify the Stationery name, location to store the Stationery, and the targets
to include in the Stationery. To replace the existing Stationery, specify the
same name and values as the existing Stationery. You do not have to replace
the existing Stationery. You can also create a new Stationery with a different
name, such as by adding a version number to the Stationery name.

5. Click OK.

Managing and Updang Staonery | 787

Target Settings Reference
Accessibility Settings
Accessibility Report Settings
Analytics Settings
Baggage Files Settings
Baggage Files Report Settings
Company Information Settings
Conditions Report Settings
Cover Settings (eBook - ePUB 2.0)
Eclipse Settings
ePUB Settings (eBook - ePUB 2.0)
File Processing Settings
Filenames Report Settings
Files Settings
Footer Settings
Header Settings
HTML Help Settings
Images Report Settings
Index Settings
JavaHelp Settings
Links Settings
Links Report Settings
Locale Settings
Menu Settings
Oracle Help Settings
Page Settings
PDF Settings
Result Options Settings (PDF - XSL-FO)
Search Settings
Social Settings
Styles Settings (PDF - XSL-FO)
Styles Report Settings
Table of Contents Settings
Title Page Settings (PDF - XSL-FO)
Toolbar Settings
Topics Report Settings
WebWorks Help Settings
WebWorks Reverb Settings
WebWorks Reverb 2.0 Settings

In ePublisher, each output format has a set of configurable target settings that
allow features of that format to be enabled, disabled, or specified from a fixed set
of values or even user provided values. Some settings are specific to one or more
output formats. The following are all of the possible target settings that an output
format may have.

Use this section to find and learn more about target settings available in your
format. The Target Settings window for a particular output format will list only
settings that are available for that format.

Accessibility Settings

788 | Accessibility Sengs

These settings are not supported in PDF output formats. The settings in this
category are defined as follows:

Add link to skip navigation content

Specifies whether you want screen readers to skip over top-level navigation
content on a page, such as breadcrumbs, previous and next buttons, and
company information. If you enable this setting, when a screen reader reads
the content on the page, the screen reader skips over the top-level navigation
content and begins reading the page where the page content begins. This
setting is supported in Dynamic HTML, Eclipse Help, Microsoft HTML Help,
Oracle Help, and XML + XSL, output formats.

Include visible [D] links to images with long descriptions

Specifies whether you want to include a link labeled [D] beside any image
for which you provide a long description. When users click the [D] link, the
link takes the user to a long description of the text. Because the [D] link is
a standard hyperlink, it can be processed correctly by browsers and screen
readers. This setting is supported in Microsoft HTML Help, WebWorks Help,
Oracle Help, Dynamic HTML, and XML+XSL output formats.

Accessibility Report Settings
The settings in this category are defined as follows:

Generate accessibility report

Specifies whether to generate Accessibility reports.

Image links without alternative text

Specifies the notification to receive if any image maps do not have alternative
text.

Images without alternative text

Specifies the notification to receive if an image does not have alternate text.

Images without long descriptions

Specifies the notification to receive if an image does not have a long
description.

Tables without summaries

Specifies the notification to receive if a table does not have a summary.

Accessibility Report Sengs | 789

Analytics Settings
These settings apply only to the WebWorks Reverb output format. This allows for
better tracking of how users are using your help system via Google Analytics. For
more information on how Google Analytics is used please refer to the following
webpage: http://www.google.com/support/googleanalytics/.

Google Default URL

If a default URL is specified, analytics events will only be captured when the
online help files are hosted from this specified URL.Specifying this setting is
useful to prevent analytic events from being logged during testing from the
file system or a test web server.

Google Tracking ID

Enables the use of Google Analytics to measure page activity. Requires that
your end-users have a connection to the Internet so that Google’s tracking
urchin can be loaded within their browser when a page is viewed or an event
is captured. If this value is empty, then no analytics tracking will be enabled.

Page “Was This Helpful?” Buttons

The Page Was This Helpful Buttons provide your end-users with the ability
to provide feedback using analytics events to anonymously record their
experience with the current page being viewed. The name of the page will be
recorded along with the end-user’s feedback about the page’s usefulness. A
Google Tracking ID is required for these buttons to be in operation.

Search “Was This Helpful?” Buttons

The Search Was This Helpful Buttons provide your end-users with the
ability to provide feedback using analytics events to anonymously record their
experience with the current search results from a given search query. The
search term(s) will be recorded along with the end-user’s feedback about the
search results’ usefulness. A Google Tracking ID is required for these buttons
to be in operation.

Baggage Files Settings
These settings are only supported in the WebWorks Reverb output format. The
settings in this category are defined as follows:

Baggage files info list

790 | Baggage Files Sengs

http://www.google.com/support/googleanalytics/

Specifies the path (absolute or relative to the project) to the baggage files
info list containing information related to the baggage files, like title and
summary, as well as determining when not to index a baggage file.

Copy baggage file dependents

Specifies whether you want to include in your output all the dependents of
your HTML baggage files, such as images, CSS files, JS files, videos and
audios.

Index baggage files

Specifies whether you want to index baggage files linked to by your source
documents.

Index external links

Specifies whether you want to index external links and include those words in
the corresponding index file.

Baggage Files Report Settings
The settings in this category are defined as follows:

Baggage files without summary

Specifies the notification to receive when baggage files without a summary
are found.

Baggage files without title

Specifies the notification to receive when baggage files without a title are
found.

Generate baggage files report

Specify whether to generate baggage files report.

Company Information Settings
The settings in this category are defined as follows:

Company copyright

Specifies company copyright text.

Company email address

Company Informaon Sengs | 791

Specifies the email address to display for the company in your output. By
default, ePublisher displays this email address as a link using the mailto
command.

Company fax number

Specifies the fax number to display for the company in your output.

Company logo image

Specifies the image to display for the company logo in your output. Store
the image file in the Files folder within your project. If you want to use a
company logo image in your generated output, press F12 to open the Files
folder and verify that the folder contains the company logo image you want to
use in your generated output.

Company name

Specifies the company name to display in your output. If you specify a
company URL in the Company web page setting, ePublisher displays the
company name as a link to the specified URL.

Company phone number

Specifies the company phone number to display in your output.

Company web page

Specifies the company web page URL address. Specify the complete URL,
including the prefix, such as http://www.webworks.com. If you specify this
value, ePublisher displays the company name specified in the Company
name setting as a link to the specified URL.

Conditions Report Settings
The settings in this category are defined as follows:

Generate conditions report

Specify whether to generate Conditions report.

Unknown conditions

Specifies the notification to receive if a condition is encountered that was not
defined in the project being generated.

Cover Settings (eBook - ePUB 2.0)

792 | Cover Sengs (eBook - ePUB 2.0)

http://www.webworks.com

These settings apply only to the eBook - ePUB 2.0 output format. The settings in
this category are defined as follows:

Cover page file name

Specifies the name of the file that ePublisher generates for the eBook cover
page.

Cover page image

Specifies the image to display on your cover page in your output. Store the
image file in the Files folder within your project. If you want to use an
image on your cover page in the generated output, press F12 to open the
Files folder and verify that the folder contains the cover page image you
want to use in your generated output.

Cover page style

Specifies the ePublisher page style to use for generating the cover page.

Eclipse Settings
These settings apply only to the Eclipse Help output format. The settings in this
category are defined as follows:

Eclipse Help ID prefix

Specifies the prefix for ePublisher to use when creating the Eclipse Help .jar
file. By default, this value is set to com.webworks.eclipsehelp , and by
default when ePublisher generates Eclipse Help, ePublisher names the Eclipse
Help .jar file com.webworks.eclipsehelp.ProjectName, where ProjectName
is the name of your ePublisher project.

Eclipse Help vendor

Specifies the setting to use for the Vendor parameter in the Eclipse Help
Content Plugin manifest file. By default, this value is set to WEBWORKS.

JDK location

Specifies the location of the Java Development Kit (JDK) used by ePublisher
when generating Eclipse Help system. By default, ePublisher auto-detects and
uses the most recent version of the JDK on the computer where you generate
output. Use this field if you have a specific version of the JDK that you want
ePublisher to use when generating Eclipse Help for the specified target.

Manifest bundle version

Eclipse Sengs | 793

Specifies the version identifier for the manifest. Defaults to 1.0.0, but can be
changed to between updates of your Eclipse Help deliveries.

ePUB Settings (eBook - ePUB 2.0)
These settings apply only to the eBook - ePUB 2.0 output format. The settings in
this category are defined as follows:

Author name

Specifies author name metadata value of the generated eBook.

Author name (file as)

Specifies an alternate value for the author name that is used when sorting
multiple eBooks displayed together.

File Processing Settings
File processing settings define how ePublisher processes front matter, index, and
table of contents files. If you use ePublisher to generate output from Microsoft Word
source documents, these settings are related to the RD field behavior settings you
configure for the project on the Input Configurations tab on the Project Settings
window. ePublisher does not use these settings when generating output from DITA-
XML source documents.

The settings in this category are defined as follows:

File processing behavior for front matter

Specifies whether you want to generate output for front matter included in
your source documents. Front matter is all of the content before the table of
contents. For example, in Adobe FrameMaker this setting allows you to use an
Adobe FrameMaker .book file to generate output without generating output
for the front matter included in the Adobe FrameMaker .book file.

File processing behavior for index files

Specifies whether you want to generate output for index files included in your
source documents. For example, in Adobe FrameMaker this setting allows
you to use an Adobe FrameMaker .book file to generate output without
generating output for a generated index (IX) .fm file included in the Adobe
FrameMaker .book file.

File processing behavior for TOC files

794 | File Processing Sengs

Specifies whether you want to generate output for table of contents files
included in your source documents. For example, in Adobe FrameMaker this
setting allows you to use an Adobe FrameMaker .book file to generate output
without generating output for a generated table of contents (TOC) .fm file
included in the Adobe FrameMaker .book file.

Insert Mark of the Web (MOTW)

Enables the MOTW in the HTML content, used to get rid of the “blocked
content message in Internet Explorer.

Pretty Print

Enables the generation of HTML that is more easily human readable by
inserting appropriate white space and end-of-line characters. By default this
setting is disabled to produce smaller file sizes. Changing this setting should
have no noticeable affect on the appearance of your content when rendered
within an HTML browser.

Filenames Report Settings
The settings in this category are defined as follows:

File named by marker

Specifies the notification to receive if ePublisher created a file using a
Filename marker.

Filename marker collision with existing filenames

Specifies the notification to receive if ePublisher detects duplicate Filename
markers in the source documents used by your project to generate output.

Filename marker ignored

Specifies the notification to receive if ePublisher ignored a file name in your
source document.

Generate filenames report

Specifies whether to generate Filenames reports.

Files Settings
The settings in this category are defined as follows:

Convert name to

Files Sengs | 795

Specifies the file naming case you want ePublisher to use when generating
output files.

By default, ePublisher uses the Normal value when specifying file naming
case.

The values for this setting are defined as follows:

796 | Files Sengs

Value Description

Normal Keeps the naming with the created case.

Lower case Converts the names to lower case.

Upper case Converts the names to UPPER CASE.

Camel case Converts the names to camel Case.

Pascal case Converts the names to Pascal Case.

For example, with this setting set to Normal, file names display as Great
publishing tool.html . With this setting set to Camel case, when you
generate output file names display as great Publishing Tool.html . With
this setting set to Pascal case, when you generate output file names display
as Great Publishing Tool.html . With this setting set to Upper case, when
you generate output file names display as GREAT PUBLISHING TOOL.html .
With this setting set to Lower case, when you generate output file names
display as great publishing tool.html .

Graphic naming pattern

Specifies the file naming pattern you want ePublisher to use when generating
output files for images.

ePublisher preserves the original file names for images imported by reference.
If images are inserted directly into a source document, or if ePublisher cannot
process the image by reference, then ePublisher assigns a file name using a
graphic naming pattern.

By default, ePublisher uses the following values when specifying the image
naming pattern:

$D;.$DN;.$PN;$.GN

This specifies that ePublisher name the files using the following syntax when it
generates output:

SourceDocumentName.SourceDocumentNumber.TopicNumber.ImageNumber

Files Sengs | 797

where SourceDocumentName is the name of the source document,
SourceDocumentNumber is the number that identifies the position of the
source document in the project, TopicNumber is the number of the topic
(output page) in the source document, and ImageNumber is the number of
the image in the source document.

The values for this setting are defined as follows:

Note: Each value you specify must begin with a dollar sign ($) character and
end with a semicolon (;) character. Inserting a period (.) character
immediately before the value specifies that ePublisher use a period to
separate the values when generating output.

S

798 | Files Sengs

Value Description

$P; Includes the name of the project in the file name.

$T; Includes the name of the target in the file name.

$G; Includes the name of the group in Document Manager
that contains the file name.

$C; Includes the project to project linking context value
of the group in the file name. WebWorks Help uses
the context value when generating merged, or
multivolume help that includes context-sensitive help.
In WebWorks Help, you need to include this context
and the TopicAlias value in the help call to display
the correct help topic. For more information, see
“Merging Top-level Groups (Multivolume Help)” and
“Opening Context-Sensitive Help in WebWorks Help
using Standard URLs”.

$H; Includes the heading text or title of the topic in the file
name.

$D; Includes the name of the source document that the
topic came from in the file name.

$DN; Includes the source document number in the file name.
The source document number is the number that
identifies the position of the source document in the
project.

$PN; Includes the page number in the file name. The page
number is the number of the page that the topic is on
in the source document.

$GN; Includes the graphic number in the file name. The
graphic number is the sequential number of the graphic
in the generated output and it is based on the position
of the graphic in the generated output.For example, if
you have five images in the generated output and you

Files Sengs | 799

Value Description
use this setting, the page with you first image has the
number 1 in the file name, and the page with your fifth
image has the number 5 in the file name.

Page break handling

Specifies how ePublisher processes the Page break priority value the
Stationery designer specifies in Style Designer for each paragraph style. For
example, if you set the Page break handling format setting to Always, all
paragraph styles with the Page break priority set greater than 0 will create
a new page. The default value is Combine. The values for this setting are
defined as follows:

800 | Files Sengs

Value Description

Never Ignores all Page break priority values specified in the
Stationery.

Always Creates a new page for all paragraph styles with a
Page break priority value greater than 0.

Combine Creates a new page for all paragraph styles with a
Page break priority value greater than 0 unless the
previous paragraph created a new page and the Page
break priority value for the previous paragraph is a
number less than the Page break priority value for
this paragraph.

If not previous Creates a new page for all paragraph styles with a
Page break priority value greater than 0 unless the
previous paragraph created a new page.

Page naming pattern

Specifies the file naming pattern you want ePublisher to use when generating
output pages for topics. By default, ePublisher uses the following values when
specifying the page naming pattern:

$D;.$DN;.$PN

This specifies that ePublisher name the files using the following syntax when it
generates output:

SourceDocumentName.SourceDocumentNumber.TopicNumber

where SourceDocumentName is the name of the source document,
SourceDocumentNumber is the number that identifies the position of the
source document in the project, and TopicNumber is the number of the topic
(output page) in the source document.

The values for this setting are defined as follows:

Note: Each value you specify must begin with a dollar sign ($) character and
end with a semicolon (;) character. Inserting a period (.) character
immediately before the value specifies that ePublisher use a period to
separate the values when generating output.

Files Sengs | 801

802 | Files Sengs

Value Description

$P; Includes the name of the project in the file name.

$T; Includes the name of the target in the file name.

$G; Includes the name of the group in Document Manager
that contains the file name.

$C; Includes the project to project linking context value
of the group in the file name. WebWorks Help uses
the context value when generating merged, or
multivolume help that includes context-sensitive help.
In WebWorks Help, you need to include this context
and the TopicAlias value in the help call to display
the correct help topic. For more information, see
“Merging Top-level Groups (Multivolume Help)” and
“Opening Context-Sensitive Help in WebWorks Help
using Standard URLs”.

$H; Includes the heading text or title of the topic in the file
name.

$D; Includes the name of the source document that the
topic came from in the file name.

$DN; Includes the source document number in the file name.
The source document number is the number that
identifies the position of the source document in the
project.

$PN; Includes the page number in the file name. The page
number is the number of the page that the topic is on
in the source document.

Replace spaces

Specifies if you want ePublisher to replace spaces in file names with the
string defined in the setting Replace spaces with when generating
output. For example, with this setting Disabled, file names with spaces

Files Sengs | 803

would generate to Word1 Word2.html . With this setting Enabled, and the
Replace spaces with setting set to value _, the file name would generate to
Word1_Word2.html .

Replace spaces in group names

Specifies if you want ePublisher to replace spaces in group derived file paths
with the value defined in the setting Replace spaces with. For example,
with this setting Disabled, group derived file names with spaces would
generate to My Group Name.html . With this setting Enabled, and the
Replace spaces with setting set to value _, the file name would generate to
My_Group_Name.html .

Replace spaces with

Specifies the value ePublisher will use to replace spaces in generated file
names. There are predetermined values you can use, but you really can
use any string allowed by the file system for a file name. For example,
with this setting set to No space, and if the file name was originally Word1
Word2.html , then the new name would generate to Word1Word2.html .

By default, ePublisher uses the underscore (_) value for this setting.

The predetermined values for this setting are defined as follows:

804 | Files Sengs

Value Description

_ Replaces spaces with the underscore character
(default).

- Replaces spaces with the hyphen character.

No space Replaces spaces with the empty character (removes
spaces).

Ignore Ignores this setting.

Note: This values will only be used if Replace spaces and/or Replace spaces
in group names are Enabled.

Table naming pattern

Specifies the file naming pattern you want ePublisher to use when generating
output pages that contain tables in MoinMoin. By default, ePublisher uses the
following values when specifying the file naming pattern for MoinMoin pages
that contain tables:

$D;.$DN;.$PN;.TN

This specifies that ePublisher name the files that contain tables using the
following syntax when it generates output:

SourceDocumentName.SourceDocumentNumber.TopicNumber.TableNumber

where SourceDocumentName is the name of the source document,
SourceDocumentNumber is the number that identifies the position of the
source document in the project, TopicNumber is the number of the topic
(output page) in the source document, and TableNumber is the number of the
table in the source document.

Note: Inserting a period (.) character immediately before the value specifies
that ePublisher use a period to separate the values when generating
output.

The values for this setting are defined as follows:

Files Sengs | 805

Note: Separate values with a semicolon (;) character.

806 | Files Sengs

Value Description

$P; Includes the name of the project in the file name.

$T; Includes the name of the target in the file name.

$G; Includes the name of the group in Document Manager
that contains the file name.

$C; Includes the project to project linking context value
of the group in the file name. WebWorks Help uses
the context value when generating merged, or
multivolume help that includes context-sensitive help.
In WebWorks Help, you need to include this context
and the TopicAlias value in the help call to display
the correct help topic. For more information, see
“Merging Top-level Groups (Multivolume Help)” and
“Opening Context-Sensitive Help in WebWorks Help
using Standard URLs”.

$H; Includes the heading text or title of the topic in the file
name.

$D; Includes the name of the source document that the
topic came from in the file name.

$DN; Includes the source document number in the file name.
The source document number is the number that
identifies the position of the source document in the
project.

$PN; Includes the page number in the file name. The page
number is the number of the page that the topic is on
in the source document.

$TN; Includes the table number in the file name. The table
number is the sequential number of the table in the
generated output and it is based on the position of the
table in the generated output. For example, if you have
five tables in the generated output and you use this

Files Sengs | 807

Value Description
setting, the page with your first table has the number 1
in the file name, and the page with your fifth table has
the number 5 in the file name.

Footer Settings
Allows a footer to be displayed across the bottom of the help system. Typically
this area is reserved for company information and logos. Some footer settings are
provided that work with the Company Information settings and are dependent on
them being set.

The settings in this category are defined as follows:

Footer location

Specifies footer location. Choices range from displaying the footer across
the entire bottom of the help system to just along the bottom of the content
page.

Footer logo

Specifies a footer logo to be displayed. This logo gets its value from the
Company name or Company logo image.

Footer logo link address

Specifies footer logo link address. Link address can inherit from the home
page (splash page or first page in help set) or the Company webpage. In
order for this setting to be displayed in the output, the target setting: Linked
footer logo must be enabled.

Footer logo override

Specifies which image to use as the footer logo. This setting will override the
Footer logo setting. Choose from the image files stored in the Files folder
within your project.

Generate footer

Specifies whether to generate footer.

Linked footer logo

Enables the Footer logo link address to be displayed.

808 | Footer Sengs

Header Settings
Allows a header to be displayed across the top of the web page above the Reverb
toolbar. Typically this area is reserved for company information and logos. Some
header settings are provided that work with the Company Information settings
and are dependent on them being set.

The settings in this category are defined as follows:

Generate header

Specifies whether to generate header.

Header logo

Specifies a header logo to be displayed. The logo gets its value from the
Company name or Company logo image settings.

Header logo link address

Specifies header logo link address. Link address can inherit from the home
page (splash page or first page in help set) or the Company webpage. In
order for this setting to be displayed in the output, the target setting: Linked
header logo must be enabled.

Header logo override

Specifies which image to use as the header logo. This setting will override the
Header logo setting. Choose from the image files stored in the Files folder
within your project.

Linked header logo

Enables the Header logo link address to be displayed

HTML Help Settings
These settings apply only to the Microsoft HTML Help output format. The settings in
this category are defined as follows:

HTML Help binary index

Specifies whether you want to generate a binary index for Microsoft HTML
Help output.

HTML Help binary TOC

HTML Help Sengs | 809

Specifies whether you want to generate a binary table of contents for
Microsoft HTML Help output.

HTML Help custom map file

Specifies the location of a custom Microsoft HTML Help map file if you want to
use a custom HTML Help map file to generate Microsoft HTML Help output.

Images Report Settings
The settings in this category are defined as follows:

Generate images report

Specifies whether to generate images reports

Images in table cells

Specifies the notification to receive if an image appears in a table cell.

Missing by-reference source files

Specifies the notification to receive if an image is referenced but not found in
the location where it is referenced.

Index Settings
These settings are not supported in the PDF output format. The settings in this
category are defined as follows:

Generate index

Specifies whether you want to generate an index when you generate output.

JavaHelp Settings
These settings apply only to the Sun JavaHelp output format. The settings in this
category are defined as follows:

Category closed image

Specifies the category closed image you want to use in the table of contents
when generating Sun JavaHelp. This setting applies only to Sun JavaHelp 2.0.
By default, Sun JavaHelp uses a closed folder image for the category closed
image in the table of contents for a Sun JavaHelp system.

Category opened image

810 | JavaHelp Sengs

Specifies the category opened image you want to use when generating Sun
JavaHelp. This setting applies only to Sun JavaHelp 2.0. By default, Sun
JavaHelp uses an open folder image for the category opened image in the
table of contents for a Sun JavaHelp system.

Enable favorites tab

Specifies whether you want to display the Favorites tab when generating Sun
JavaHelp. This setting applies only to Sun JavaHelp 2.0.

Enable glossary tab

Specifies whether you want to display the Glossary tab when generating Sun
JavaHelp. This setting applies only to Sun JavaHelp 2.0.

Enable search tab

Specifies whether you want to display the Search tab in your generated Sun
JavaHelp.

JavaHelp location

Specifies the location of Sun JavaHelp SDK you want ePublisher to use when
generating Sun JavaHelp output.

JDK location

Specifies the location of the Java Development Kit (JDK) you want ePublisher
to use when generating Sun JavaHelp output.

Links Settings
These settings apply only to the WebWorks Reverb (1 & 2), Microsoft HTML Help,
WebWorks Help, Dynamic HTML, and XML_XSL output formats. The settings in this
category are defined as follows:

Baggage File Target

Specifies how links to baggage files display in your output. A baggage file
is any file that your source document references but is not contained in the
ePublisher project, such as a .jpeg , .avi , .swf , .gif , or.png file or a
Microsoft Word, Adobe FrameMaker, or XML file. The values for this setting are
defined as follows:

Links Sengs | 811

Value Description

external_window Specifies the name of the window in which to open the
page by typing in the name of the window. This creates
a new browser window, unless one already exists with
the same name. If a browser window already exists
with the same name, it opens the page in that window.
external_window is the default.

_blank Specifies to always open the page in a new browser
window and leave the current window in its current
state.

_self Specifies to open the page in the same browser window
as the link tag.

_parent Specifies to open the page in the immediate parent
window of the link tag. This option is only useful for
very specialized cases and is quite uncommon.

_top Specifies to open the page in the full body of the same
browser window as the link tag. Specify this value to
break out of a frame all the way to the top of a window.

None Specifies to open the page within the same browser
window. However, unlike _self, the settings of the
browser may control this action.

External URL Target

Specifies how links to external URLs display in your output. The values for this
setting are defined as follows:

812 | Links Sengs

Value Description

external_window Specifies the name of the window in which to open the
page by typing in the name of the window. This creates
a new browser window, unless one already exists with
the same name. If a browser window already exists
with the same name, it opens the page in that window.
external_window is the default.

_blank Specifies to always open the page in a new browser
window and leave the current window in its current
state.

_self Specifies to open the page in the same browser window
as the link tag.

_parent Specifies to open the page in the immediate parent
window of the link tag. This option is only useful for
very specialized cases and is quite uncommon.

_top Specifies to open the page in the full body of the same
browser window as the link tag. Specify this value to
break out of a frame all the way to the top of a window.

None Specifies to open the page within the same browser
window. However, unlike _self, the settings of the
browser may control this action.

Preserve Unknown File Links

If enabled, links to files that are not part of the generation will be preserved
in the generated output. Normally, it is not desired to have unknown file
links preserved because this can lead to file not found errors in the end-user
experience. If this setting is enabled, make sure that the link has a target
when it is finally deployed.

Links Report Settings
These settings are not supported for the PDF output format. The settings in this
category are defined as follows:

Links Report Sengs | 813

Baggage file

Specifies the notification to receive if ePublisher does not successfully bring
over baggage files to the baggage files area of your output folder. A baggage
file is any file that your source document references but is not contained in
the ePublisher project, such as a .jpeg , .avi , .swf , .gif , or.png file or
Microsoft Word, Adobe FrameMaker, or XML file.

External URLs

Specifies the notification to receive when ePublisher detects a hyperlink in
your source document that refers to an external web site or email address.

Generate links report

Specifies whether to generate Links reports.

Unresolved link to destination in other documents

Specifies the notification to receive when ePublisher finds a document, such as
a Microsoft Word, Adobe FrameMaker, or XML document, referenced by a link
in your source document, but ePublisher cannot find the anchor or location
within the document that your link references.

Unresolved link to missing document

Specifies the notification to receive when ePublisher cannot resolve a link
between Microsoft Word, Adobe FrameMaker, or XML source documents
because ePublisher cannot find the source documents in the ePublisher project
or in any location on the local computer.

Unresolved link to missing file

Specifies the notification to receive when ePublisher cannot resolve a link
between a source document and a file, such as a .jpeg , .gif , .avi , .swf ,
or .pdf file.

Unresolved link within document

Specifies the notification to receive when ePublisher cannot find a location
referenced by a link in a source document. Typically, this occurs when
ePublisher cannot find the anchor or cross-reference that the link references.

Unsupported baggage files

Specifies the notification to receive when the output format specified for the
target does not support baggage files. A baggage file is any file that your
source document references but is not contained in the ePublisher project,

814 | Links Report Sengs

such as a.jpeg , .avi , .swf , .gif , or.png file or Microsoft Word, Adobe
FrameMaker, or XML file.

Unsupported external URLs

Specifies the notification to receive when the output format specified for the
target does not support links to external locations outside of the help system.

Unsupported group to group links

Specifies the notification to receive when the output format specified for the
target does not support group to group linking. Group to group linking is
when you reference a location within another group in your ePublisher project.

Locale Settings
The settings in this category are defined as follows:

Encoding

Specifies the character encoding method used to convert bytes into characters
in your output. This setting is not supported in PDF.

Note: In some formats this setting is not available. In these cases, the
encoding is fixed to UTF-8 .

Locale

Specifies the language in which your output displays. The values for this
setting are defined as follows:

Locale Sengs | 815

Value Description

en English

fr French

de German

ja Japanese

es Spanish

it Italian

ko Korean

pt Portugese

ru Russian

sv Sweden

zh Simplified Chinese for Mainland China

zh_TW Traditional Chinese for Taiwan

Menu Settings
Controls certain behaviors for the menu used to display the TOC and/or Index
functions of a help output format.

The settings in this category are defined as follows:

Generate menu

Specifies whether you want a menu to be generated in your output.

816 | Menu Sengs

Menu initial state

Specifies the initial state of the menu as either Opened or Closed when the
help is first opened by the end-user.

Minimum page width for docked menu

If the device viewing region displaying the help is larger than the value of
this setting, then the Menu will be positioned (docked) next to the content
page. If the viewing region is smaller than this setting value, the Menu will
be displayed on top of the content page, potentially obscuring some of the
content.

Oracle Help Settings
These settings apply only to the Oracle Help output format. The settings in this
category are defined as follows:

Enable search tab

Specifies whether you want to display the Search tab in your generated Oracle
Help output.

Helpsetitle

Specifies the name of the Oracle Help system.

JDK location

Specifies the location of the Java Development Kit (JDK) used by the Oracle
Help system.

Oracle Help Location

Specifies the location of the Oracle Help system.

Page Settings
These settings control behavior specific to the page where content is displayed. The
settings in this category are defined as follows:

Document last modified date setting

Displays the date the source document used to generate this specific page
was last modified. If enabled, this document’s last modified date will be
displayed at the bottom of each page generated from this document.

Dropdown expand/collapse toggle button setting

Page Sengs | 817

Enables/disables a button that toggles all paragraph dropdown buttons on the
currently displayed page.

Reverb 2.0 page style setting

Specifies page style setting for Reverb 2.0 output. By default, the page will
be generated using the Default (or [Prototype] if there is no Default style)
page style in ePublisher.

Splash page style setting

Specifies splash page style setting for Reverb 2.0 output. By default, the
splash page will be generated using the Default (or [Prototype] if there is
no Default style) page style in ePublisher.

PDF Settings
These settings apply only to the PDF output format. The settings in this category
are defined as follows:

Acrobat Distiller - PDF job settings

Specifies the Acrobat Distiller PDF job settings you want ePublisher to use
when generating PDF output. The Acrobat Distiller PDF job settings you
specify must be configured on the computer where ePublisher generates
output.

Acrobat Distiller - Use for document extensions

Specifies the document extensions you want to use when generating PDF
output using Acrobat Distiller.

Copy PDFs from Target

Allows users to name the PDF target instead of generating a separate one for
the help target. This is especially helpful if the user wants to specify a PDF
based on PDF-XSL FO to be linked from the help system.

Force download on click

Specifies the download behavior of the PDF button. Normally selecting the
button causes the PDF to load in the browser. Enabling this feature forces the
PDF to download to the user’s file system instead.

Generate a combined PDF per top level group

Specifies whether you want to generate a combined PDF for each top level
group in Document Manager.

818 | PDF Sengs

Generate a PDF per document

Specifies whether you want to generate a PDF for each source document
included in Document Manager.

PDF job settings

Specifies the PDF job settings you want to use when generating output. When
you create PDFs using Adobe FrameMaker, you can manually set job options
to specify the compression for ePublisher to use when creating PDFs. Adobe
FrameMaker provides predefined sets of job options that you can use to
control the quality of the PDFs. This setting applies only when you generate
output from Adobe FrameMaker source documents. The values for this setting
are defined as follows:

PDF Sengs | 819

Value Description

Screen Specifies the appropriate settings if you plan to post
PDFS on a web site. This value is designed for low-
resolution, on-screen display. Because of the low-
resolution display quality, the screen setting allows
content to download and display faster when users
access and view PDF on web sites

eBook Specifies the appropriate settings if users view your
PDFs on desktops computers, laptop computers, and
eBook reading tools.

Print Specifies the appropriate settings if your PDFs will be
printed. This value produces high-resolution and high
image quality PDFs appropriate for printing. This value
is similar to the pre press setting, but it produces a
smaller file size and fewer image details.

Pre Press Specifies the appropriate settings if your PDFs will
be printed using a high-resolution printing method.
This value produces the most detailed image quality.
However, because of its high resolution, the PDFs
produced using this value have the largest file sizes
when compared to other PDF job settings.

PDF Target Window

Specifies how links to PDF files will be opened. The values for this setting are
defined as follows:

820 | PDF Sengs

Value Description

ww_connect_pdf Specifies the name of the window in which to open the
page by typing in the name of the window. This creates
a new browser window, unless one already exists with
the same name. If a browser window already exists
with the same name, it opens the page in that window.
ww_connect_pdf is the default.

_blank Specifies to always open the page in a new browser
window and leave the current window in its current
state.

_self Specifies to open the page in the same browser window
as the link tag.

_parent Specifies to open the page in the immediate parent
window of the link tag. This option is only useful for
very specialized cases and is quite uncommon.

_top Specifies to open the page in the full body of the same
browser window as the link tag. Specify this value to
break out of a frame all the way to the top of a window.

Save As PDF - PDF job settings

Specifies the Acrobat Distiller PDF job settings you want FrameMaker to use
when generating PDF output under the direction of ePublisher. If this setting
is empty, then ePublisher will not use FrameMaker’s “Save as PDF” method.
The Acrobat Distiller PDF job settings you specify must be configured on the
computer where ePublisher generates output.

This option is only necessary when using FrameMaker and you have
embedded videos in your content that you want to be published in the PDF
output.

Note: If your output generation requires page rotations, then you should not
use this target setting.

Save As PDF - Use for document extensions

PDF Sengs | 821

Specify the FrameMaker file extensions to apply the “Save As PDF” operation
to.

Result Options Settings (PDF - XSL-FO)
These settings apply only to the PDF - XSL-FO output format. The settings in this
category are defined as follows:

Generate bookmarks

Specifies whether or not to generate acrobat bookmarks based on the table of
contents settings.

Generate group result

Specifies whether or not a PDF will be generated for an entire group of
documents or ditamaps within an ePublisher project.

Generate per document result

Specifies whether or not a PDF will be generated for each document or
ditamap within an ePublisher project.

Generate project result

Specifies whether or not a PDF will be generated that includes all the
documents or ditamaps of all the groups in an ePublisher project.

Search Settings
This setting controls behavior for end-user search in the generated output. The
settings in this category are defined as follows:

Minimum character amount to execute search

Specifies the minimum amount of characters needed to execute a search.
When users type the minimum amount of characters specified in this setting,
an initial list of search results will begin to be displayed in the search results
area. Reducing the value of this setting will make the progressive search
begin to display sooner with suggested results. However, it will also make the
help download file size larger and potentially slower for your end-users the
first time they access the online help. After the first access of any page in the
online help, the end-user’s browser will start downloading the search files and
cache them for use when the user does perform a search. The cached search
files may have the effect of making the download size not an issue depending
on end-user behavior.

822 | Search Sengs

Progressive search

This setting allows search result suggestions to begin being displayed before a
user completes their search term input. Specifies whether progressive search
is enabled/disabled.

Search result count

Allows end-users to see how many search results there are for a given search
term input. Specifies whether search result count is enabled/disabled.

Search scope filtering

This setting creates a dropdown menu displaying all the groups and sub-
groups defined in your ePublisher project within the Document Manager.
This menu is available to your end-users next to the search input in the
toolbar. End-users can then select which group(s) they want to perform a
search within. Search results will not be displayed for groups that are not
selected. Specifies whether search scope filtering is enabled/disabled.

Social Settings
These settings are specific to the WebWorks Reverb Format for integration with
social media. Please refer to the specific site for further instructions once integrated

Disqus - Allow non-public networks

Enables users to post Disqus comments behind a firewall or non-public
website.

Disqus Identifier

Enables support for user comments using the Disqus comment web service

FaceBook Like

Enables users to report “I like this!” in Facebook

LinkedIn Share

Enable users to share individual pages within the LinkedIn community.

Tweet This!

Enable Twitter “Tweet This!” support

Styles Settings (PDF - XSL-FO)

Styles Sengs (PDF - XSL-FO) | 823

These settings apply only to the PDF - XSL-FO output format. The settings in this
category are defined as follows:

Content page style

Specifies the ePublisher page style to use for generating all non-TOC and non-
Index pages.

Index page style

Specifies the ePublisher page style to use for generating the Index pages.

Index style prefix

Specifies the prefix that will be used for the generated index style names such
as: IXGroup, IX1, IX2, IX3. These styles correspond to paragraph styles
that can be created in the ePublisher Style Designer.

Index title style

Specifies the ePublisher paragraph style to use for the title of the generated
index pages.

MiniTOC container style

Specifies the ePublisher paragraph style to use for generating mini-TOC
sections.

MiniTOC style

Specifies the ePublisher paragraph style to use for generating mini-TOC
paragraphs.

Related Topics Title Style

Specifies the ePublisher paragraph style to use for the title of the generated
related topics sections.

TOC page style

Specifies the ePublisher page style to use for generating the TOC pages.

TOC style prefix

Specifies the prefix that will be used for the generated TOC style names such
as: TOC1, TOC2, TOC3, TOC4. These styles correspond to paragraph styles
that can be created in the ePublisher Style Designer.

TOC title style

824 | Styles Sengs (PDF - XSL-FO)

Specifies the ePublisher paragraph style to use for the title of the generated
TOC pages.

Styles Report Settings
The settings in this category are defined as follows:

Generate styles report

Specifies whether to generate the Styles report.

Non-standard styles

Specifies the notification ePublisher generates if ePublisher detects styles
in your source document that are undefined in the Stationery used by your
project.

Style overrides

Specifies the notification ePublisher generates if ePublisher detects style
overrides in your source documents. A style override is any modification
made to the original style definition defined in the Stationery used by your
project.

Table of Contents Settings
The settings in this category are defined as follows:

Collapse table of contents

Specifies how you would like skipped heading levels handled in the table of
contents for your output. For more information, see “Defining the Table of
Contents from an Irregular Heading Hierarchy”. The values for this setting are
defined as follows:

Table of Contents Sengs | 825

Value Description

Don’t collapse Inserts empty table of content entries for the skipped
levels.

Re-label Inserts labeled entries for the skipped table of contents
levels. When you specify this value, ePublisher displays
the heading text from the table of contents entry below
the current entry as the table of contents label.

Fully collapse Removes all skipped heading levels and table of
contents entries and places all table of contents
headings at the same level, regardless of the table of
contents level specified in the Stationery.

Smart collapse Removes empty table of contents entries and moves
the heading that follows an empty table of content
entry up a level to replace the skipped table of contents
level.

Generate table of contents

Specifies whether ePublisher generates a table of contents.

Table of Contents filename

Specifies the file name ePublisher should use when ePublisher generates a
table of contents file in certain output formats.

Title Page Settings (PDF - XSL-FO)
These settings apply only to the PDF - XSL-FO output format. The settings in this
category are defined as follows:

Generate Publish Date on Title Page

Specifies whether or not to generate a publication date on the title page.

Generate Title Page

Specifies whether or not to generate a title page.

826 | Title Page Sengs (PDF - XSL-FO)

Title Page Style

Specifies the ePublisher page style to use for generating the title page.

Title Page title

Specifies how the text of the title page title will be calculated. The following
choices are available with the current installation of ePublisher:

Title Page Sengs (PDF - XSL-FO) | 827

Value Description

$Title; This value is set via the ePublisher merge setting title
of the given group or project. Merge setting titles are
configured under the Merge Settings dialog. In the case
of a PDF for a single document or ditamap, then this
value is the top-level heading.

$PublishDate; This value is set to the output generation date using
the string formating specified in locales.xml .

None No title will be generated.

Note: Project Variables and Style Variables can also be used in this setting.

Title Page Title style

Specifies the ePublisher paragraph style to use for generating the title page’s
title.

Title Page Sub-title

Specifies how the text of the title page sub-title will be calculated. The
following choices are available with the current installation of ePublisher:

828 | Title Page Sengs (PDF - XSL-FO)

Value Description

$Title; This value is set via the ePublisher merge setting title
of the given group or project. Merge setting titles are
configured under the Merge Settings dialog. In the case
of a PDF for a single document or ditamap, then this
value is the top-level heading.

$PublishDate; This value is set to the output generation date using
the string formating specified in locales.xml.

None No sub-title will be generated.

Note: Project Variables and Style Variables can also be used in this setting.

Title Page Sub-title style

Specifies the ePublisher paragraph style to use for generating the title page’s
sub-title.

Toolbar Settings
The settings in this category are defined as follows:

Google Translate Button

Enables support for the Google Translate web service. Requires your output to
be deployed on a public-facing web server.

Home setting

Specifies whether you want to display the linked home button in your toolbar.

Linked toolbar logo

Specifies whether you want your toolbar logo to be linked to the home (splash
or first page) page or the Company webpage.

Toolbar logo

Specifies whether you want to display a logo in your toolbar. Toolbar logo can
inherit from Company name or Company logo image.

Toolbar Sengs | 829

Toolbar logo link address

Specifies the logo link address.

Toolbar logo override

Specifies which image to use as the toolbar logo. Store the image file in the
Files folder within your project.

Topics Report Settings
These settings are not supported for the Dynamic HTML, XML+XSL, PDF - XSL-FO,
and PDF output formats. The settings in this category are defined as follows:

Generate topics report

Specifies whether to generate the Topics report.

Topic links

Specifies the notification ePublisher generates if ePublisher detects that
ePublisher did not create a context-sensitive help topic file for each context-
sensitive help topic ID you specified using the TopicAlias marker.

Duplicate topic aliases

Specifies whether or not there are two or more TopicAlias markers with the
same marker text

WebWorks Help Settings
These settings apply only to the WebWorks Help output format. These settings are
defined as follows:

Automatically synchronize the TOC

Specifies whether you want to allow users to locate the topic they are viewing
in the table of contents. When you enable this setting, when a user clicks
the “Show in Contents” button located to the left of the navigation button,
WebWorks Help highlights the entry in the Contents tab that corresponds to
the currently displayed topic.

Cookie expiration in days

Specifies the number of days before cookies expire.

Cookie id

830 | WebWorks Help Sengs

Specifies the cookie ID.

Show bookmark toolbar button

Specifies whether you want to display the bookmark toolbar button in your
output.

Show favorites tab

Specifies whether you want to display the Favorites tab in your output.

Show first document instead of splash page

Specifies whether you want to show the first topic in your WebWorks help
system instead of the splash page in your output.

Show PDF button

Specifies whether you want to display the PDF button in your output. If you
enable this setting, WebWorks Help displays a PDF file of the source document
from which the currently displayed topic was generated.

Show previous and next tool bar buttons

Specifies whether you want to display the previous and next tool bar buttons
in your output. The previous button allows users to navigate back to topics
that precede the currently displayed topic in the help. The Next button allows
users to navigate forward to topics that follow the currently displayed topic in
the help.

Show print toolbar button

Specifies whether you want to display the print toolbar button in your output.

Show related topics inline button

Specifies whether you want to display related topics links as a list in the
topic itself as well as in a popup window when the user clicks a related topics
button.

Show related topics toolbar button

Specifies whether you want to display the related topics toolbar button in your
output.

Show search tab

Specifies whether you want to display the Search tab in your output.

WebWorks Help Sengs | 831

Theme

Specifies the theme you want to use in your output.

Top level filename

Specifies the top-level entry-point file for the generated WebWorks Help
output.

Use browser cookies

Specifies whether you want to use browser cookies.

WebWorks Help accessibility

Specifies whether you want to enable WebWorks Help accessibility, or if you
want to ask users if they want to enable WebWorks Help accessibility on first
use.

WebWorks Reverb Settings
Display large images in lightbox

When a thumbnail is used for an image, the full size version of the image can
be viewed by clicking the image which is then displayed in a lightbox. When
disabled the image displays in a separate file.

Enabled Print Icon

Enables/disables the print icon in generated pages

Entry Filename

Specifies the name of the Reverb entry-point file name (default is
“index.html”)

Feedback Email

Defines the feedback email address for use in generated pages

Feedback Email Message

Defines the contents of both the subject line and body section of the email
message sent when Feedback Email address is specified. Use $Location to
include the current page’s URL in the message. Please note that this message
is single-line only.

Home

832 | WebWorks Reverb Sengs

Provides a button in the toolbar that links to the entry point of the Reverb
help set. If the splash page is enabled then it will link to the splash page,
otherwise it will link to the first page of actual content.

Minimum height for non-scrolling toolbar

Specifies the minimum browser window height required for Reverb to fix the
toolbar at the top of the window instead of scrolling out of view.

Minimum page width for sidebar

Specifies the minimum browser window width required for Reverb to display
the TOC/Index sidebar panel next to the content panel. If the width of the
window is less than this value, then the TOC/Index will be displayed in place
of the content panel and only when the TOC/Index button has been selected.

Reverb Page Style

Specifies the page style to use when creating the outer-level HTML file that
contains all the Reverb panels (i.e. TOC, index, search, content).

Search Implementation

Specifies the type of search implementation or engine to use. Currently, there
are 2 choices available:

WebWorks Reverb Sengs | 833

Value Description and Deployment Requirements

Client-side Search Provides a stand-alone search capability using
javascript that is executed on the end-user’s browser
client. Provides basic search capabilities.

No additional requirements.

Sidebar Width

Specifies the width of the TOC or Index sidebar panel.

Skin

Specifies an alternate skin plugin to use when generating Reverb Help. Skin
plugins allow for a wide range of look-and-feel differences for Reverb Help.
The following choices are available with the current installation of ePublisher
Designer:

834 | WebWorks Reverb Sengs

Skin Types Color Schemes

Classic

Classic - Compact

Corporate

Corporate - Compact

Blue

Grey

Red

Metro

Metro - Compact

Blue

Dark Green

Grey

Light Green

Orange

Purple

Red

Tiled

Social

Social - Compact

Blue

Green

Grey

Light Blue

Red

Splash Page Style

Specifies the page style to use when processing the splash page

Use first document as splash page

WebWorks Reverb Sengs | 835

Determines initial page displayed. If set to Enabled then no splash page will
be created and instead the first page will be used.

WebWorks Help API Compatibility

Enables users to use the same help API as used for WebWorks Help 4 and 5
with Reverb Help.

WebWorks Reverb 2.0 Settings
Browser Tab Icon (favicon)

Allows you to select an icon file from the User Files location in the project.
This file will then be used as the favicon which displays in the browser tab.

Browser Tab Title

Specifies the value used in the title of the internet browser tab. When Page
Title is used, the title of the currently open page in the Reverb 2.0 output will
populate the browser tab. When Merge Title is used, the Merge Title value in
the Merge Settings window will populate the browser tab.

Display large images in lightbox

Enable/disable the lightbox setting. Lightbox displays the full size of images
that have been made into thumbnails.

Enabled Print Icon

Enables/disables the print icon in generated pages

Entry Filename

Specifies the name of the Reverb entry-point file name (default is
“index.html”)

Feedback Email

Defines the feedback email address for use in generated pages

Feedback Email Message

Defines the contents of the body section of the email message sent when
Feedback Email address is specified. Use $Location to include the current
page’s URL in the message. Please note that this message is single-line only.

Skin

836 | WebWorks Reverb 2.0 Sengs

Specifies an alternate skin plugin to use when not using the default skin: Neo.
It is recommended that you leave this field empty, thus using the default skin:
Neo. Neo has been optimized to fully take advantage of Reverb 2.0 design.
You can still customize the look of the skin using SASS. However, if you prefer,
you can select from the alternate skin plugins that have been provided as a
means for mimicking an existing Reverb 1 design. The following choices are
available with the current installation of ePublisher Designer:

WebWorks Reverb 2.0 Sengs | 837

Skin Types Description

Classic This skin features a larger toolbar, and gradients across
the layout to produce a traditional help look and feel.
This skin is great for all around acceptability and use
across any platform and website.

Corporate

Modeled after high profile technology websites. The
Corporate skin has a polished look and would suit the
needs of a high-profile technology company’s help set.

Metro

The Metro skin represents the latest ideas in computer
interface design and comes straight from the Metro
Design Language, now the heart of interfaces used
in all Microsoft desktop, smartphone, and game box
operating platforms.

Neo

The default skin for WebWorks Reverb 2.0. Neo is the
latest design for Reverb output and was designed with
current web aesthetics in mind. It features a simplistic
layout that looks great across many devices. This skin
is very versatile and well suited for most purposes.

Social

The Social skin has been designed to provide a user
experience most similar to that of social networking
websites. It provides a familiar interface that is
intuitive and casual enough to maximize your end-user
participation.

Use first document as splash page

Determines initial page to be displayed. If set to Enabled, the first page will be
used as the splash page.

WebWorks Help API Compatibility

Enables users to use the WebWorks Help API.

838 | WebWorks Reverb 2.0 Sengs

Style Designer Reference
Advanced Properties
Aural Properties
Background Properties
Body Properties
Body Background Properties (Tables)
Border Properties
Bullet Properties
Font Properties
Footer Properties (Tables)
Footer Background Properties (Tables)
Header Properties (Tables)
Header Background Properties (Tables)
HTML (Layout) Properties
Margin Properties
Markdown++ Properties
Master Page Properties (Pages)
Navigation Properties (Pages)
Padding Properties
Pagination Properties
Table Properties (Tables)
Text Properties
Markdown++ Options
Paragraph Styles Options
Character Styles Options
Table Styles Options
Page Styles Options
Page Styles Options (PDF - XSL-FO)
Graphic Styles Options
Marker Styles Options

The Style Designer allows you to specify the appearance and functionality of online
content, including paragraphs, characters, tables, page layouts, images, table of
contents levels, popups, and related topics. ePublisher Designer builds Stationery
based on the settings you specify as properties and/or options.

Advanced Properties
Available only in the PDF - XSL-FO format.

These properties are for use with output formats that require styling and layout
characteristics above and beyond what is provided by CSS. Links all point to this
website

Absolute Position

http://www.w3.org/TR/xsl11/#absolute-position

Alignment Adjust

http://www.w3.org/TR/xsl11/#alignment-adjust

Advanced Properes | 839

http://www.w3.org/TR/xsl11/
http://www.w3.org/TR/xsl11/
http://www.w3.org/TR/xsl11/#absolute-position
http://www.w3.org/TR/xsl11/#alignment-adjust

Alignment Baseline

http://www.w3.org/TR/xsl11/#alignment-baseline

Baseline Shift

http://www.w3.org/TR/xsl11/#baseline-shift

Block Progression Dimension

http://www.w3.org/TR/xsl11/#block-progression-dimension

Clear

http://www.w3.org/TR/xsl11/#clear

Display Align

http://www.w3.org/TR/xsl11/#display-align

Dominant Baseline

http://www.w3.org/TR/xsl11/#dominant-baseline

End Indent

http://www.w3.org/TR/xsl11/#end-indent

Float

http://www.w3.org/TR/xsl11/#float

Font Selection Strategy

http://www.w3.org/TR/xsl11/#font-selection-strategy

Font Size Adjust

http://www.w3.org/TR/xsl11/#font-size-adjust

Font Stretch

http://www.w3.org/TR/xsl11/#font-stretch

Glyph Orientation Horizontal

http://www.w3.org/TR/xsl11/#glyph-orientation-horizontal

Glyph Orientation Vertical

840 | Advanced Properes

http://www.w3.org/TR/xsl11/#alignment-baseline
http://www.w3.org/TR/xsl11/#baseline-shift
http://www.w3.org/TR/xsl11/#block-progression-dimension
http://www.w3.org/TR/xsl11/#clear
http://www.w3.org/TR/xsl11/#display-align
http://www.w3.org/TR/xsl11/#dominant-baseline
http://www.w3.org/TR/xsl11/#end-indent
http://www.w3.org/TR/xsl11/#float
http://www.w3.org/TR/xsl11/#font-selection-strategy
http://www.w3.org/TR/xsl11/#font-size-adjust
http://www.w3.org/TR/xsl11/#font-stretch
http://www.w3.org/TR/xsl11/#glyph-orientation-horizontal

http://www.w3.org/TR/xsl11/#glyph-orientation-vertical

Inline Progression Dimension

http://www.w3.org/TR/xsl11/#inline-progression-dimension

Intrusion Displace

http://www.w3.org/TR/xsl11/#intrustion-displace

Last Line End Indent

http://www.w3.org/TR/xsl11/#last-line-end-indent

Leader Alignment

http://www.w3.org/TR/xsl11/#leader-alignment

Leader Length

http://www.w3.org/TR/xsl11/#leader-alignment

Leader Pattern

http://www.w3.org/TR/xsl11/#leader-pattern

Leader Pattern Width

http://www.w3.org/TR/xsl11/#leader-pattern-width

Line Stacking Strategy

http://www.w3.org/TR/xsl11/#line-stacking-strategy

Linefeed Treatment

http://www.w3.org/TR/xsl11/#linefeed-treatment

Maximum Height

http://www.w3.org/TR/xsl11/#max-height

Maximum Width

http://www.w3.org/TR/xsl11/#max-width

Provisional Distance Between Stars

http://www.w3.org/TR/xsl11/#provisional-distance-between-starts

Advanced Properes | 841

http://www.w3.org/TR/xsl11/#glyph-orientation-vertical
http://www.w3.org/TR/xsl11/#inline-progression-dimension
http://www.w3.org/TR/xsl11/#intrusion-displace
http://www.w3.org/TR/xsl11/#last-line-end-indent
http://www.w3.org/TR/xsl11/#leader-alignment
http://www.w3.org/TR/xsl11/#leader-length
http://www.w3.org/TR/xsl11/#leader-pattern
http://www.w3.org/TR/xsl11/#leader-pattern-width
http://www.w3.org/TR/xsl11/#line-stacking-strategy
http://www.w3.org/TR/xsl11/#linefeed-treatment
http://www.w3.org/TR/xsl11/#max-height
http://www.w3.org/TR/xsl11/#max-width
http://www.w3.org/TR/xsl11/#provisional-distance-between-starts

Provisional Label Separation

http://www.w3.org/TR/xsl11/#provisional-label-separation

Reference Orientation

http://www.w3.org/TR/xsl11/#reference-orientation

Relative Align

http://www.w3.org/TR/xsl11/#relative-align

Relative Position

http://www.w3.org/TR/xsl11/#relative-position

Role

http://www.w3.org/TR/xsl11/#role

Rule Style

http://www.w3.org/TR/xsl11/#rule-style

Rule Thickness

http://www.w3.org/TR/xsl11/#rule-thickness

Score Spaces

http://www.w3.org/TR/xsl11/#score-spaces

Source Document

http://www.w3.org/TR/xsl11/#source-document

Space After

http://www.w3.org/TR/xsl11/#space-after

Space Before

http://www.w3.org/TR/xsl11/#space-before

Space End

http://www.w3.org/TR/xsl11/#space-end

Space Start

842 | Advanced Properes

http://www.w3.org/TR/xsl11/#provisional-label-separation
http://www.w3.org/TR/xsl11/#reference-orientation
http://www.w3.org/TR/xsl11/#relative-align
http://www.w3.org/TR/xsl11/#relative-position
http://www.w3.org/TR/xsl11/#role
http://www.w3.org/TR/xsl11/#rule-style
http://www.w3.org/TR/xsl11/#rule-thickness
http://www.w3.org/TR/xsl11/#score-spaces
http://www.w3.org/TR/xsl11/#source-document
http://www.w3.org/TR/xsl11/#space-after
http://www.w3.org/TR/xsl11/#space-before
http://www.w3.org/TR/xsl11/#space-end

http://www.w3.org/TR/xsl11/#space-start

Span

http://www.w3.org/TR/xsl11/#span

Start Indent

http://www.w3.org/TR/xsl11/#start-indent

Suppress at Line Break

http://www.w3.org/TR/xsl11/#suppress-at-line-break

Text Align

http://www.w3.org/TR/xsl11/#text-align

Text Align Last

http://www.w3.org/TR/xsl11/#text-align-last

Text Altitude

http://www.w3.org/TR/xsl11/#text-altitude

Text Depth

http://www.w3.org/TR/xsl11/#text-depth

Text Shadow Blur Radius

http://www.w3.org/TR/xsl11/#text-shadow-blur-radius

Text Shadow Color

http://www.w3.org/TR/xsl11/#text-shadow-color

Text Shadow Vertical Offset

http://www.w3.org/TR/xsl11/#text-shadow-vertical-offset

Treat as Word Space

http://www.w3.org/TR/xsl11/#treat-as-word-space

White Space Collapse

http://www.w3.org/TR/xsl11/#white-space-collapse

Advanced Properes | 843

http://www.w3.org/TR/xsl11/#space-start
http://www.w3.org/TR/xsl11/#span
http://www.w3.org/TR/xsl11/#start-indent
http://www.w3.org/TR/xsl11/#suppress-at-line-break
http://www.w3.org/TR/xsl11/#text-align
http://www.w3.org/TR/xsl11/#text-align-last
http://www.w3.org/TR/xsl11/#text-altitude
http://www.w3.org/TR/xsl11/#text-depth
http://www.w3.org/TR/xsl11/#text-shadow-blur-radius
http://www.w3.org/TR/xsl11/#text-shadow-color
http://www.w3.org/TR/xsl11/#text-shadow-vertical-offest
http://www.w3.org/TR/xsl11/#treat-as-word-space
http://www.w3.org/TR/xsl11/#white-space-collapse

White Space Treatment

http://www.w3.org/TR/xsl11/#white-space-treatment

Wrap Option

http://www.w3.org/TR/xsl11/#wrap-option

Aural Properties
Available only in the PDF - XSL-FO format.

These properties are for use with output formats that require aural property
characteristics.

Azimuth

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-azimuth

Cue After

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-after

Cue Before

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-before

Elevation

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-elevation

Pause After

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-after

Pause Before

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-before

Pitch

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch

Pitch Range

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch-range

Play During

844 | Aural Properes

http://www.w3.org/TR/xsl11/#white-space-treatment
http://www.w3.org/TR/xsl11/#wrap-option
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-azimuth
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-after
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-before
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-elevation
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-after
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-before
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch-range

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-play-during

Richness

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-richness

Speak

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak

Speak Header

http://www.w3.org/TR/REC-CSS2/tables.html#propdef-speak-header

Speak Numeral

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-numeral

Speak Punctuation

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-numeral

Speech Rate

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speech-rate

Stress

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-stress

Voice Family

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-voice-family

Volume

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-volume

Background Properties
In terms of the CSS box model, the background for a style refers to the background
of the content and the padding areas. If you increase the padding for a style, the
background color area for that style also increases.

Color

Specifies the color for the background. Select a color from the list or type
the RGB value of the color, such as FFFFFF . RGB value refers to the web
standard hexadecimal notation for Red, Green, and Blue color values. RGB

Background Properes | 845

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-play-during
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-richness
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-speak-header
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-numeral
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-numeral
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speech-rate
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-stress
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-voice-family
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-volume

values can range from the lowest RGB value of 0 (hex #00) to the highest
value of 255 (hex #FF). For example, the RGB hexidecimal notation for black
is 000000 and white is FFFFFF .

Image

Specifies the background image. This field lists only the image files located
in the Files folder of your project. If this field does not list the background
image you want, press F12 and verify the image is in the Files folder for
your project. Once you copy the image into the Files folder, ePublisher
displays it in the field list.

ePublisher Designer automatically transforms your source document images
during project generation to an optimized version for online distribution.
However, you can manually modify your project image settings through
the Graphic Styles properties in Style Designer. In Graphic Styles, you
can specify the following image settings: border styles and colors; width,
height, and positioning; surrounding space (padding); maximum width or
height; size, resolution, and color bit depth; file format and quality level; and
transparency or grayscale appearance.

Tiling

Specifies whether the background image repeats. The table must be larger
than the background image to see the image repeated in the background. The
background image size also determines if an image repeat shows when set
horizontally or vertically. The values for this setting are defined as follows:

846 | Background Properes

Value Description

No repeat Indicates the background image does not repeat.

Repeat Indicates the background image repeats.

Repeat horizontally Indicates the background image repeats horizontally.

Repeat vertically Indicates the background image repeats vertically.

Scrolling

Specifies whether the background image remains in a fixed location as the
user scrolls down the page. The values for this setting are defined as follows:

Background Properes | 847

Value Description

Scroll Scrolls the background image as the user scrolls
through the page contents.

Fixed Keeps the background image in a fixed location as the
user scrolls through the page contents.

Horizontal

Specifies the starting horizontal position of a background image. The values
for this setting are defined as follows:

848 | Background Properes

Value Description

Custom The background image aligns based on the custom
value entered and the unit of measure selected. Units
of measure you can select include: percentage (%)
of the line height, centimeters (cm), em unit (em), x-
height (ex), inches (in), millimeters (mm), pica (pc),
point sizes (pt), and pixels (px). For example, if you
enter a value of 20 and select the percentage (%)
unit of measure, the top left corner is considered 0
percent and the bottom right corner is 100 percent. So,
ePublisher aligns the background image in a 20% value
of the line-width.

Left The left side of the background image aligns with the
leftmost side of the page.

Center The center of the background image aligns with the
center of the page.

Right The right side of the background image aligns with the
right of the page.

Vertical

Specifies the starting vertical position of a background image. The values for
this setting are defined as follows:

Background Properes | 849

Value Description

Custom The background image aligns based on the custom
value entered and the unit of measure selected. Units
of measure you can select include: percentage (%)
of the line height, centimeters (cm), em unit (em), x-
height (ex), inches (in), millimeters (mm), pica (pc),
point sizes (pt), and pixels (px). For example, if you
enter a value of 20 and select the percentage (%)
unit of measure, the top left corner is considered 0
percent and the bottom right corner is 100 percent. So,
ePublisher aligns the background image in a 20% value
of the line-height.

Top The top of the background image aligns with the top of
the tallest element on the line

Center The center of the background image aligns with the
middle of the parent element bottom.

Bottom The bottom of the background image aligns with the
lowest element on the line.

Body Properties
Body rows are the rows of a table that contain the data. Values you define for
table body rows establish the default values for the table, unless you indicate
separate header and footer row values.

In Microsoft Word and Adobe FrameMaker, you can define a header row for your
table. In FrameMaker, you can also define a footer row. Body rows are typically all
rows in a table not already defined as a header or footer rows. However, unless you
explicitly specify a row as a header row, ePublisher considers all rows except the
footer rows as body rows.

Within body rows, ePublisher lets you specify the table padding. Padding refers to
the space between the body border and the body content. You can change the left,
top, right, and bottom padding values independently or set all properties to have
the same padding. Padding values must be positive numbers.

Left

850 | Body Properes

Specifies the left padding for table body rows. Set a custom value by
specifying a number and selecting the unit of measure. Select Auto for
ePublisher to automatically set table row padding.

Top

Specifies the top padding for table body rows. Set a custom value by
selecting Custom, entering a value, and selecting the unit of measure.
Units of measure you can select include: percentages (%) of the line height,
centimeters (cm), em units (em), x-height (ex), inches (in), millimeters
(mm), picas (pc), point sizes (pt), and pixels (px).Select Auto for ePublisher
to automatically set table row padding.

Right

Specifies the right padding for table body rows. Set a custom value by
selecting Custom, entering a value, and selecting the unit of measure.
Units of measure you can select include: percentages (%) of the line height,
centimeters (cm), em units (em), x-height (ex), inches (in), millimeters
(mm), picas (pc), point sizes (pt), and pixels (px). Select Auto for ePublisher
to automatically set table row padding.

Bottom

Specifies the bottom padding for table body rows. Set a custom value by
selecting Custom, entering a value, and selecting the unit of measure.
Units of measure you can select include: percentages (%) of the line height,
centimeters (cm), em units (em), x-height (ex), inches (in), millimeters
(mm), picas (pc), point sizes (pt), and pixels (px). Select Auto for ePublisher
to automatically set table row padding.

Vertical

Specifies the vertical alignment for the content in table body rows. Vertical
alignment of content is very important for readability of online information.

If the cells across a table row have differing numbers of content lines, align
the content to either the top or the bottom of the table row so that all of the
row cells across the page align. Typically, cells within the body of a table area
are top-aligned and the header cells for the table are bottom-aligned.

Color

Specifies the border color for table body rows. Select a color from the list or
type the RGB value of the border color, such as FFFFFF . RGB value refers
to the web standard hexadecimal notation for Red, Green, and Blue color
values. RGB values can range from the lowest RGB value of 0 (hex #00)
to the highest value of 255 (hex #FF). For example, the RGB hexidecimal
notation for black is 000000 and white is FFFFFF .

Body Properes | 851

To select color values for all body row borders, specify the color on the All
tab. To set unique color values for each individual body row border, click the
Left, Right, Top or Bottom tab and separately set each border value.

This field sets the border color for body rows in a table, not the entire table
border. To set the border color for an entire table, select Border from the
Table Styles properties.

Style

Specifies a border style in table body rows, such as a dotted, dashed, or solid
line.

Not all browsers display border styles the same way. For example, some
browsers may not differentiate dotted lines from solid lines. Various browsers
and operating systems often display the size and spacing of the dots in a
dotted line differently.

Width

Specifies the width of a border in table body rows, such as a thick or thin
border. Choose a value or set a custom width by selecting Custom, entering
a value, and selecting the unit of measure. Units of measure you can select
include: percentages (%) of the line height, centimeters (cm), em units (em),
x-height (ex), inches (in), millimeters (mm), picas (pc), point sizes (pt), and
pixels (px).

Body Background Properties (Tables)
Body Background properties let you specify a background color for table body rows,
set the background as transparent, or specify an image to use in the background
of body rows. Indicate alternative colors or background images to alternate the
appearance of rows or columns in a table.

To understand how ePublisher modifies table properties, visualize the body rows
of a table as sitting on a layer above the table background. When you modify the
background color of the body rows, you actually apply an opaque color over the
color of the entire table background color. To get the desired results, you may need
to alter other body row elements, such as paragraphs. For example, if you cannot
make the body row transparent, make sure you correctly set the background
property for all the different Table Styles properties.

Color

Specifies the background color of table body rows. Select a color from the
list or type the RGB value of the background color, such as FFFFFF . RGB
value refers to the web standard hexadecimal notation for Red, Green, and
Blue color values. RGB values can range from the lowest RGB value of 0

852 | Body Background Properes (Tables)

(hex #00) to the highest value of 255 (hex #FF). For example, the RGB
hexidecimal notation for black is 000000 and white is FFFFFF .

Image (Background Image Area)

Specifies the background image for table body rows. This field lists only the
image files located in the Files folder of your project. If this field does not
list the background image you want, press F12 and verify the image is in the
Files folder for your project. Once you copy the image into the Files folder,
ePublisher displays it in the field list.

ePublisher Designer automatically transforms your source document images
during project generation to an optimized version for online distribution.
However, you can manually modify your project image settings through
the Graphic Styles properties in Style Designer. In Graphic Styles, you
can specify the following image settings: border styles and colors; width,
height, and positioning; surrounding space (padding); maximum width or
height; size, resolution, and color bit depth; file format and quality level; and
transparency or grayscale appearance.

Tiling (Background Image Area)

Specifies whether the background image repeats in table body rows.The body
rows must be larger than the background image to see the image repeated in
the background of the body rows. The background image size also determines
if an image repeat shows when set horizontally or vertically. The values for
this setting are defined as follows:

Body Background Properes (Tables) | 853

Value Description

No repeat Specifies that the background image does not repeat.

Repeat Specifies that the background image repeats.

Repeat horizontally Specifies that the background image repeats
horizontally.

Repeat vertically Specifies that the background image repeats vertically.

Scrolling (Background Image Area)

Specifies whether the specified image remains in one fixed location as the
user scrolls through content. The values for this setting are defined as follows:

854 | Body Background Properes (Tables)

Value Description

Scroll Scrolls the background image as the user scrolls
through content.

Fixed Keeps the background image in a fixed location as the
user scrolls through content.

Horizontal (Background Image Area)

Specifies the horizontal position of the background image for table body rows.
The values for this setting are defined as follows:

Body Background Properes (Tables) | 855

Value Description

Custom The background image aligns in the table row based
on the custom value entered and the unit of measure
selected. Units of measure you can select include:
percentage (%) of the line height, centimeters (cm),
em unit (em), x-height (ex), inches (in), millimeters
(mm), pica (pc), point sizes (pt), and pixels (px). For
example, if you enter a value of 20 and select the
percentage (%) unit of measure, the top left corner
is considered 0 percent and the bottom right corner
is 100 percent. So, ePublisher aligns the background
image in a 20% value of the line-width.

Left The left side of the background image aligns with the
leftmost side of the table row.

Center The center of the background image aligns with the
center of the table row.

Right The right side of the background image aligns with the
right of the table row.

Vertical (Background Image Area)

Specifies the vertical position of the background image of table body rows.
The values for this setting are defined as follows:

856 | Body Background Properes (Tables)

Value Description

Custom The background image aligns on the table row based
on the custom value entered and the unit of measure
selected. Units of measure you can select include:
percentage (%) of the line height, centimeters (cm),
em unit (em), x-height (ex), inches (in), millimeters
(mm), pica (pc), point sizes (pt), and pixels (px). For
example, if you enter a value of 20 and select the
percentage (%) unit of measure, the top left corner
is considered 0 percent and the bottom right corner
is 100 percent. So, ePublisher aligns the background
image in a 20% value of the line-height.

Top The top of the background image aligns with the top of
the tallest element on the table row.

Center The center of the background image aligns with the
middle of the parent element bottom on the table row.

Bottom The bottom of the background image aligns with the
lowest element on the table row.

Context

Specifies whether to use alternate colors or images for alternating rows or
columns of a table.

Alternate shading of rows or columns is a useful layout to help minimize the
number of lines and amount of information displayed, while organizing the
data in a way that users can easily read and understand.

Default period

Specifies the number of rows or columns that use the default color in the body
row. You must first set the default body row color in the Color field of the
Body Background properties for the table style. Specify a minimum value
of 1. If you specify a value of 0, ePublisher does not use alternate rows or
columns and displays entire body row in the default color.

Alternate period

Body Background Properes (Tables) | 857

Specifies how many consecutive rows or columns use the alternate color or
image. Specify a value greater than 0. For example, if you set Alternate
period to 2, after the first two rows of a table, the next two rows would use
the alternate color or image. Then, there would be two plain rows, followed by
two more using the alternate color or image, and so on.

Alternate Color

Specifies the color to use as the alternate color. Select a color from the
list or type the RGB value for the alternative color, such as 000000 . RGB
value refers to the web standard hexadecimal notation for Red, Green, and
Blue color values. RGB values can range from the lowest RGB value of 0
(hex #00) to the highest value of 255 (hex #FF). For example, the RGB
hexidecimal notation for black is 000000 and white is FFFFFF .

Image (Alternate Info, Background Image Area)

Specifies the alternate background image for table body rows. This field lists
only the image files located in the Files folder of your project. If this field
does not list the background image you want, press F12 and verify the image
is in the Files folder for your project. Once you copy the image into the
Files folder, ePublisher displays it in the field list.

ePublisher Designer automatically transforms your source document images
during project generation to an optimized version for online distribution.
However, you can manually modify your project image settings through
the Graphic Styles properties in Style Designer. In Graphic Styles, you
can specify the following image settings: border styles and colors; width,
height, and positioning; surrounding space (padding); maximum width or
height; size, resolution, and color bit depth; file format and quality level; and
transparency or grayscale appearance.

Tiling (Alternate Info, Background Image Area)

Specifies whether to repeat the alternate background image in table body
rows. The table must be larger than the alternate background image to see
the image repeated in alternate table body rows. The alternate background
image size also determines if an image repeat shows when set horizontally or
vertically. The values for this setting are defined as follows:

858 | Body Background Properes (Tables)

Value Description

No repeat Specifies that the background image does not repeat.

Repeat Specifies that the background image repeats.

Repeat horizontally Specifies that the background image repeats
horizontally.

Repeat vertically Specifies that the background image repeats vertically.

Scrolling (Alternate Info, Background Image Area)

Specifies whether the specified alternate background image remains in one
fixed location as the user scrolls through content. The values for this setting
are defined as follows:

Body Background Properes (Tables) | 859

Value Description

Scroll Scrolls the background image as the user scrolls
through content.

Fixed Keeps the background image in a fixed location as the
user scrolls through content.

Horizontal (Alternate Info, Background Image Area)

Specifies the horizontal position for the alternate background image in table
body rows. The values for this setting are defined as follows:

860 | Body Background Properes (Tables)

Value Description

Custom The alternate background image aligns in the table
row based on the custom value entered and the
unit of measure selected. Units of measure you can
select include: percentage (%) of the line height,
centimeters (cm), em unit (em), x-height (ex), inches
(in), millimeters (mm), pica (pc), point sizes (pt), and
pixels (px). For example, if you enter a value of 20
and select the percentage (%) unit of measure, the
top left corner is considered 0 percent and the bottom
right corner is 100 percent. So, ePublisher aligns the
background image in a 20% value of the line-width.

Left The left side of the alternate background image aligns
with the leftmost side of the table row.

Center The center of the alternate background image aligns
with the center of the table row.

Right The right side of the alternate background image aligns
with the right of the table row.

Vertical (Alternate Info, Background Image Area)

Specifies the vertical position for the alternate background image in table
body rows. The values for this setting are defined as follows:

Body Background Properes (Tables) | 861

Value Description

Custom The alternate background image aligns on the table
row based on the custom value entered and the unit
of measure selected. Units of measure you can select
include: percentage (%) of the line height, centimeters
(cm), em units (em), x-height (ex), inches (in),
millimeters (mm), picas (pc), point sizes (pt), and
pixels (px). For example, if you enter a value of 20
and select the percentage (%) unit of measure, the
top left corner is considered 0 percent and the bottom
right corner is 100 percent. So, ePublisher aligns the
background image in a 20% value of the line-height.

Top The top of the alternate background image aligns with
the top of the tallest element on the table row.

Center The center of the alternate background image aligns
with the middle of the parent element on the table row.

Bottom The bottom of the alternate background image aligns
with the lowest element on the table row.

Border Properties
Borders are lines that you can draw around any or all of the four sides of a style.
In terms of the CSS box model, increasing the padding for a style increases the
space between the content and the border.

Not all browsers display border styles the same way. For example, some browsers
may not differentiate dotted lines from solid lines. Various browsers and operating
systems often display the size and spacing of the dots in a dotted line differently.

Color

Specifies the border color. Select a color from the list or type the RGB value
for the border, such as 000000 . RGB value refers to the web standard
hexadecimal notation for Red, Green, and Blue color values. RGB values can
range from the lowest RGB value of 0 (hex #00) to the highest value of 255
(hex #FF). For example, the RGB hexidecimal notation for black is 000000
and white is FFFFFF .

862 | Border Properes

This field sets the border color for an entire table, not borders around body
rows. To set the border color for table body rows, select Body in the Table
Styles properties and specify the border settings for body rows.

Style

Specifies a border style, such as a dotted, dashed, or solid line.

Not all browsers display border styles the same way. For example, some
browsers may not differentiate dotted lines from solid lines. Various browsers
and operating systems often display the size and spacing of the dots in a
dotted line differently.

Width

Specifies a border width, such as a thick or thin border. Choose a value or
set a custom width by selecting Custom, entering a value, and selecting the
unit of measure. Units of measure you can select include: percentages (%) of
the line height, centimeters (cm), em units (em), x-height (ex), inches (in),
millimeters (mm), picas (pc), point sizes (pt), and pixels (px).

Bullet Properties
By default, ePublisher generates output for bulleted lists based on the properties in
the original source content. Some source applications use the Symbol or Wingdings
font for bullets. These fonts may not be available on all computers, which can
cause the bullets in your output to display incorrectly. To avoid this issue, use an
image for bullets. Also, you can create a character style with a font family assigned,
such as sans-serif, and then apply that character style through ePublisher to the
characters you choose to define for bullets.

Note: When inserting text for either the Text or Separator properties
described below, make sure to use unicode characters. You can copy-
and-paste unicode characters from another program such as the
Windows accessory program called Character Map, or you can use a
Windows ALT key sequence.

Steps for inserting special characters using the Windows ALT key sequence

1. Position the cursor where you want the special character to appear

2. Make sure that the numeric keypad Num Lock is on

3. Press and hold the Alt key and then press the keys on the numeric keypad
that represent the keystroke value of the character you want to input

4. After you finish typing, release the Alt key

Bullet Properes | 863

Character Name ALT Key Sequence

Round Bullet 0149

En Dash 0150

Em Dash 0160

Text

Specifies a special character for bullets. Enter the special character using the
Windows ALT key code or by copying and pasting a unicode character from
another program. Common bullet characters are round bullet, en dash, and
em dash.

Separator

Specifies the type of separator to use between the bullet and the beginning of
the first text line, such as a space or a colon.

Image

Specifies the image to use for bullets. This field lists only the image files
located in the Files folder of your project. If you do not see the background
image you want in this field, press F12 and verify the image is in the Files
folder for your project. Once you copy the image into the Files folder,
ePublisher displays it in the field list.

ePublisher Designer automatically transforms your source document images
during project generation to an optimized version for online distribution.
However, you can manually modify your project image settings through
the Graphic Styles properties in Style Designer. In Graphic Styles, you
can specify the following image settings: border styles and colors; width,
height, and positioning; surrounding space (padding); maximum width or
height; size, resolution, and color bit depth; file format and quality level; and
transparency or grayscale appearance.

Character Style

Specifies a character style for your bullet to ensure the bullet character uses
the correct font. Use any character style available in your project. To associate
an existing character style with a custom bullet, select the character style in
this field.

864 | Bullet Properes

Font Properties
Family

Specifies a font family. Click the Ellipsis button to open the Font Family Picker
window where you can select from a list of installed fonts, specify a generic
font family, or select a custom font family.

Consider specifying a generic font family, such as sans-serif, rather than a
specific font. Many browsers and help systems use only fonts installed on the
user’s computer. If you indicate a specific font, a user who does not have that
font installed does not see the help output correctly. By selecting a generic
font family, the user does not have to have the exact font specified, only a
font from that family.

If you specify multiple fonts, separated by commas, the user’s browser
displays the first available font in the list. For example, if you specify
Verdana, Arial, Helvetica, sans-serif and the user does not have
the Verdana font installed, the browser displays in the Arial font for the help
output instead.

Size

Specifies the size of the font. Select a value from the list or select Custom,
and then specify a number and unit of measure for the custom font size. The
smaller value sets the font to a smaller size than the parent element. The
larger value sets the font to a larger size than the parent element.

Style

Specifies the font style, such as italic.

Variant

Specifies the font variation, such as small caps.

Weight

Specifies how thick or thin ePublisher displays text characters, such as bold.
For a more precise weight, select from the numeric values, which range from
100 to 900. For example, a weight of 400 is the same as normal and 700 is
the same as bold.

Footer Properties (Tables)

Footer Properes (Tables) | 865

Tables created in Adobe FrameMaker identify the footer rows of tables, so you can
quickly specify the Footer and Footer background properties in the Table Styles
properties in Style Designer to modify footer rows for online delivery.

Tables created in Microsoft Word do not overtly identify footer rows. To control
footer rows with Microsoft Word and ePublisher, set up the table in your source
document to reflect the desired appearance, or use footer paragraph styles in the
footer row of the table. Then, ePublisher uses the footer paragraph styles in your
source document and you can use the footer Table Styles properties in Style
Designer to modify the appearance as needed.

You can also specify footer padding properties for tables. Padding refers to the
space between the table footer border and the table footer content. You can change
the left, top, right, and bottom padding values independently or set all properties to
have the same padding. Padding values must be positive numbers.

Left

Specifies the left padding for a table footer, or the space between the left
table border and where the content begins in the left of the table cell. Set a
custom padding value by selecting Custom, entering a value, and selecting
the unit of measure. Units of measure you can select include: percentages
(%) of the line height, centimeters (cm), em units (em), x-height (ex), inches
(in), millimeters (mm), picas (pc), point sizes (pt), and pixels (px).

Top

Specifies the top padding for a table footer, or the space between the top
table border and where the content aligns at the top of the table cell. Set a
custom padding value by selecting Custom, entering a value, and selecting
the unit of measure. Units of measure you can select include: percentages
(%) of the line height, centimeters (cm), em units (em), x-height (ex), inches
(in), millimeters (mm), picas (pc), point sizes (pt), and pixels (px).

Right

Specifies the right padding for a table footer, or the space between the right
table border and where the content ends at the right of the table cell. Set a
custom padding value by selecting Custom, entering a value, and selecting
the unit of measure. Units of measure you can select include: percentages
(%) of the line height, centimeters (cm), em units (em), x-height (ex), inches
(in), millimeters (mm), picas (pc), point sizes (pt), and pixels (px).

Bottom

Specifies the bottom padding for a table footer, or the space between the
bottom table border and where the content ends at the bottom of the table
cell. Set a custom padding value by selecting Custom, entering a value,
and selecting the unit of measure. Units of measure you can select include:

866 | Footer Properes (Tables)

percentages (%) of the line height, centimeters (cm), em units (em), x-height
(ex), inches (in), millimeters (mm), picas (pc), point sizes (pt), and pixels
(px).

Vertical

Specifies the vertical alignment of the content in a table footer. The values for
this setting are defined as: Top, Middle, and Bottom.

Color (Borders, Table Styles)

Specifies the border color of a table footer. Select a color from the list or
type the RGB value for the border. RGB value refers to the web standard
hexadecimal notation for Red, Green, and Blue color values. RGB values can
range from the lowest RGB value of 0 (hex #00) to the highest value of 255
(hex #FF). For example, the RGB hexidecimal notation for black is 000000
and white is FFFFFF .

Style

Specifies a border style for a table footer, such as a dotted, dashed, or solid
line.

Not all browsers display border styles the same way. For example, some
browsers may not differentiate dotted lines from solid lines. Various browsers
and operating systems often display the size and spacing of the dots in a
dotted line differently.

Width

Specify a width for the border of a table footer, such as a thick or thin border.
Choose a value or set a custom width by selecting Custom, entering a value,
and selecting the unit of measure. Units of measure you can select include:
percentages (%) of the line height, centimeters (cm), em units (em), x-height
(ex), inches (in), millimeters (mm), picas (pc), point sizes (pt), and pixels
(px).

Footer Background Properties (Tables)
To help you visualize how you can modify properties, think of the footer rows of
a table as sitting on a layer above the background of a table. By modifying the
color of the footer rows, you are applying an opaque color over the color of the
background color. You may need to modify other elements, such as paragraphs,
that reside within the footer row to get the desired results. For example, if you
cannot make the footer row transparent, make sure the background property is
properly set for all the different layers in the table.

Footer Background Properes (Tables) | 867

Tables created in Adobe FrameMaker identify the footer rows of tables, so you can
quickly specify the Footer and Footer background properties in the Table Styles
properties in Style Designer to modify footer rows for online delivery.

Tables created in Microsoft Word do not overtly identify footer rows. To control
footer rows with Microsoft Word and ePublisher, set up the table in your source
document to reflect the desired appearance, or use footer paragraph styles in the
footer row of the table. Then, ePublisher uses the footer paragraph styles in your
source document and you can use the footer Table Styles properties in Style
Designer to modify the appearance as needed.

Color

Specifies the background color for the table footer row. Select a color from
the list or type the RGB value of the color, such as FFFFFF . RGB value refers
to the web standard hexadecimal notation for Red, Green, and Blue color
values. RGB values can range from the lowest RGB value of 0 (hex #00)
to the highest value of 255 (hex #FF). For example, the RGB hexidecimal
notation for black is 000000 and white is FFFFFF .

Image (Background Image Area)

Specifies the background image for table footer rows. This field lists only the
image files located in the Files folder of your project. If this field does not
list the background image you want, press F12 and verify the image is in the
Files folder for your project. Once you copy the image into the Files folder,
ePublisher displays it in the field list.

ePublisher Designer automatically transforms your source document images
during project generation to an optimized version for online distribution.
However, you can manually modify your project image settings through
the Graphic Styles properties in Style Designer. In Graphic Styles, you
can specify the following image settings: border styles and colors; width,
height, and positioning; surrounding space (padding); maximum width or
height; size, resolution, and color bit depth; file format and quality level; and
transparency or grayscale appearance.

Tiling (Background Image Area)

Specifies whether the background image repeats in the table footer row. The
table must be larger than the background image to see the image repeated
in the footer. The background image size also determines if an image repeat
shows when set horizontally or vertically. The values for this setting are
defined as follows:

868 | Footer Background Properes (Tables)

Value Description

No repeat Specifies that the background image does not repeat.

Repeat Specifies that the background image repeats.

Repeat horizontally Specifies that the background image repeats
horizontally.

Repeat vertically Specifies that the background image repeats vertically.

Scrolling (Background Image Area)

Specifies whether the specified image remains in one fixed location as the
user scrolls through content. The values for this setting are defined as follows:

Footer Background Properes (Tables) | 869

Value Description

Scroll Scrolls the background image as the user scrolls
through content.

Fixed Keeps the background image in a fixed location as the
user scrolls through content.

Horizontal (Background Image Area)

Specifies the horizontal position for the background image in your table footer
row. The values for this setting are defined as follows:

870 | Footer Background Properes (Tables)

Value Description

Custom The background image aligns in the table footer based
on the custom value entered and the unit of measure
selected. Units of measure you can select include:
percentage (%) of the line height, centimeters (cm),
em unit (em), x-height (ex), inches (in), millimeters
(mm), pica (pc), point sizes (pt), and pixels (px). For
example, if you enter a value of 20 and select the
percentage (%) unit of measure, the top left corner
is considered 0 percent and the bottom right corner
is 100 percent. So, ePublisher aligns the background
image in a 20% value of the line-width.

Left The left side of the background image aligns with the
leftmost side of the table footer.

Center The center of the background image aligns with the
center of the table footer.

Right The right side of the background image aligns with the
right of the table footer.

Vertical (Background Image Area)

Specifies the vertical position of the background image in your table footer.
The values for this setting are defined as follows:

Footer Background Properes (Tables) | 871

Value Description

Custom The background image aligns in the table footer based
on the custom value entered and the unit of measure
selected. Units of measure you can select include:
percentage (%) of the line height, centimeters (cm),
em units (em), x-height (ex), inches (in), millimeters
(mm), picas (pc), point sizes (pt), and pixels (px).
For example, if you enter a value of 20 and select the
percentage (%) unit of measure, the top left corner
is considered 0 percent and the bottom right corner
is 100 percent. So, ePublisher aligns the background
image in a 20% value of the line-height.

Top The top of the background image aligns with the top of
the tallest element in the table footer.

Center The center of the background image aligns with the
middle of the parent element in the table footer.

Bottom The bottom of the background image aligns with the
lowest element on the table footer.

Context

Specifies whether to use alternate rows or columns in a table. Alternate
shading of rows or columns is a useful layout to help minimize the number of
lines and amount of information displayed, while organizing the data in a way
that users can easily read and understand.

Default period

Specifies the number of rows or columns that use the default color in the table
footer row. You must first set the default table footer row color in the Color
field of the Footer background properties. Specify a minimum value of 1. If
you specify a value of 0, ePublisher does not use alternate rows or columns
and displays entire body row in the default color.

Alternate period

Specifies how many consecutive table footer rows or columns use the
alternate color. Set this value to a value greater than 0 (zero).

872 | Footer Background Properes (Tables)

Alternate Color

Specifies the alternate color for the table footer row. Select a color from the
list or type the RGB value of the color, such as FFFFFF . RGB value refers
to the web standard hexadecimal notation for Red, Green, and Blue color
values. RGB values can range from the lowest RGB value of 0 (hex #00)
to the highest value of 255 (hex #FF). For example, the RGB hexidecimal
notation for black is 000000 and white is FFFFFF .

Image (Alternate Info/Background Image Area)

Specifies the alternate background image for table footer rows. This field lists
only the image files located in the Files folder of your project. If this field
does not list the background image you want, press F12 and verify the image
is in the Files folder for your project. Once you copy the image into the
Files folder, ePublisher displays it in the field list.

ePublisher Designer automatically transforms your source document images
during project generation to an optimized version for online distribution.
However, you can manually modify your project image settings through
the Graphic Styles properties in Style Designer. In Graphic Styles, you
can specify the following image settings: border styles and colors; width,
height, and positioning; surrounding space (padding); maximum width or
height; size, resolution, and color bit depth; file format and quality level; and
transparency or grayscale appearance.

Tiling (Alternate Info/Background Image Area)

Specifies whether to repeat the alternate background image in the table
footer rows. The table must be larger than the background image to see the
image repeated in the footer. The background image size also determines if
an image repeat shows when set horizontally or vertically. The values for this
setting are defined as follows:

Footer Background Properes (Tables) | 873

Value Description

No repeat Specifies that the background image does not repeat.

Repeat Specifies that the background image repeats.

Repeat horizontally Specifies that the background image repeats
horizontally.

Repeat vertically Specifies that the background image repeats vertically.

Scrolling (Alternate Info/Background Image Area)

Specifies whether the specified image remains in one fixed location as the
user scrolls through content. The values for this setting are defined as follows:

874 | Footer Background Properes (Tables)

Value Description

Scroll Scrolls the background image as the user scrolls
through content.

Fixed Keeps the background image in a fixed location as the
user scrolls through content.

Horizontal (Alternate Info/Background Image Area)

Specifies the horizontal position for the alternate background image in table
footer rows. The values for this setting are defined as follows:

Footer Background Properes (Tables) | 875

Value Description

Custom The alternate background image aligns in the table
footer based on the custom value entered and the
unit of measure selected. Units of measure you can
select include: percentage (%) of the line height,
centimeters (cm), em unit (em), x-height (ex), inches
(in), millimeters (mm), pica (pc), point sizes (pt), and
pixels (px). For example, if you enter a value of 20
and select the percentage (%) unit of measure, the
top left corner is considered 0 percent and the bottom
right corner is 100 percent. So, ePublisher aligns the
background image in a 20% value of the line-width.

Left The left side of the alternate background image aligns
with the leftmost side of the table footer.

Center The center of the alternate background image aligns
with the center of the table footer.

Right The right side of the alternate background image aligns
with the right of the table footer.

Vertical (Alternate Info/Background Image Area)

Specifies the vertical position of the alternate background image in table
footer rows. The values for this setting are defined as follows:

876 | Footer Background Properes (Tables)

Value Description

Custom The background image aligns in the table footer based
on the custom value entered and the unit of measure
selected. Units of measure you can select include:
percentage (%) of the line height, centimeters (cm),
em units (em), x-height (ex), inches (in), millimeters
(mm), picas (pc), point sizes (pt), and pixels (px).
For example, if you enter a value of 20 and select the
percentage (%) unit of measure, the top left corner
is considered 0 percent and the bottom right corner
is 100 percent. So, ePublisher aligns the background
image in a 20% value of the line-height.

Top The top of the background image aligns with the top of
the tallest element in the table footer.

Center The center of the background image aligns with the
middle of the parent element in the table footer.

Bottom The bottom of the background image aligns with the
lowest element on the table footer.

Header Properties (Tables)
Header rows are rows that contain information that identify the content of a
particular column. If the table spans several pages of a print layout, the header row
usually repeats itself at the beginning of each new page.

In Microsoft Word and Adobe FrameMaker, you can define a header row for your
table. In FrameMaker, you can also define a footer row. Body rows are typically all
rows in a table not already defined as a header or footer rows. However, unless you
explicitly specify a row as a header row, ePublisher considers all rows except the
footer rows as body rows.

You can also specify footer padding properties for tables. Padding refers to the
space between the table header border and the table header content. You can
change the left, top, right, and bottom padding values independently or set all
properties to have the same padding. Padding values must be positive numbers.

Left

Header Properes (Tables) | 877

Specifies the left padding for a table header, or the space between the left
table border and where the content begins in the left of the table cell. Set a
custom padding value by selecting Custom, entering a value, and selecting
the unit of measure. Units of measure you can select include: percentages
(%) of the line height, centimeters (cm), em units (em), x-height (ex), inches
(in), millimeters (mm), picas (pc), point sizes (pt), and pixels (px).

Top

Specifies the top padding for a table header, or the space between the top
table border and where the content aligns at the top of the table cell. Set a
custom padding value by selecting Custom, entering a value, and selecting
the unit of measure. Units of measure you can select include: percentages
(%) of the line height, centimeters (cm), em units (em), x-height (ex), inches
(in), millimeters (mm), picas (pc), point sizes (pt), and pixels (px).

Right

Specifies the right padding for a table footer, or the space between the right
table border and where the content ends at the right of the table cell. Set a
custom padding value by selecting Custom, entering a value, and selecting
the unit of measure. Units of measure you can select include: percentages
(%) of the line height, centimeters (cm), em units (em), x-height (ex), inches
(in), millimeters (mm), picas (pc), point sizes (pt), and pixels (px).

Bottom

Specifies the bottom padding for a table header, or the space between the
bottom table border and where the content ends at the bottom of the table
cell. Set a custom padding value by selecting Custom, entering a value,
and selecting the unit of measure. Units of measure you can select include:
percentages (%) of the line height, centimeters (cm), em units (em), x-height
(ex), inches (in), millimeters (mm), picas (pc), point sizes (pt), and pixels
(px).

Vertical

Specifies the vertical alignment of the content in a table footer. The values for
this setting are defined as: Top, Middle, and Bottom.

Color

Specifies the border color for a table header. Select a color from the list or
type the RGB value of the color, such as FFFFFF . RGB value refers to the
web standard hexadecimal notation for Red, Green, and Blue color values.
RGB values can range from the lowest RGB value of 0 (hex #00) to the
highest value of 255 (hex #FF). For example, the RGB hexidecimal notation
for black is 000000 and white is FFFFFF .

878 | Header Properes (Tables)

Style

Specifies a border style for a table header, such as a dotted, dashed, or solid
line. Not all browsers display border styles the same way. For example, some
browsers may not differentiate dotted lines from solid lines. Various browsers
and operating systems often display the size and spacing of the dots in a
dotted line differently.

Width

Specifies a border width, such as a thick or thin border. Choose a value or
set a custom width by selecting Custom, entering a value, and selecting the
unit of measure. Units of measure you can select include: percentages (%) of
the line height, centimeters (cm), em units (em), x-height (ex), inches (in),
millimeters (mm), picas (pc), point sizes (pt), and pixels (px).

Header Background Properties
(Tables)
To help you visualize how you can modify properties, think of the header rows of
a table as sitting on a layer above the background of a table. By modifying the
color of the header rows, you are applying an opaque color over the color of the
background header row to get the desired results. For example, if you cannot make
the header row transparent, make sure the background property is properly set for
all the different layers in the table.

Color

Specifies the background color for a table header. Select a color from the list
or type the RGB value of the color, such as FFFFFF . RGB value refers to the
web standard hexadecimal notation for Red, Green, and Blue color values.
RGB values can range from the lowest RGB value of 0 (hex #00) to the
highest value of 255 (hex #FF). For example, the RGB hexidecimal notation
for black is 000000 and white is FFFFFF .

Image (Background Image Area)

Specifies the background image for table header rows. This field lists only the
image files located in the Files folder of your project. If this field does not
list the background image you want, press F12 and verify the image is in the
Files folder for your project. Once you copy the image into the Files folder,
ePublisher displays it in the field list.

ePublisher Designer automatically transforms your source document images
during project generation to an optimized version for online distribution.
However, you can manually modify your project image settings through
the Graphic Styles properties in Style Designer. In Graphic Styles, you

Header Background Properes (Tables) | 879

can specify the following image settings: border styles and colors; width,
height, and positioning; surrounding space (padding); maximum width or
height; size, resolution, and color bit depth; file format and quality level; and
transparency or grayscale appearance.

Tiling (Background Image Area)

Specifies whether the background image repeats in table header rows. The
table must be larger than the background image to see the image repeated
in the header. The background image size also determines if an image repeat
shows when set horizontally or vertically. The values for this setting are
defined as follows:

880 | Header Background Properes (Tables)

Value Description

No repeat Specifies that the background image does not repeat.

Repeat Specifies that the background image repeats.

Repeat horizontally Specifies that the background image repeats
horizontally.

Repeat vertically Specifies that the background image repeats vertically.

Scrolling (Background Image Area)

Specifies whether the specified image remains in one fixed location as the
user scrolls through content. The values for this setting are defined as follows:

Header Background Properes (Tables) | 881

Value Description

Scroll Scrolls the background image as the user scrolls
through content.

Fixed Keeps the background image in a fixed location as the
user scrolls through content.

Horizontal (Background Image Area)

Specifies the horizontal position for the background image in your table
header row. The values for this setting are defined as follows:

882 | Header Background Properes (Tables)

Value Description

Custom The background image aligns in the table header based
on the custom value entered and the unit of measure
selected. Units of measure you can select include:
percentage (%) of the line height, centimeters (cm),
em unit (em), x-height (ex), inches (in), millimeters
(mm), pica (pc), point sizes (pt), and pixels (px). For
example, if you enter a value of 20 and select the
percentage (%) unit of measure, the top left corner
is considered 0 percent and the bottom right corner
is 100 percent. So, ePublisher aligns the background
image in a 20% value of the line-width.

Left The left side of the background image aligns with the
leftmost side of the table header.

Center The center of the background image aligns with the
center of the table header.

Right The right side of the background image aligns with the
right of the table header.

Vertical (Background Image Area)

Specifies the vertical position of the background image in your table header
row. The values for this setting are defined as follows:

Header Background Properes (Tables) | 883

Value Description

Custom The background image aligns in the table header based
on the custom value entered and the unit of measure
selected. Units of measure you can select include:
percentage (%) of the line height, centimeters (cm),
em units (em), x-height (ex), inches (in), millimeters
(mm), picas (pc), point sizes (pt), and pixels (px).
For example, if you enter a value of 20 and select the
percentage (%) unit of measure, the top left corner
is considered 0 percent and the bottom right corner
is 100 percent. So, ePublisher aligns the background
image in a 20% value of the line-height.

Top The top of the background image aligns with the top of
the tallest element in the table header.

Center The center of the background image aligns with the
middle of the parent element in the table header.

Bottom The bottom of the background image aligns with the
lowest element on the table header.

Context

Specifies whether to use alternate rows or columns in a table header.
Alternate shading of rows or columns is a useful layout to help minimize the
number of lines and amount of information displayed, while organizing the
data in a way that users can easily read and understand.

Default period

Specifies the number of rows or columns that use the default color in the table
header row. You must first set the default table header row color in the Color
field of the Header background properties. Specify a minimum value of 1.
If you specify a value of 0, ePublisher does not use alternate rows or columns
and displays entire table header row in the default color.

Alternate period

Specifies how many consecutive table header rows or columns will use the
alternate color. Set this value to a value greater than 0.

884 | Header Background Properes (Tables)

Alternate Color

Specifies the alternate color for the table header row. Select a color from the
list or type the RGB value of the color, such as FFFFFF . RGB value refers
to the web standard hexadecimal notation for Red, Green, and Blue color
values. RGB values can range from the lowest RGB value of 0 (hex #00)
to the highest value of 255 (hex #FF). For example, the RGB hexidecimal
notation for black is 000000 and white is FFFFFF .

Image (Alternate Info/Background Image Area)

Specifies the alternate background image you want to use for your table
header row. This field lists only the image files located in the Files folder of
your project. If this field does not list the background image you want, press
F12 and verify the image is in the Files folder for your project. Once you
copy the image into the Files folder, ePublisher displays it in the field list.

ePublisher Designer automatically transforms your source document images
during project generation to an optimized version for online distribution.
However, you can manually modify your project image settings through
the Graphic Styles properties in Style Designer. In Graphic Styles, you
can specify the following image settings: border styles and colors; width,
height, and positioning; surrounding space (padding); maximum width or
height; size, resolution, and color bit depth; file format and quality level; and
transparency or grayscale appearance.

Tiling (Alternate Info/Background Image Area)

Specifies whether to repeat the alternate background image in table header
rows. The table must be larger than the background image to see the image
repeated in the header. The background image size also determines if an
image repeat shows when set horizontally or vertically. The values for this
setting are defined as follows:

Header Background Properes (Tables) | 885

Value Description

No repeat Specifies that the background image does not repeat.

Repeat Specifies that the background image repeats.

Repeat horizontally Specifies that the background image repeats
horizontally.

Repeat vertically Specifies that the background image repeats vertically.

Scrolling (Alternate Info/Background Image Area)

Specifies whether the specified image remains in one fixed location as the
user scrolls through content. The values for this setting are defined as follows:

886 | Header Background Properes (Tables)

Value Description

Scroll Scrolls the background image as the user scrolls
through content.

Fixed Keeps the background image in a fixed location as the
user scrolls through content.

Horizontal (Alternate Info/Background Image Area)

Specifies the horizontal position of the alternate background image in table
header rows. The values for this setting are defined as follows:

Header Background Properes (Tables) | 887

Value Description

Custom The alternate background image aligns in the table
header based on the custom value entered and the
unit of measure selected. Units of measure you can
select include: percentage (%) of the line height,
centimeters (cm), em unit (em), x-height (ex), inches
(in), millimeters (mm), pica (pc), point sizes (pt), and
pixels (px). For example, if you enter a value of 20
and select the percentage (%) unit of measure, the
top left corner is considered 0 percent and the bottom
right corner is 100 percent. So, ePublisher aligns the
background image in a 20% value of the line-width.

Left The left side of the alternate background image aligns
with the leftmost side of the table header.

Center The center of the alternate background image aligns
with the center of the table header.

Right The right side of the alternate background image aligns
with the right of the table header.

Vertical (Alternate Info/Background Image Area)

Specifies the vertical position of the alternate background image in table
header rows. The values for this setting are defined as follows:

888 | Header Background Properes (Tables)

Value Description

Custom The alternate background image aligns in the table
header based on the custom value entered and the
unit of measure selected. Units of measure you can
select include: percentage (%) of the line height,
centimeters (cm), em units (em), x-height (ex), inches
(in), millimeters (mm), picas (pc), point sizes (pt),
and pixels (px). For example, if you enter a value of
20 and select the percentage (%) unit of measure, the
top left corner is considered 0 percent and the bottom
right corner is 100 percent. So, ePublisher aligns the
background image in a 20% value of the line-height.

Top The top of the alternate background image aligns with
the top of the tallest element in the table header.

Center The center of the alternate background image aligns
with the middle of the parent element in the table
header.

Bottom The bottom of the alternate background image aligns
with the lowest element on the table header.

HTML (Layout) Properties
Part of the power of ePublisher lies in its ability to produce as many different
outputs of your information as you need. This can include everything from print
material, to online help files and web content. While online output formats can vary
a great deal from one another, most are based on HTML. By modifying styles in
Style Designer to include HTML coding properties, you can set up your files to take
advantage of web formatting in properties such as paragraphs, characters, tables,
images, and page styles. Once you have added HTML properties to your content
styles, you can quickly and easily publish content to the web or online.

Note: In the PDF - XSL-FO format, HTML properties are referred to as Layout
properties. These properties share the names, however FO does not technical
support HTML properties, so this tab has the name Layout.

Tag

HTML (Layout) Properes | 889

Specifies the HTML tag to use for the selected item. By default, ePublisher
uses a DIV tag for each paragraph and assigns a class based on the style
name. You can change the DIV tags to P tags for specific styles by specifying
a P in this property for those paragraph styles.

Visibility

Specifies whether to show or hide the selected item by default. This property
allows you to hide a paragraph initially, and then provide a method to show
the paragraph.

Width

Specifies the fixed width, including a custom value and the unit of measure,
for the selected item. Leave this value blank if you do not want to specify
a fixed width for the selected item. For example, if you want your margin
settings to control the width of a paragraph, do not specify a width value for
your paragraph style.

Height

Specifies the fixed height, including a custom value and the unit of measure,
for the selected item. Leave this value blank if you do not want to specify a
fixed height for the selected item. For example, if you want the amount of
content in a paragraph to control the height of that paragraph, do not specify
a height value for your paragraph style.

Left (Positioning Area)

Specifies how far the left edge of the item, such as a paragraph or image,
is offset to the right of the left edge of the block that contains the item.
Percentages refer to the containing block. This value works with the value
selected for the Type property.

Top (Positioning Area)

Specifies how far the top edge of the item, such as a paragraph or image, is
offset below the top edge of the block that contains the item. Percentages
refer to the height of the containing block. This value works with the value
selected for the Type property.

Right (Positioning Area)

Specifies how far the right edge of the item, such as a paragraph or image,
is offset to the left of the right edge of the block that contains the item.
Percentages refer to the width of the containing block. This value works with
the value selected for the Type field.

Bottom (Positioning Area)

890 | HTML (Layout) Properes

Specifies how far the bottom edge of the item, such as a paragraph or image,
is offset above the bottom of the block that contains the item. Percentages
refer to the height of the containing block. This value works with the value
selected for the Type field.

Type

Specifies the type of position scheme. This property controls how the browser
processes the positioning values of Left, Top, Right, and Bottom. The
values for this setting are defined as follows:

HTML (Layout) Properes | 891

Value Description

Static Places the item, such as a paragraph or image, in
the same location as it would normally occupy in the
normal flow. Left and Top positioning properties do not
apply when you select Static.

Relative Offsets the position of the item, such as a paragraph or
image, from its normal position in the normal flow and
ignores other objects positioned outside of the normal
flow with the Absolute property.

Absolute Positions the item, such as a paragraph or image, in a
specific location. The item is not considered as part of
the normal flow and it is not considered in the layout
of objects that follow. Absolute objects do not affect
objects that use the Static or Relative value.

Float

Specifies whether to shift the paragraph to the left or right on the current line
and allow content to flow along the side of the paragraph. Use this field to
assign images to align on the left or right and allow the text to flow into the
open area next to the image. You can also create pull quotes or other sidebars
using the Float field, as well as create interesting side effects when combined
with border styles.

Use of the Float property may also be prohibited by the Clear property. If the
content of the paragraph stretches across the width of the entire page, you
may not see any noticeable change unless you assign a smaller width for the
paragraph using the Width property. The values for this setting are defined as
follows:

892 | HTML (Layout) Properes

Value Description

None Does not allow other content in the normal flow to float
to the right or left of this item.

Left Aligns this item to the left and allows content in the
normal flow to be displayed along the right side.

Right Aligns this item to the right and allows content in the
normal flow to be displayed along the left side.

Clear

Specifies which sides of an item, such as a paragraph or image, may not
be adjacent to an earlier floating box. If you set this property on a floating
paragraph, it modifies the rules for positioning the float. The values for this
setting are defined as follows:

HTML (Layout) Properes | 893

Value Description

None Does not constrain the position with respect to floats.

Left Increases the top margin of the item enough so that
the top border edge is below the bottom outer edge
of any left-floating boxes that resulted from elements
earlier in the source document.

Right Increases the top margin of the item enough so that
the top border edge is below the bottom outer edge of
any right-floating boxes that resulted from elements
earlier in the source document.

Both Moves the item below all floating boxes of earlier
elements in the source document.

Display

Specifies the Cascading Style Sheet (CSS) box type, or how to generate CSS
boxes for the selected item, such as a paragraph or image. The values for this
setting are defined as follows:

894 | HTML (Layout) Properes

Value Description

None Does not generate boxes in the formatting structure.
When you select this option, the item does not display
and the browser treats it as though it does not exist.

Block Generates a principal block box.

Inline Uses the layout properties of the previous element.

List item Displays the item that does not ordinarily display as a
list item, such as a bullet or number, as a list item if it
is inside a list.

Z-Index

Specifies an integer that corresponds with the position of the paragraph on
the z-axis. Elements with a lower value, such as 1, are displayed behind
other elements with a higher value, such as 2. You can also specify negative
numbers.

Left (Clipping Area)

Specifies the area of the left side of an image that is visible, when the image
is larger than the web element that it sits inside. ePublisher disregards the
Clipping area fields when the Overflow field is set to Visible.

Top Left (Clipping Area)

Specifies the area to the top of an image that is visible, when the image is
larger than the web element that it sits inside. ePublisher disregards the
Clipping area fields when the Overflow field is set to Visible.

Right Left (Clipping Area)

Specifies the area to the right side of an image that is visible, when the image
is larger than the web element that it sits inside. ePublisher disregards the
Clipping area fields when the Overflow field is set to Visible.

Bottom Left (Clipping Area)

HTML (Layout) Properes | 895

Specifies the area to the bottom of an image that is visible, when the image
is larger than the web element that it sits inside. ePublisher disregards the
Clipping area fields when the Overflow field is set to Visible.

Cursor

Specifies the type of cursor to be displayed when pointing on an element in
your HTML output. The values for this setting are defined as follows:

896 | HTML (Layout) Properes

Value Description

Default Displays the default cursor.

Auto Specifies that the browser sets the cursor style.

Crosshair Specifies that the browser sets the cursor as a
crosshair.

Pointer (Hand) Specifies that the browser sets the cursor as a pointer
(hand), which indicates the cursor is over a link.

Move Specifies that the browser sets the cursor to indicate an
element must be moved.

Resize East Specifies that the browser sets the cursor to indicate an
element must be moved to the right (east).

Resize Northeast Specifies that the browser sets the cursor to indicate
an element must be moved up and to the right
(northeast).

Resize Northwest Specifies that the browser sets the cursor to indicate an
element must be moved up and to the left (northwest).

Resize North Specifies that the browser sets the cursor to indicate an
element must be moved up (north).

Resize Southeast Specifies that the browser sets the cursor to indicate
an element must be moved down and to the right
(southeast).

Resize Southwest Specifies that the browser sets the cursor to indicate
an element must be moved down and to the left
(southwest).

Resize South Specifies that the browser sets the cursor to indicate an
element must be moved down (south).

HTML (Layout) Properes | 897

Value Description

Resize West Specifies that the browser sets the cursor to indicate an
element must be moved left (west).

Text Specifies that the browser sets the cursor to indicate an
element is text.

Wait Specifies the browser sets the cursor to indicate that
the program is busy (and often displays a watch or an
hourglass).

Help Specifies the browser sets the cursor to indicate that
help is available (and often displays a question mark or
balloon).

Overflow

Specifies how the output displays if the content of an element overflow its
area. If you set the Overflow field to Visible, any Clipping area properties
you set are disregarded. The values for this setting are defined as follows:

898 | HTML (Layout) Properes

Value Description

Auto Indicates the browser displays a scroll bar for viewing
content that overflows its area.

Visible Indicates the browser does not clip the image or
content that overflows its area. Instead, it displays the
content outside the element.

Hidden Indicates the browser clips the content that overflows
its area, but does not display a scroll-bar for viewing
the rest of the content.

Scroll Indicates the browser clips the content that overflows
its area, but displays a scroll-bar for viewing the rest of
the content.

Margin Properties
You can alter the white space around a paragraph by adjusting the margin and
the padding. In terms of the CSS box model, modifying the margin properties
adjusts the space outside the border area. For example, if you create a border
or background color for a paragraph and you increase the size of the margins
around the paragraph, the border remains the same distance from the text in the
paragraph. However, the position of the paragraph changes because there is more
white space between the modified paragraph and the other elements on the page.
You can set margin properties for paragraphs, characters, tables, images, and
pages from Style Designer.

Left

Specifies the amount of space to the left of a border area. Set a custom
margin value by selecting Custom, entering a value, and selecting the unit
of measure. Units of measure you can select include: percentages (%) of
the line height, centimeters (cm), em units (em), x-height (ex), inches (in),
millimeters (mm), picas (pc), point sizes (pt), and pixels (px). If you select
Auto, ePublisher automatically sets the margin value based on the settings
already indicated in the project.

Top

Margin Properes | 899

Specifies the amount of space above a border area. Set a custom margin
value by selecting Custom, entering a value, and selecting the unit of
measure. Units of measure you can select include: percentages (%) of the
line height, centimeters (cm), em units (em), x-height (ex), inches (in),
millimeters (mm), picas (pc), point sizes (pt), and pixels (px). If you select
Auto, ePublisher automatically sets the margin value based on the settings
already indicated in the project.

Right

Specifies the amount of space to the right of a border area. Set a custom
margin value by selecting Custom, entering a value, and selecting the unit
of measure. Units of measure you can select include: percentages (%) of
the line height, centimeters (cm), em units (em), x-height (ex), inches (in),
millimeters (mm), picas (pc), point sizes (pt), and pixels (px). If you select
Auto, ePublisher automatically sets the margin value based on the settings
already indicated in the project.

Bottom

Specifies the amount of space below a border area. Set a custom margin
value by selecting Custom, entering a value, and selecting the unit of
measure. Units of measure you can select include: percentages (%) of the
line height, centimeters (cm), em units (em), x-height (ex), inches (in),
millimeters (mm), picas (pc), point sizes (pt), and pixels (px). If you select
Auto, ePublisher automatically sets the margin value based on the settings
already indicated in the project.

Markdown++ Properties
You can specify the markdown syntax used for your paragraph and character styles
when using ePublisher to generate Markdown++ output. By default, your project
will try to use the most logical syntax, but with the Style Designer you can control
the syntax on a per style basis.

Indentation Level

By default, ePublisher will generate all of your paragraphs as if they have no
indentation. However, if you want your markdown syntax to reflect indentation
as if it were originally authored in markdown, then you can use this property
to control your unstructured paragraph’s indentation level. Using this property
has the effect of injecting light-weight structure into your original content.
For example, if you have a paragraph that is designed to be a bulleted
(unordered) list that appears indented from the previous paragraph, you
would want to set this paragraph’s Indentation Level to the value: 1.

900 | Markdown++ Properes

Value Description

None No markdown indentation will be created in the output.

n ePublisher will determine how many levels to create for
this paragraph using the value n (1 or higher) as the
preferred indentation level. Used in conjunction with
paragraphs that use Unordered List, Ordered List, or
Blockquote syntax.

Note: ePublisher will not indent the paragraph by more
levels than the previous level plus one. This will
prevent invalid markdown structure from being
generated.

Syntax

By default, this property will set its value based on what it knows about your
source content, which is not really that much, but in cases where it is very
clear that the syntax should be a heading, list, or code fence paragraph,
the default will generate a good match. However, in other cases you may
want to set this property to None, which generates a normal paragraph. It
is recommended that you always set this property explicitly rather than rely
upon the default (Auto-Detect).

Markdown++ Properes | 901

Value Description

Auto-Detect Most often will set your paragraph to use no syntax
(None). However, in cases where the paragraph is
clearly a heading, then it will set to a Heading 1
through Heading 6 syntax. It can also detect Ordered
List and Undordered List. And can sometimes deted
when to use Code Fence.

Note: It is recommended to not rely on this property
value for your production work. Use the None
value if your not sure what syntax to use.

Title 1 Highest level heading structure.
Title Text

==========

Title 2 Alternate heading structure for: Title 1
Title Text

Heading 1 Most common heading for starting topics.
Heading Text

Heading 2 Heading structure with varying level of significant from
2 down to 6.
Heading Text

Heading 3 Heading structure with varying level of significant from
2 down to 6.
Heading Text

Heading 4 Heading structure with varying level of significant from
2 down to 6.
Heading Text

Heading 5 Heading structure with varying level of significant from
2 down to 6.
Heading Text

902 | Markdown++ Properes

Value Description

Heading 6 Heading structure with varying level of significant from
2 down to 6.
Heading Text

Unordered List Used for bulleted list paragraphs. Use in conjunction
with the Indentation Level property.
- unordered list

Ordered List Used for numbered list paragraphs. Use in conjunction
with the Indentation Level property.
1. ordered list

Blockquote Used for paragraphs that are offset or discontinuous
from the current flow of paragraphs. Use in conjunction
with the Indentation Level property.
> blockquote

Code Fence Used to create a paragraph with code syntax. Useful
for blocks of text that need to embed special characters
and fixed width character spacing.
‘‘‘

code text embedded

‘‘‘

None Creates a paragraph without any syntax which most
commonly represents normal or body content. Will
create an empty line between consecutive paragraphs.
Normal paragraph text followed by a blank line.

Master Page Properties (Pages)
You can control the layout of all your generated pages for output formats that
require handling of pagination (i.e. PDF - XSL-FO output format). For detailed
information on these master page properties see: http://www.w3.org/TR/xsl11/
#fo_simple-page-master.

Master Page Properes (Pages) | 903

http://www.w3.org/TR/xsl11/#fo_simple-page-master
http://www.w3.org/TR/xsl11/#fo_simple-page-master

Even Master Page

This tab allows you to specify the main layout properties of all even pages in
your generated output. You can modify parameters such as the overall page
size, number of columns, size of the column gap, and the margin with this set
of properties.

Even Master Page: After Region

This tab allows you to specify the layout properties for the FO defined
region-after area of all even pages in your generated output. You can
modify parameters such as the background, clipping region, alignment,
extent, overflow behavior, reference orientation, and writing mode.

Even Master Page: Before Region

This tab allows you to specify the layout properties for the FO defined
region-before area of all even pages in your generated output. You can
modify parameters such as the background, clipping region, alignment,
extent, overflow behavior, reference orientation, and writing mode.

Even Master Page: Body Region

This tab allows you to specify the layout properties for the FO defined
region-body area of all even pages in your generated output. You can modify
parameters such as the background, clipping region, alignment, extent,
overflow behavior, reference orientation, and writing mode.

Even Master Page: End Region

This tab allows you to specify the layout properties for the FO defined
region-end area of all even pages in your generated output. You can modify
parameters such as the background, clipping region, alignment, extent,
overflow behavior, reference orientation, and writing mode.

Even Master Page: Start Region

This tab allows you to specify the layout properties for the FO defined
region-start area of all even pages in your generated output. You can
modify parameters such as the background, clipping region, alignment,
extent, overflow behavior, reference orientation, and writing mode.

Odd Master Page

This tab allows you to specify the main layout properties of the first page and
all odd pages in your generated output. You can modify parameters such as
the overall page size, number of columns, size of the column gap, and the
margin with this set of properties.

904 | Master Page Properes (Pages)

Odd Master Page: After Region

This tab allows you to specify the layout properties for the FO defined
region-after area of all odd pages in your generated output. You can modify
parameters such as the background, clipping region, alignment, extent,
overflow behavior, reference orientation, and writing mode.

Odd Master Page: Before Region

This tab allows you to specify the layout properties for the FO defined
region-before area of all odd pages in your generated output. You can
modify parameters such as the background, clipping region, alignment,
extent, overflow behavior, reference orientation, and writing mode.

Odd Master Page: Body Region

This tab allows you to specify the layout properties for the FO defined
region-body area of all odd pages in your generated output. You can modify
parameters such as the background, clipping region, alignment, extent,
overflow behavior, reference orientation, and writing mode.

Odd Master Page: End Region

This tab allows you to specify the layout properties for the FO defined
region-end area of all odd pages in your generated output. You can modify
parameters such as the background, clipping region, alignment, extent,
overflow behavior, reference orientation, and writing mode.

Odd Master Page: Start Region

This tab allows you to specify the layout properties for the FO defined
region-start area of all odd pages in your generated output. You can modify
parameters such as the background, clipping region, alignment, extent,
overflow behavior, reference orientation, and writing mode.

Navigation Properties (Pages)
Effective online documentation requires extra navigation features over print
documentation. In addition, online output follows different rules regarding the
number of page breaks and includes unique page layouts for specific information.
From Style Designer, you can specify navigation details for content pages in Page
Styles properties.

If you include navigation buttons in your online output, ePublisher lets you specify
several options for where the navigation features display. Keep in mind that not all
output formats support navigation links.

Navigaon Properes (Pages) | 905

You can form a linked path to show users the location of the current topic in your
online content. This clickable path, called breadcrumbs, steps you through the
topics that are responsible for getting you to the topic being viewed. Breadcrumbs
can display at the top of the page, at the bottom of the page, or both. ePublisher
sets the breadcrumb trail to the top of the output page by default.

Top (Navigation Alignment)

Specifies how to align the top navigation browse buttons in your online
output, such as Left, Center or Right. To display navigation browse buttons
at the top of the page, click the Options tab and set the Navigation links
shown at top of page option to Enabled for this page style. Then, set the
Navigation Properties from the Properties tab in Page Styles.

Bottom (Navigation Alignment)

Specifies how to align the bottom navigation browse buttons in your online
output, such as Left, Center or Right. To display navigation browse buttons
at the bottom of the page, click the Options tab and set the Navigation
links shown at top of page option to Enabled for this page style. Then, set
the Navigation Properties from the Properties tab in Page Styles.

Separator

Specifies the separator characters to use between breadcrumb items. The
default character is a colon (:).

Top (Breadcrumb Alignment)

Specifies how to align the breadcrumbs at the top of the page. To display
breadcrumbs at the top of the page, you must also set the Breadcrumbs
shown at top of page option on the Options tab to Enabled for this page
style.

Bottom (Breadcrumb Alignment)

Specifies how to align the breadcrumbs at the bottom of the page. To display
breadcrumbs at the bottom of the page, you must also set the Breadcrumbs
shown at bottom of page option on the Options tab to Enabled for this
page style.

Padding Properties
You can adjust the white space around a paragraph by altering the margin and the
padding values. Padding refers to the space between the border and the content.
You can change the Left, Top, Right, and Bottom padding values independently.
Padding values must be positive numbers.

906 | Padding Properes

In terms of the CSS box model, modifying the padding properties adjusts the space
inside the border area. For example, if you create a border or background color for
a paragraph and you increase the size of the padding, the border moves away from
the text in the paragraph.

You can set padding properties for paragraphs, characters, pages, tables, and
graphic styles in Style Designer. Refer to“Table Properties (Tables)” for details on
how to set padding properties in a table.

Left

Specifies the left padding, or the space between the left border and the left
content margin. Set a custom padding value by selecting Custom, entering
a value, and selecting the unit of measure. Units of measure you can select
include: percentages (%) of the line height, centimeters (cm), em units (em),
x-height (ex), inches (in), millimeters (mm), picas (pc), point sizes (pt), and
pixels (px). If you select Auto, ePublisher automatically sets the padding
value based on the settings already indicated in the project.

Top

Specifies the top padding, or the space between the top border and where
the content aligns at the top of the page. Set a custom padding value by
selecting Custom, entering a value, and selecting the unit of measure.
Units of measure you can select include: percentages (%) of the line height,
centimeters (cm), em units (em), x-height (ex), inches (in), millimeters
(mm), picas (pc), point sizes (pt), and pixels (px). If you select Auto,
ePublisher automatically sets the padding value based on the settings already
indicated in the project.

Right

Specifies the right padding, or the space between the right border and the
right content margin. Set a custom padding value by selecting Custom,
entering a value, and selecting the unit of measure. Units of measure you can
select include: percentages (%) of the line height, centimeters (cm), em units
(em), x-height (ex), inches (in), millimeters (mm), picas (pc), point sizes (pt),
and pixels (px). If you select Auto, ePublisher automatically sets the padding
value based on the settings already indicated in the project.

Bottom

Specifies the bottom padding, or the space between the bottom border and
where the content ends at the bottom of the page. Set a custom padding
value by selecting Custom, entering a value, and selecting the unit of
measure. Units of measure you can select include: percentages (%) of the
line height, centimeters (cm), em units (em), x-height (ex), inches (in),
millimeters (mm), picas (pc), point sizes (pt), and pixels (px). If you select

Padding Properes | 907

Auto, ePublisher automatically sets the padding value based on the settings
already indicated in the project.

Pagination Properties
Available only in the PDF - XSL-FO format.

These properties are for use with output formats that require print related
pagination characteristics.

Force Page Count

Forces the generated pages to end in a certain manner. The values for this
property are defined as follows:

908 | Paginaon Properes

Value Description

Auto Force the last page in this page-sequence to be an
odd-page if the initial-page-number of the next page-
sequence is even. Force it to be an even-page if the
initial-page-number of the next page-sequence is odd.
If there is no next page-sequence or if the value of its
initial-page-number is "auto" do not force any page.

Even Force an even number of pages in this page-sequence.

Odd Force an odd number of pages in this page-sequence.

End on Even Force the last page in this page-sequence to be an
even-page.

End on Odd Force the last page in this page-sequence to be an odd-
page.

Do Not Force Do not force either an even or an odd number of pages
in this page-sequence.

Inherit Use the value of the parent page style’s page property
of the same name.

Initial Page Number

Specifies the initial folio number to be used in this page-sequence. The values
for this property are defined as follows:

Paginaon Properes | 909

Value Description

Auto The initial folio number shall be set to 1 if no previous
page sequence exists in the document. If a preceding
page-sequence exists, the initial folio number will be
one greater than the last number for that sequence.

Next Odd Page A value is determined in the same manner as for Auto.
If that value is an even number 1 is added.

Next Even Page A value is determined in the same manner as for Auto.
If that value is an odd number 1 is added.

n A positive integer.

Page Number Format

Specifies the page numbering style to use for the generated page numbers
in the output. For detailed information on page numbering see: https://
www.w3.org/TR/xslt#number. The values for this property are defined as
follows:

910 | Paginaon Properes

https://www.w3.org/TR/xslt#number
https://www.w3.org/TR/xslt#number

Value Description

1 Specify a numbering sequence that starts with this
token. If an implementation does not support a
numbering sequence that starts with that token, it
must use a format token of 1.

a Use lowercase alphabetic sequences for the page
numbering.

A Use uppercase alphabetic sequences for the page
numbering.

i Use lowercase roman numeral page numbering.

I Use uppercase roman numeral page numbering.

Page Number Letter Value

Specifies characteristics for numbering sequences that use letter values.
For detailed information on page numbering see: https://www.w3.org/TR/
xslt#number. The values for this property are defined as follows:

Paginaon Properes | 911

https://www.w3.org/TR/xslt#number
https://www.w3.org/TR/xslt#number

Value Description

Auto Use the default behavior of the implementation.

Alphabetic Use letter values based on their alphabetic sequence.

Traditional Use letter values based on what is traditional for the
language that is being generated.

Table Properties (Tables)
ePublisher gives you the power to adjust padding, spacing, alignment and layout
properties for your content tables. Padding refers to the space between the table
cell border and the table cell content. You can change left, top, right, and bottom
padding values independently. Padding values must be positive numbers.

Left

Specifies the left padding for the entire table. Set a custom padding value
by selecting Custom, entering a value, and selecting the unit of measure.
Units of measure you can select include: percentages (%) of the line height,
centimeters (cm), em units (em), x-height (ex), inches (in), millimeters
(mm), picas (pc), point sizes (pt), and pixels (px).

Top

Specifies the top padding the entire table. Set a custom padding value by
selecting Custom, entering a value, and selecting the unit of measure.
Units of measure you can select include: percentages (%) of the line height,
centimeters (cm), em units (em), x-height (ex), inches (in), millimeters
(mm), picas (pc), point sizes (pt), and pixels (px).

Right

Specifies the right padding for the entire table. Set a custom padding value
by selecting Custom, entering a value, and selecting the unit of measure.
Units of measure you can select include: percentages (%) of the line height,
centimeters (cm), em units (em), x-height (ex), inches (in), millimeters
(mm), picas (pc), point sizes (pt), and pixels (px).

Bottom

912 | Table Properes (Tables)

Specifies the bottom padding for the entire table. Set a custom padding value
by selecting Custom, entering a value, and selecting the unit of measure.
Units of measure you can select include: percentages (%) of the line height,
centimeters (cm), em units (em), x-height (ex), inches (in), millimeters
(mm), picas (pc), point sizes (pt), and pixels (px).

Border

Specifies the size of the border for a table. Borders are lines that you can
draw around any or all of the four sides of a table.This field sets the border for
the outer edge of the entire table, not the border of cells within the table. This
is an HTML property, so you do not need to specify a unit of measure. If you
do not specify a border attribute, ePublisher displays the table without any
borders.

Cell spacing

Specifies the amount of space between cells of a table. Use cell spacing to
create a transparent space, or increase the distance between table cells. This
is an HTML property, so you do not need to specify a unit of measure.

Cell padding

Specifies the amount of space between the cell content and its borders. This is
an HTML property, so you do not need to specify a unit of measure.

Border collapse

Specifies whether table borders collapse into a single border or remain
detached as with standard HTML. The values for this setting are defined as
follows:

Table Properes (Tables) | 913

Value Description

Collapse Collapses borders into a single border.

Separate Keeps borders detached.

Border spacing

Specifies the distance between the borders of adjacent cells. Units of measure
you can select include: percentages (%) of the line height, centimeters (cm),
em units (em), x-height (ex), inches (in), millimeters (mm), picas (pc),
point sizes (pt), and pixels (px). Border spacing values cannot be negative
numbers.

Caption side

Specifies the position of the table caption in relation to the table. The values
for this setting are defined as: Top and Bottom.

Empty cells

Specifies whether to display empty table cells or to hide them. The values for
this setting are defined as follows:

914 | Table Properes (Tables)

Value Description

hide Indicates no borders are drawn around empty table
cells.

show Indicates borders are drawn around empty cells.

Table layout

Specifies whether the table layout is automatic or fixed. The values for this
setting are defined as follows:

Table Properes (Tables) | 915

Value Description

Auto Specifies the browser sets the column width of a table
by the contents of the table cells. This setting can slow
down browser display time because the browser must
access all table content before it can determine the
final layout.

Fixed Specifies the browser displays the table layout using
settings for table width and the width of columns, not
based on the content in the table cells. By setting a
fixed table layout, the browser can quickly display the
table once it receives the first row of table content.

Horizontal

Specifies the horizontal alignment of the content in a table. The values for this
settings are defined as: Left, Center, Right, and Justify.

Vertical

Specifies the vertical alignment of the content in a table. The values for this
setting are defined as: Top, Middle, and Bottom.

Text Properties
Color

Specifies the color for the text. Select a color from the list or type the RGB
value of the color, such as FFFFFF . RGB value refers to the web standard
hexadecimal notation for Red, Green, and Blue color values. RGB values can
range from the lowest RGB value of 0 (hex #00) to the highest value of 255
(hex #FF). For example, the RGB hexidecimal notation for black is 000000
and white is FFFFFF .

Transform

Specifies whether to display the text in a specific way regardless of how the
text is in the source documents. You can transform the text to capitalize the
first letter of each word, all upper case letters, or all lower case letters. To
leave the text as it is in the source documents, select None.

White space

916 | Text Properes

Specifies how the browser displays white space, or extra spaces, within text.
The values for this setting are defined as follows:

Text Properes | 917

Value Description

Normal Specifies the browser ignores extra white space.

Pre Specifies the browser preserves all white space. This
setting indicates the browser acts as it does with the
<pre> tag in HTML.

No wrap Specifies the browser does not wrap text. The browser
displays text on the same line until it encounters a

 tag.

Word spacing

Specifies the amount of space between words. This field allows you to adjust
the kerning between words and defaults to Normal spacing. Set a custom
spacing value by selecting Custom, entering a value, and selecting the unit
of measure. Units of measure you can select include: percentages (%) of
the line height, centimeters (cm), em units (em), x-height (ex), inches (in),
millimeters (mm), picas (pc), point sizes (pt), and pixels (px). You can adjust
the spacing within words with the Letter spacing field.

Letter spacing

Specifies the amount of space between letters within a word. This field allows
you to adjust the kerning within words and defaults to Normal spacing. Set
a custom spacing value by selecting Custom, entering a value, and selecting
the unit of measure. Units of measure you can select include: percentages
(%) of the line height, centimeters (cm), em units (em), x-height (ex), inches
(in), millimeters (mm), picas (pc), point sizes (pt), and pixels (px). You can
adjust the spacing between words with the Word spacing field.

Line height

Specifies the amount of space between each line within a paragraph. This
spacing is also known as lettingor line height. This field defaults to Normal
spacing between lines. Set a custom height value by selecting Custom,
entering a value, and selecting the unit of measure. Units of measure you can
select include: percentages (%) of the line height, centimeters (cm), em units
(em), x-height (ex), inches (in), millimeters (mm), picas (pc), point sizes (pt),
and pixels (px).

Underline style

918 | Text Properes

Specifies whether to display a line underneath a character or the text of a
paragraph. The underline may go through the bottoms of letters that drop
below the main letter line, such as lowercase g, p, and q, which can make
reading the text more difficult.

Underline color

Specifies the color of the line you choose to display underneath a character
or the text of a paragraph. Select a color from the list or type the RGB
value of the color, such as FFFFFF . RGB value refers to the web standard
hexadecimal notation for Red, Green, and Blue color values. RGB values can
range from the lowest RGB value of 0 (hex #00) to the highest value of 255
(hex #FF). For example, the RGB hexidecimal notation for black is 000000
and white is FFFFFF .

Overline style

Specifies whether to display a line above a character or the text of a
paragraph.

Line through style

Specifies whether to display a line through the middle of a character or the
text of a paragraph, also called a strike-through line.

Blink

Specifies whether the character or the text of a paragraph blinks or flashes.
Keep in mind, blinking text can be difficult to read and distracting on a page,
so use this feature sparingly.

Horizontal

Specifies the horizontal position for the character or the text of a paragraph.
The values for this setting are defined as follows:

Text Properes | 919

Value Description

Custom Aligns the character or paragraph based on the custom
value entered and the unit of measure selected. Units
of measure you can select include: percentage (%)
of the line height, centimeters (cm), em unit (em), x-
height (ex), inches (in), millimeters (mm), pica (pc),
point sizes (pt), and pixels (px).

Left Aligns the left side of a paragraph with the left margin
of the layout.

Center Aligns the center of a paragraph with the center of the
layout.

Right Aligns the right side of the paragraph with the far right
margin of the layout.

Justify Aligns a paragraph of text along both the left and
right margins. In justified text, the spaces between
words and letters (kerning) is stretched or sometimes
compressed to make the text align with the left and
right margins.

Vertical

Specifies the vertical alignment for a character or the text of a paragraph. The
values for this setting are defined as follows:

920 | Text Properes

Value Description

Baseline Aligns the paragraph or character on the baseline of the
text line.

Sub Aligns the paragraph or character as subscript.

Super Aligns the paragraph or character as superscript.

Top Aligns the paragraph or character with the top of the
tallest item on the line.

Text Top Aligns the paragraph or character with the top of the
text line.

Middle Aligns the paragraph or character with the middle of
text line.

Bottom Aligns the paragraph or character with the bottom of
the lowest item on the line.

Text Bottom Aligns the paragraph or character with the bottom of
the text font.

Indent

Specifies a custom indentation value for a paragraph. Enter the indentation
value and select the unit of measure. Units of measure you can select include:
percentage (%) of the line height, centimeters (cm), em unit (em), x-height
(ex), inches (in), millimeters (mm), pica (pc), point sizes (pt), and pixels
(px).

Direction

Specifies the direction the text should be read. This field works with the
Unicode Bidi field to ensure the browser correctly displays your content. If
unspecified, ePublisher sets the text direction as left-to-right by default.

If a document contains right-to-left characters, and if the browser can display
the language with the proper character set, the browser must apply the

Text Properes | 921

bidirectional algorithm. If you prefer to control the handling of a particular
phrase, you can apply a character style to that phrase and then define the
character style with the Direction and Unicode Bidi fields.

Unicode Bidi

Specifies the bidrectional aspect to use when there are some characters in the
text within a single paragraph that can be read from left to right, while other
text within the paragraph can be read from right to left. In some documents,
such as those written with the Arabic or Hebrew script, and in some mixed-
language contexts, text within a single paragraph may appear with mixed
directionality. This phenomenon is called bidirectionality, or bidi for short.

If a document contains right-to-left characters, and if the browser is able to
display the language with the proper character set, the browser must apply
the bidirectional algorithm. The proper character set means to not display
arbitrary substitutes such as a question mark, a hex code, or a black box for
some characters,

This property allows you to display text within a single paragraph with mixed
directionality. The values for this property are defined as follows:

922 | Text Properes

Value Description

Normal Allows implicit use of bidirectional.

Embed Allows the Unicode-bidi algorithm to choose when
it is appropriate to use the value specified for the
Direction property. Only the specific text that is read
in a different direction will be modified. The rest of the
paragraph remains in its default direction.

Bidi override Forces the characters to be displayed using the value
specified for the Direction property. All text in the
paragraph is modified to reflect a different direction,
completely overriding any instructions to display the
text in the default direction.

Markdown++ Options
These options allow you to extend the publishing capabilities of your generated
markdown output without impacting the interoperability of the generated markdown
content. Enabling Markdown++ options in your conversion process will maximize
your content’s publishing capabilities, while not effecting its ability to be used with a
wide range of markdown tools and systems, including other publishing systems that
are not Markdown++ aware.

Markdown++ anchor

Default: Enabled.

Specifies whether the selected style includes a unique anchor value that can
be used for linking from other content. This option is currently only available
for paragraph styles.

Markdown++ markers

Default: Enabled.

Specifies whether the selected style includes markers from the original source
content and emitted as Markdown++ markers.

Markdown++ style name

Default: Enabled.

Markdown++ Opons | 923

Specifies whether the selected style includes the style name from the original
source content.

Table rendering

By default, ePublisher will generate all of your tables using multi-line
markdown pipes tables. These are recommended for tables that require
preserving content structure and high fidelity styling. When using Pipes
Multiline tables with non-Markdown++ compatible tools, your tables will
downgrade to traditional markdown pipes tables, where each line in the
original content becomes a row.

924 | Markdown++ Opons

Value Description

Pipes Multiline Markdown++ highest quality table, preserving both
structure and style of your original source content’s
table. Compatible with traditional markdown tools and
systems, but quality will be degraded and the table will
appear to have more rows than in the original source
content.

Pipes Generates a traditional markdown pipe table with
concise syntax that works well for numbers and basic
content. Not recommended for complex tables.

Paragraph Styles Options
ePublisher provides many options to allow you to customize your content
transformation process and implement the online features you need. For example,
the options define table of contents levels, popup windows, and related topics, as
well as many other features and behaviors.

Additional CSS classes

Specifies an additional class name to include in the output class name for
the selected style. This option is helpful if you are using a custom .css file.
ePublisher supports this option only in output formats that support cascading
style sheets. This option is available all styles except marker styles.

This option lets you specify other classes to add to the class statement in the
generated output for the selected style. For example, if you have a class in
your .css file called Red that defines the text color as red, you can specify
Red in the Additional CSS classes option for each style you want to have
red text. ePublisher adds this class to the class name in the generated output,
such as classname=”sourcestylename Red” .

Apply character styles

Specifies whether ePublisher uses the character style formatting within the
selected paragraph style. Character styles specify characteristics like font size
and style for one or more characters. When you set the Apply character
styles option to Enabled, ePublisher applies character formatting to the
content within the selected paragraph style in your source documents. This
option is available only for paragraph styles.

Paragraph Styles Opons | 925

Citation

Specifies that ePublisher recognizes and formats the text with this style as
quotation content. A citation is a reference or footnote to a book, article, or
other material that specifies the source from which a quotation was borrowed.
The citation for a quote enables users to go to a Web site that contains more
information about the quote.

You must define a Citation paragraph or character format and a Citation
marker to specify a URL citation. The paragraph or character format with
this option enabled identifies the quote in the generated output. The Citation
marker defines the URL for the Web site with more information. When you
hover over the quote in the output file, a popup window displays the URL. This
option is available only for paragraph and character styles.

Dropdown

Specifies whether to use the selected paragraph style to define an expand/
collapse section, also called a dropdown hotspot. Some output formats do not
support expand/collapse sections.

You can configure the expand/collapse section to initially be hidden or
shown. When the user clicks the dropdown hotspot, the content expands and
collapses to allow the user to view more or less information. The expand/
collapse content can include multiple paragraph styles. You can use the
DropDownEnd marker to identify the end of the expand/collapse content. If
you have a specific paragraph style that always serves as the ending point
for your expand/collapse content and is not included in the expand/collapse
content, set this option for that paragraph style to Break. By default, all
paragraph styles are included in the expand/collapse content. The values for
this setting are defined as follows:

926 | Paragraph Styles Opons

Value Description

Break Specifies the paragraph style is never included in
expand/collapse content. A paragraph style with this
option set to Break ends the expand/collapse content
section.

Continue Specifies the selected paragraph style does not change
the expand/collapse content output. If the selected
paragraph style is within an expand/collapse content
section, the Continue value directs ePublisher to
include the content as part of the expand/collapse
content. This value is the default for paragraph styles.

End Allows the content to be inside the dropdown selection
but it will signify the end of the droprdown similar to
the behavior of a marker.

Start open Displays the content in the expand/collapse section
when the page is initially displayed. The paragraph with
this option set provides the hotspot where the user can
click to show or hide the expand/collapse content. This
paragraph style starts the expand/collapse section.

Start closed Hides the content in the expand/collapse section when
the page is initially displayed. The paragraph with this
option set provides the hotspot where the user can
click to show or hide the expand/collapse content. This
paragraph style starts the expand/collapse section.

Element name

Specifies the name of the element that contains the content of the associated
style when ePublisher converts it to XML output. This option is available only
for paragraph styles and graphic styles for the XML+XSL output format.

Generate output

Specifies whether the selected style is included in the generated output.
This option is available for all styles except marker styles. By default. the
Generate output option is set to Enabled so that all content is included in

Paragraph Styles Opons | 927

the output. If you select Disabled, the content with the selected style does
not appear in the generated output.

Glossary behavior

Specifies whether ePublisher uses the paragraph style to format glossary
terms and definitions displayed on the Glossary tab in Sun JavaHelp. This
option is available only for the Sun JavaHelp output format.

Keep empty paragraphs

Specifies whether ePublisher generates output for paragraphs with the
selected style that do not have any content. For example, at the end of
chapters in Microsoft Word, you may have multiple blank paragraphs to create
the footer on a blank even page. To exclude the empty paragraphs from your
generated content, select the paragraph style of the blank paragraphs in Style
Designer and set the Keep empty paragraphs option to Disabled. If you
leave this option set to its default value of Enabled, ePublisher can display
blank lines in your generated output.

Keep paragraph numbering

Specifies whether ePublisher includes the auto-generated numbers for the
selected paragraph style in your source documents. For example, chapter
titles, headings, figure captions, and table captions may have auto-numbering
in your source documents that you do not want to include in your online
content. To exclude the autonumbering, select the paragraph style that
contains autonumbering and set the Keep paragraph numbering option to
Disabled.

Keep paragraph numbering in TOC

Specifies whether ePublisher includes the auto-generated numbers for the
selected paragraph style in your source documents that have been defined to
have a Table of Contents level by the Paragraph Style’s Options. To exclude
the autonumbering, select the paragraph style that contains autonumbering
and set the Keep paragraph numbering in TOC option to Disabled.

Mini-TOC levels

Specifies whether to include a miniature table of contents (mini-TOC), also
known as a partial table of contents, and what table of contents levels to
include in the mini-TOC. A mini-TOC provides a small-scale look at the topics
in the upcoming section. The topic titles are displayed as links beneath the
current topic heading for easier navigation within the section.

ePublisher does not create mini-TOCs by default. To create a mini-TOC
following a paragraph style. set this option to a value other than None.
ePublisher generates the mini-TOC on all pages on which the selected
paragraph style occurs. ePublisher creates the mini-TOC for all styles with TOC

928 | Paragraph Styles Opons

level settings in the specified range between the selected paragraph style of
the current topic and the next occurrence of this same style. The values for
this setting are defined as follows:

Paragraph Styles Opons | 929

Value Description

All Creates a mini-TOC for all TOC levels up to the next
occurrence of the current paragraph style and displays
the mini-TOC on all output pages on which this
paragraph style occurs.

None Does not create a mini-TOC.

n Creates a mini-TOC for all TOC levels from 1 through
the number specified (where n equals any numeric
value), up to the next occurrence of the current
paragraph style. The mini-TOC is displayed on all
output pages on which this paragraph style occurs. For
example, if you specify 1, ePublisher creates a mini-
TOC for all TOC levels 1, up to the next occurrence of
the current paragraph style. If you specify 4, ePublisher
creates a mini-TOC for all TOC levels 1 through 4, up to
the next occurrence of the current paragraph style.

For more information, see “Defining TOCs and Mini-TOCs”.

Page break priority

Used in HTML-based output formats. This option specifies how to handle page
breaks for the selected paragraph style. This option specifies whether to
create a new page starting with the selected paragraph style and allows you
to avoid new pages with a heading and no content if two headings occur in a
row in your source documents. The default value is Use table of contents
level , which only creates a new page when there is a Table of contents
level.

930 | Paragraph Styles Opons

Value Description

Use table of contents
level

Uses the value as determined by this paragraph style’s
Table of contents level value. Keep in mind that if
that value is set to Auto-Detect, then this value will be
based on the actual document’s setting.

None Does not create a page break under any condition.

n Creates a page break so long as the previous paragraph
has a Page break priority value that is numerically
lower or that is set to None .

This option works with the Page break handling format setting to give you
complete control for how ePublisher handles page breaks. To access the Page
break handling format setting, click Target Settings on the Target menu.
With the Page break handling setting value set to Combine , to create a new
page every time the selected paragraph style exists, select the highest priority
level of 1. To create a new page only if the preceding paragraph did not create
a new page, select a lower priority level of 2 through 5. For more information,
see “Defining New Pages (Page Breaks)”.

Pass Through

Specifies whether ePublisher should process the content with the selected
paragraph style applied or insert the content directly into your output without
being transformed and coded for your output format. By default this option is
disabled. If you enable this option, ePublisher does not process the content
when generating output. For example, you can use this option to embed HTML
code into your generated output.

Popup

Specifies whether a paragraph style is displayed in a popup window and how
the content is displayed in your generated output. Define a paragraph style
for the first paragraph to display in a popup window. If the popup window
contains more than one paragraph of content, create a second paragraph style
and apply it to all subsequent paragraphs that follow the first paragraph in the
popup window. The values for this setting are defined as follows:

Paragraph Styles Opons | 931

Value Description

None Does not create a popup window.

Define Specifies the first paragraph of a popup window. The
content of the selected paragraph is also displayed
in the generated output file. Select this option only if
you apply the paragraph style to the first paragraph
of popup content and you want the content to be
displayed in the topic as well as in a popup window.

Define with no output Specifies the first paragraph of a popup window. Use
this option to display the text only in a popup window.
The content is not included in the topic where the
content is defined. Select this option only if you apply
the paragraph style to the first paragraph of popup
content and you want the content to be displayed only
in a popup window.

Append Specifies additional paragraphs to include in a popup
window that you already defined by a paragraph style
with the Popup option set to Define.

Append with no output Specifies additional paragraphs to include in a popup
window that you already defined by a paragraph style
with the Popup option set to Define with no output.

For more information, see “Defining Popup Windows”.

Popup page style

Specifies an alternate page style for the popup window associated with the
selected paragraph style. ePublisher creates default popup windows with
the same appearance as all other topic pages, including breadcrumbs and
company information. You can define additional page styles to use for popup
windows. To assign a page style other than the default page style to popup
windows, you must first create the new page style in Style Designer. Then,
select the paragraph style you use to designate popup window content and
select the new page style in the Popup page style option.

932 | Paragraph Styles Opons

If you are using marker styles to create popups, you cannot use page styles
to control the appearance of popup windows. This method applies only to
popup windows created with paragraph styles.

Related topic

Specifies whether the selected paragraph style provides links to topics that
are similar to the current topic or may be of additional interest to the user.
Related topic links are essentially cross-references to other corresponding
topics within your output. Instead of displaying cross-references directly in
your output, you can create a list of Related Topics links. The values for this
setting are defined as follows:

Paragraph Styles Opons | 933

Value Description

None Does not include the paragraph style in related topics.

Define Displays the related topics link both within the body of
the topic and when the user clicks the Related Topics
button.

Define with no output Displays the related topics link only when the user
clicks the Related Topics button.

To create a Related Topics button and have the Related Topics links
displayed in the output, create a paragraph style in the source documents that
you apply to each related topic link. Then, create a list of Related Topics links
for each topic. For more information, see “Defining Related Topics”.

Search relevance weight

Reverb allows you to add a Search relevance weight to your Paragraph
Styles, giving you the opportunity to control the order of the Search Results,
assigning to every word with that paragraph style the specified weight and
then saved in the index file. The default value is 1.

The predefined values for this setting are defined as follows (but you can
define any integer value): Ignore, 1, 10, 20, 50 and 100. If you choose to
Ignore it (which is going to be 0), it means that the style is not going to be
shown in your results.

See Also

Defines See Also link functionality for the selected paragraph or character
style. See Also links are associative links, also called Alinks, that identify
other topics that may be of interest to the user of the current topic. These
links use internal identifiers to define links and the browser builds the list
dynamically based on the topics available when the user displays the links.

To create a See Also link as inline text without a button, create a unique
character style and select the See Also option for that style.

To use a button to display See Also links, create a unique paragraph style,
select the See Also option for that style, and type the See Also text on that
paragraph. The paragraph style properties selected in Style Designer affect
the text of the See Also button.

934 | Paragraph Styles Opons

You must also define SeeAlsoLink and SeeAlsoKeyword markers. HTML Help
also supports the SeeAlsoLinkDisplayType and SeeAlsoLinkWindowType
markers. These markers allow you to change how the See Also links are
displayed in HTML Help. See Also links are not supported by all output
formats, such Dynamic HTML. For more information, see “Defining See Also
Links”.

Start new page sequence

Used in the PDF - XSL-FO output format. By default this option is disabled,
but if enabled, it creates a new page sequence to be generated in the PDF
output. When used in conjunction with a PageStyle marker, you can change
the generated page layout properties to match the configuration of the Page
style in use.

Table of contents level

Specifies the level of the table of contents (TOC) entry for the selected
paragraph style. For example, setting this option to 1 specifies that all the
paragraphs with the selected style appear in the TOC at the first level in the
TOC hierarchy. Setting this option to 2 specifies that all paragraphs with the
selected style appear in the table of contents at the second level. The Table
of contents level option works in conjunction with the Page break priority
option.

The Auto-Detect option takes the source file’s information and will
automatically assign values for the paragraph. From Adobe FrameMaker,
this will be taken from the Bookmarks tab in the PDF Setup from the Print
Document dialog box. From Microsoft Word, ePublisher uses the Heading
levels (usually from Heading 1-Heading 9). From DITA, the map hierarchy
becomes the TOC.

Paragraph Styles Opons | 935

Value Description

Auto-Detect Uses the value as determined by the original content’s
TOC setting.

None Does not create a TOC entry under any condition.

n Creates a TOC entry in the online help system with this
explicit value.

The value you specify for each of your paragraph styles determines the
structure of the online version of your table of contents. These values also
define the structure of mini-TOCs. ePublisher defaults this value to Auto-
Detect , which typically results in your online table of contents looking the
same as your document’s table of contents. This option is available only for
paragraph styles. For more information, see “Defining TOCs and Mini-TOCs” S.

Variable

Specifies the name for a variable that ePublisher creates. ePublisher sets the
value of the variable to the contents of the selected paragraph or character
style. You can then use this variable in your page layout override Page.asp
file.

For example, if you want to include a section name in a banner area at the
top of each topic in that section, you can assign a variable for the paragraph
style of the section name. Then, you can modify the override Page.asp file to
include this variable value in the page layout where you want it. Each topic in
a section use the section name for that section, until the next section name
defined by the paragraph style changes the value for the next section of
topics. To insert a variable in the override Page.asp file, insert the following
code in the file, where variable is the name of the variable you specify in this
option:

<div wwpage:content="wwvars:variable">replaced variable value</
div>

After processing the Page.asp file for a topic where the variable value is User
Information , ePublisher replaces this code with the following code in the
output file:

<div>User Information</div>

936 | Paragraph Styles Opons

‘What is this’ marker

Available only in the Microsoft HTML Help 1.x format. This option specifies
whether the selected paragraph style should define What’s This help content
for field-level context-sensitive help. When the user right-clicks on a field
in the user interface and then clicks What’s This on the right-click menu,
the application displays this type of content. This content does not support
formatting and is not supported in all output formats. The values for this
setting are defined as follows:

Paragraph Styles Opons | 937

Value Description

None Does not include the content in What’s This help
content.

Define Displays the content both in What’s This help and in
the topic where the content is defined, such as in a
glossary or a terminology list.

Define with no output Displays the content only as What’s This help. The
content is not included in the topic where the content is
defined.

Character Styles Options
ePublisher provides many options to allow you to customize your content
transformation process and implement the online features you need. For example,
the options define table of contents levels, popup windows, and related topics, as
well as many other features and behaviors.

Abbreviation

Specifies that ePublisher provides alternate or expansion text for all
abbreviations with the selected character format in your online output. This
option is available only for character styles.

You must define an Abbreviation character format and an AbbreviationTitle
marker to specify alternate text for abbreviations. The character format with
this option enabled identifies the abbreviation in the generated output. The
AbbreviationTitle marker defines the alternate text for the abbreviation.
ePublisher adds the abbreviation alternate text you specify to the title
attribute of the abbr tag in the output. When you hover over the abbreviation
in the output file, a popup window displays the alternate or expansion text for
the abbreviation.

Acronym

Specifies that ePublisher provides alternate or definition text for all acronyms
with the selected character format in your online output. This option is
available only for character styles.

938 | Character Styles Opons

You must define an Acronym character format and an Acronym marker to
specify alternate text for acronyms. The character format with this option
enabled identifies the acronym in the generated output. The Acronym marker
defines the alternate text for the acronym. ePublisher adds the acronym
alternate text you specify to the title attribute of the acronym tag in the
output. When you hover over the acronym in the output file, a popup window
displays the alternate or definition text for the acronym.

Additional CSS classes

Specifies an additional class name to include in the output class name for
the selected style. This option is helpful if you are using a custom .css file.
ePublisher supports this option only in output formats that support cascading
style sheets. This option is available all styles except marker styles.

This option lets you specify other classes to add to the class statement in the
generated output for the selected style. For example, if you have a class in
your .css file called Red that defines the text color as red, you can specify
Red in the Additional CSS classes option for each style you want to have
red text. ePublisher adds this class to the class name in the generated output,
such as classname=”sourcestylename Red” .

Citation

Specifies that ePublisher recognizes and formats the text with this style as
quotation content. A citation is a reference or footnote to a book, article, or
other material that specifies the source from which a quotation was borrowed.
The citation for a quote enables users to go to a Web site that contains more
information about the quote.

You must define a Citation paragraph or character format and a Citation
marker to specify a URL citation. The paragraph or character format with
this option enabled identifies the quote in the generated output. The Citation
marker defines the URL for the Web site with more information. When you
hover over the quote in the output file, a popup window displays the URL. This
option is available only for paragraph and character styles.

Generate output

Specifies whether the selected style is included in the generated output.
This option is available for all styles except marker styles. By default. the
Generate output option is set to Enabled so that all content is included in
the output. If you select Disabled, the content with the selected style does
not appear in the generated output.

Pass Through

Specifies whether ePublisher should process the content with the selected
character style applied or insert the content directly into your output without

Character Styles Opons | 939

being transformed and coded for your output format. By default this option is
disabled. If you enable this option, ePublisher does not process the content
when generating output. For example, you can use this option to embed HTML
code into your generated output.

See Also

Defines See Also link functionality for the selected paragraph or character
style. See Also links are associative links, also called Alinks, that identify
other topics that may be of interest to the user of the current topic. These
links use internal identifiers to define links and the browser builds the list
dynamically based on the topics available when the user displays the links.

To create a See Also link as inline text without a button, create a unique
character style and select the See Also option for that style.

To use a button to display See Also links, create a unique paragraph style,
select the See Also option for that style, and type the See Also text on that
paragraph. The paragraph style properties selected in Style Designer affect
the text of the See Also button.

You must also define SeeAlsoLink and SeeAlsoKeyword markers. HTML Help
also supports the SeeAlsoLinkDisplayType and SeeAlsoLinkWindowType
markers. These markers allow you to change how the See Also links are
displayed in HTML Help. See Also links are not supported by all output
formats, such Dynamic HTML.

Variable

Specifies the name for a variable that ePublisher creates. ePublisher sets the
value of the variable to the contents of the selected paragraph or character
style. You can then use this variable in your page layout override Page.asp
file.

For example, if you want to include a section name in a banner area at the
top of each topic in that section, you can assign a variable for the paragraph
style of the section name. Then, you can modify the override Page.asp file to
include this variable value in the page layout where you want it. Each topic in
a section use the section name for that section, until the next section name
defined by the paragraph style changes the value for the next section of
topics. To insert a variable in the override Page.asp file, insert the following
code in the file, where variable is the name of the variable you specify in this
option:

<div wwpage:content="wwvars:variable">replaced variable value</
div>

After processing the Page.asp file for a topic where the variable value is User
Information , ePublisher replaces this code with the following code in the
output file:

940 | Character Styles Opons

<div>User Information</div>

Table Styles Options
ePublisher provides many options to allow you to customize your content
transformation process and implement the online features you need. For example,
the options define table of contents levels, popup windows, and related topics, as
well as many other features and behaviors.

Additional CSS classes

Specifies an additional class name to include in the output class name for
the selected style. This option is helpful if you are using a custom .css file.
ePublisher supports this option only in output formats that support cascading
style sheets. This option is available all styles except marker styles.

This option lets you specify other classes to add to the class statement in the
generated output for the selected style. For example, if you have a class in
your .css file called Red that defines the text color as red, you can specify
Red in the Additional CSS classes option for each style you want to have
red text. ePublisher adds this class to the class name in the generated output,
such as classname=”sourcestylename Red” .

Dropdown

Specifies whether to use the selected table style to define an expand/collapse
section, also called a dropdown hotspot. Some output formats do not support
expand/collapse sections.

You can configure the expand/collapse section to initially be hidden or
shown. When the user clicks the dropdown hotspot, the content expands and
collapses to allow the user to view more or less information. The expand/
collapse content can include multiple paragraph and table styles. You can use
the DropDownEnd marker to identify the end of the expand/collapse content.
If you have a specific table style that always serves as the ending point for
your expand/collapse content and is not included in the expand/collapse
content, set this option for that table style to Break. By default, all table
styles are included in the expand/collapse content. The values for this setting
are defined as follows:

Table Styles Opons | 941

Value Description

Break Specifies the table style is never included in expand/
collapse content. A table style with this option set to
Break ends the expand/collapse content section.

Continue Specifies the selected table style does not change
the expand/collapse content output. If the selected
paragraph style is within an expand/collapse content
section, the Continue value directs ePublisher to
include the content as part of the expand/collapse
content. This value is the default for table styles.

End Allows the content to be inside the dropdown selection
but it will signify the end of the droprdown similar to
the behavior of a marker.

Start open Displays the content in the expand/collapse section
when the page is initially displayed. The table with this
option set provides the hotspot where the user can click
to show or hide the expand/collapse content. This table
style starts the expand/collapse section.

Start closed Hides the content in the expand/collapse section when
the page is initially displayed. The table with this option
set provides the hotspot where the user can click to
show or hide the expand/collapse content. This table
style starts the expand/collapse section.

Emit table markup

Specifies whether the selected style includes all generated markup in the
output.

First Table Cell Width

Specifies the width of the first cell of the table. Useful when working with
tables where you only need to specify the width of the first column while
allowing the other columns to flow naturally in the output. Typically this
means that you would also disable the Use document cell widths option
when enabling this option.

942 | Table Styles Opons

Generate output

Specifies whether the selected style is included in the generated output.
This option is available for all styles except marker styles. By default. the
Generate output option is set to Enabled so that all content is included in
the output. If you select Disabled, the content with the selected style does
not appear in the generated output.

Last Table Cell Width

Specifies the width of the last cell of the table. Useful when working with
tables where you only need to specify the width of the last column while
allowing the other columns to flow naturally in the output. Typically this
means that you would also disable the Use document cell widths option
when enabling this option.

Page break priority

Specifies how to handle page breaks for the selected paragraph style. This
option specifies whether to create a new page starting with the selected
paragraph style and allows you to avoid new pages with a heading and no
content if two headings occur in a row in your source documents. The default
value is None, which does not create a new page.

This option works with the Page break handling format setting to give you
complete control for how ePublisher handles page breaks. To access the Page
break handling format setting, click Target Settings on the Target menu.
With the default Page break handling format setting, to create a new page
every time the selected paragraph style exists, select the highest priority level
of 1. To create a new page only if the preceding paragraph did not create a
new page, select a lower priority level of 2 through 5. For more information,
see “Defining New Pages (Page Breaks)”.

Use % table cell widths

This option works similar to the Use document cell widths, except that it
converts the specific dimensions into relative percentages thus overcoming
the problem of changing the font size of the generated output.

Use document cell widths

Specifies whether ePublisher sets all cell widths for tables of the selected table
style to the same values as defined in the source document. If you set this
option to Disabled, ePublisher sets table cell widths based on the size of the
viewer window.

If the font size for your online table text differs from your source documents,
enabling the Use document cell widths option may not give you the desired
results. For example, if fonts for online tables are larger than in your source

Table Styles Opons | 943

documents, some of the table text may wrap in the cells in the generated
output.

Page Styles Options
ePublisher provides many options to allow you to customize your content
transformation process and implement the online features you need. For example,
the options define table of contents levels, popup windows, and related topics, as
well as many other features and behaviors.

Additional CSS classes

Specifies an additional class name to include in the output class name for
the selected style. This option is helpful if you are using a custom .css file.
ePublisher supports this option only in output formats that support cascading
style sheets. This option is available all styles except marker styles.

This option lets you specify other classes to add to the class statement in the
generated output for the selected style. For example, if you have a class in
your .css file called Red that defines the text color as red, you can specify
Red in the Additional CSS classes option for each style you want to have
red text. ePublisher adds this class to the class name in the generated output,
such as classname=”sourcestylename Red” .

Breadcrumbs shown at bottom of page

Specifies whether to include breadcrumbs at the bottom of each page for
the selected page style. Breadcrumbs form a linked path to show users
the hierarchical location of the current topic in your online content. This
clickable path steps you through the topics at the higher levels in the online
organization of topics. This option is not available in some output types.

You can include breadcrumbs at the top of the page, at the bottom of the
page, or both. The breadcrumb trail at the top of the output page is enabled
by default.

Breadcrumbs shown at top of page

Specifies whether to include breadcrumbs at the top of each page for
the selected page style. Breadcrumbs form a linked path to show users
the hierarchical location of the current topic in your online content. This
clickable path steps you through the topics at the higher levels in the online
organization of topics. This option is not available in some output types.

You can include breadcrumbs at the top of the page, at the bottom of the
page, or both. The breadcrumb trail at the top of the output page is enabled
by default.

Company info bottom alignment

944 | Page Styles Opons

Specifies the alignment of the company information displayed at the bottom
of each page for the selected page style. For example, you can align the
company information to the left or to the right. To display the company
information at the bottom, set the Company info displayed at bottom
option to Enabled. This option is not available in some output types.

Company info displayed at bottom

Specifies whether to display the company information at the bottom of pages
with the selected page style. If you set this option to Enabled, ePublisher
displays the information specified in the company-related format settings at
the bottom of these pages. This option is not available in some output types.

Use the Company info bottom alignment option to adjust how ePublisher
displays the company information. ePublisher does not display the company
information in the Preview pane.

If you add a logo image to your project, ePublisher displays the logo next to
your company contact information on the top or the bottom of your output
pages.To include a company logo, you must first store the image file in the
Files folder of your project.

Company info displayed at top

Specifies whether to display the company information at the top of pages with
the selected page style. If you set this option to Enabled, ePublisher displays
the information specified in the company-related format settings at the top of
these pages. This option is not available in some output types.

Use the Company info top alignment option to adjust how ePublisher
displays the company information. ePublisher does not display the company
information in the Preview pane.

If you add a logo image to your project, ePublisher displays the logo next to
your company contact information on the top or the bottom of your output
pages.To include a company logo, you must first store the image file in the
Files folder of your project.

Company info top alignment

Specifies the alignment of the company information displayed at the top
of each page for the selected page style. For example, you can align the
company information to the left or to the right. To display the company
information at the top, set the Company info displayed at top option to
Enabled. This option is not available in some output types.

Custom document css file

Page Styles Opons | 945

Specifies the name of the custom .css file to include in each generated
output file. You can use a custom .css file to modify the appearance of your
content instead of using the Style Designer, or to augment the Style Designer
settings. When you specify the name of the custom .css file in this option,
ePublisher inserts the link tag within all HTML pages and links to the .css file
specified. This option is available only for page styles.

You must store the custom .css file in the Files folder of your project for it
to be recognized by ePublisher. If you use a subfolder within the Files folder
for your .css file, click the Browse button next to the Custom document
css file option to navigate to the subfolder. ePublisher populates this option
with the correct path to the custom .css file.

Generate output

Specifies whether the selected style is included in the generated output.
This option is available for all styles except marker styles. By default. the
Generate output option is set to Enabled so that all content is included in
the output. If you select Disabled, the content with the selected style does
not appear in the generated output.

Navigation links shown at bottom of page

Specifies whether to display navigation links, also known as browse buttons,
at the bottom of each page for the selected page style. The Navigation
Alignment property for the page controls whether the navigation links are
aligned to the left or right. To set the Navigation Alignment property, on the
Properties tab, click Navigation. This option is not available in some output
types.

Navigation links shown at top of page

Specifies whether to display navigation links, also known as browse buttons,
at the top of each page for the selected page style. The Navigation
Alignment property for the page controls whether the navigation links are
aligned to the left or right. To set the Navigation Alignment property, on the
Properties tab, click Navigation. This option is not available in some output
types.

Output file extension

Specifies the file extension to use for output files. If you select a page style,
specify a value such as .htm or .html for your output files. If you select a
graphic style, specify a value that corresponds to the graphic file format you
selected for the Format option, such as .jpg, .gif, or .png. This option is
available only for graphic and page styles.

Page Styles Options (PDF - XSL-FO)

946 | Page Styles Opons (PDF - XSL-FO)

ePublisher provides many options to allow you to customize your content
transformation process and implement the online features you need. The Page
Styles Options can be used to customize your PDF-XSL-FO output. Selected styles
will be applied to the text in that region.

Even page footer style

Specifies a Paragraph Style to be applied to the footer text on even pages.

Even page footer text

Specifies whether to display the first heading’s text of each even page as the
text in the footer.

Even page header style

Specifies a Paragraph Style to be applied to the header text on even pages.

Even page header text

Specifies whether to display the first heading’s text of the page as the text on
even header pages.

First Master Page

Select whether to enable or disable the first master page. By default, the
First Master Page option is set to Disabled.

First page footer style

Specifies a Paragraph Style to be applied to the footer text of the first page.

First page footer text

Specifies whether to display the first heading style of the page as the text in
the first page footer.

First page header style

Specifies a Paragraph Style to be applied to the header text of the first
page.

First page header text

Specifies whether to display the first heading style of the page as the text in
the first page header.

Generate output

Page Styles Opons (PDF - XSL-FO) | 947

Specifies whether the selected style is included in the generated output.
This option is available for all styles except marker styles. By default. the
Generate output option is set to Enabled so that all content is included in
the output. If you select Disabled, the content with the selected style does
not appear in the generated output.

Last Master Page

Select whether to enable or disable the last master page. By default, the Last
Master Page option is set to Disabled.

Last page footer style

Specifies a Paragraph Style to be applied to the footer text of the last page.

Last page footer text

Specifies whether to display the first heading style of the page as the text in
the last page footer.

Last page header style

Specifies a Paragraph Style to be applied to the header text of the last page.

Last page header text

Specifies whether to display the first heading style of the page as the text in
the last page header.

Odd page footer style

Specifies a Paragraph Style to be applied to the footer text on odd pages.

Odd page footer text

Specifies whether to display the first heading style of the page as the text in
each odd page footer.

Odd page header style

Specifies a Paragraph Style to be applied to the header text on odd pages.

Odd page header text

Specifies whether to display the first heading style of the page as the text in
each odd page header.

Output file extension

948 | Page Styles Opons (PDF - XSL-FO)

Specifies the file extension to use for output files. If you select a page style,
specify a value such as .htm or .html for your output files. If you select a
graphic style, specify a value that corresponds to the graphic file format you
selected for the Format option, such as .jpg, .gif, or .png. This option is
available only for graphic and page styles.

Graphic Styles Options
ePublisher provides many options to allow you to customize your content
transformation process and implement the online features you need. For example,
the options define the size and quality of the images in the generated output, as
well as many other features and behaviors. For more information, see “Defining the
Appearance of Images”

Additional CSS classes

Specifies an additional class name to include in the output class name for
the selected style. This option is helpful if you are using a custom .css file.
ePublisher supports this option only in output formats that support cascading
style sheets. This option is available all styles except marker styles.

This option lets you specify other classes to add to the class statement in the
generated output for the selected style. For example, if you have a class in
your .css file called Red that defines the text color as red, you can specify
Red in the Additional CSS classes option for each style you want to have
red text. ePublisher adds this class to the class name in the generated output,
such as classname=”sourcestylename Red” .

Allow by-reference vector images (SVG)

Allows vector image .svg files to be imported by-reference in the source
documents. ePublisher includes these images in the generated output files.
This option is available only for graphic styles.

By reference graphics

Allows images to be imported in source documents by reference. ePublisher
preserves the original image file names that are imported by reference and
does not assign file names to these images. This option is available only for
graphic styles.

By reference graphics use document dimensions

Resizes all images imported by reference in the source documents to use the
size defined within the source documents. Enabling this option can reduce the
clarity of images by causing ePublisher to rasterize the images to achieve the
size defined in the source documents. ePublisher preserves the original image

Graphic Styles Opons | 949

file names that are imported by reference and does not assign file names to
these images. This option is available only for graphic styles.

Color bit depth

Specifies the number of bits of data carrying the color information in your
images. The range of colors available through digital computer images is
usually expressed in terms of bit depth. Common bit depth levels for images
include 8-bit and 24-bit color. In general, more bits of data make more colors
available. This option applies only to .gif and .png images. .jpg images
are 32-bit images. This option is available only for graphic styles.

Format

Specifies the output format for images with the selected graphic style. By
default, ePublisher transfers all images in your source documents, regardless
of their file format, to Web-ready .jpg images. You may want to use other
image formats for online delivery. For example, .gif images can produce
similar quality images as .jpg , but the file size is smaller. The .gif format
can also support transparent colors. You can also create .png images, which
combine some of the best qualities of both .jpg and .gif files.

If you use the same format and size as your source document images, you
can avoid the rasterization process and improve the clarity of your images in
your generated output. For more information, see “Defining the Appearance of
Images”.

This option works with the Output file extension and JPG Quality options.
If you select JPG, set Output file extension to .jpg and set JPG Quality
to the appropriate value to transform your images with the quality level you
need. This option is available only for graphic styles. For more information,
see “Choosing an Image File Format and Quality Level”.

Generate output

Specifies whether the selected style is included in the generated output.
This option is available for all styles except marker styles. By default. the
Generate output option is set to Enabled so that all content is included in
the output. If you select Disabled, the content with the selected style does
not appear in the generated output.

Grayscale

Specifies whether to transform your original color images into grayscale
versions in your generated content. If you set the Grayscale option to
Enabled, ePublisher removes the color saturation of the original images
when those images are transformed with your content. If the original source
images are grayscale, this option has no effect. This option is available only
for graphic styles.

950 | Graphic Styles Opons

Interlaced

Specifies whether to transform images as interlaced images. Interlaced
images initially load more quickly in browsers and become more clear as the
browser displays additional detail. This option is available only for graphic
styles.

JPG Quality

Specifies the quality of the .jpg image files ePublisher creates from the
images in your source documents with the selected graphic style. This value
is a percentage of the original source document quality. For example, set this
option to 100 to have ePublisher duplicate the quality of your original images.
The default value is 75.

Once you select JPG in the Format option for a graphic style, set the JPG
Quality option. The quality level impacts both the visual aspects of your
images and the size of the generated files. Higher-quality images require
larger files, which require more time to download and display. This option
does not affect .gif or .png images. This option is available only for graphic
styles.

Maximum image height (px)

Specifies the maximum height, in pixels, for images with the selected graphic
style. During conversion, ePublisher resizes source document images taller
than this value and maintains the original aspect ratio of each image. This
option works with the Render DPI, Scale %, and Maximum image width
options to make sure your images are correctly sized for online delivery. This
option is available only for graphic styles.

ePublisher automatically converts images in your source document into Web-
ready formats. However, the size of your print image may not be appropriate
for online delivery. ePublisher provides several ways to modify the size of your
images for online delivery without affecting the original images. While you can
specify a fixed image width and height for all images using a specific graphic
style, it is often most efficient to define the maximum height and width for an
image.

Maximum image width (px)

Specifies the maximum width, in pixels, for images with the selected graphic
style. During conversion, ePublisher resizes source document images wider
than this value and maintains the original aspect ratio of each image. This
option works with the Render DPI, Scale %, and Maximum image height
options to make sure your images are correctly sized for online delivery. This
option is available only for graphic styles.

Graphic Styles Opons | 951

ePublisher automatically converts images in your source document into Web-
ready formats. However, the size of your print image may not be appropriate
for online delivery. ePublisher provides several ways to modify the size of your
images for online delivery without affecting the original images. While you can
specify a fixed image width and height for all images using a specific graphic
style, it is often most efficient to define the maximum height and width for an
image.

Maximum thumbnail height (px)

Specifies the maximum height, in pixels, for thumbnails of images with the
selected graphic style. A thumbnail is a small copy of an image displayed in
place of the original image online to conserve space and download time. This
option is available only for graphic styles.

When you enter a value in this option, ePublisher automatically creates
thumbnails for any image that exceeds the maximum thumbnail height
specified. When the user clicks the thumbnail in the generated output, the
full-size image is displayed. Use the Thumbnail page style option to alter
the appearance of the window in which ePublisher displays the full-size
images. If you do not want thumbnail images used in your online output,
leave this option value blank.

Maximum thumbnail width (px)

Specifies the maximum width, in pixels, for thumbnails of images with the
selected graphic style. A thumbnail is a small copy of an image displayed in
place of the original image online to conserve space and download time. This
option is available only for graphic styles.

When you enter a value in this option, ePublisher automatically creates
thumbnails for any image that exceeds the maximum thumbnail width
specified. When the user clicks the thumbnail in the generated output, the
full-size image is displayed. Use the Thumbnail page style option to alter
the appearance of the window in which ePublisher displays the full-size
images. If you do not want thumbnail images used in your online output,
leave this option value blank.

Output file extension

Specifies the file extension to use for output files. If you select a page style,
specify a value such as .htm or .html for your output files. If you select a
graphic style, specify a value that corresponds to the graphic file format you
selected for the Format option, such as .jpg, .gif, or .png. This option is
available only for graphic and page styles.

Render DPI

952 | Graphic Styles Opons

Specifies the dots per inch (DPI) to use for images with the selected graphic
style. ePublisher defaults this value to 96. If you specify a DPI that differs
from the DPI of your source images, ePublisher rasterizes the image to create
the new image for online delivery. If your source documents images have
settings for a print-level resolution, such as 300 DPI or higher, you can reduce
the image resolution for online delivery. Higher DPI images create larger files
that require more time to download. In addition, most monitors display a
resolution of 96 DPI, so higher resolutions do not increase the quality of the
image displayed online. This option is available only for graphic styles.

Although transforming an image from 300 DPI to 96 DPI helps optimize your
images for online delivery, it also affects the width and height of your images.
Because a resolution of 300 DPI contains more dots per inch than a resolution
of 96 DPI, the image ePublisher transforms will be roughly 68% smaller than
the original image. For example, a 300 DPI image that is 100 x 100 pixels will
be 32 x 32 pixels when transformed to a 96 DPI image.

To counter this effect, use the Scale % option in conjunction with the Render
DPI option to control the size of your images. In the example of transforming
a 300 DPI image to 96 DPI, set the Scale % option to 312, which generates
an image that has roughly the same dimensions as the original source image.
You can also use the Scale % and Render DPI options together with the
Maximum image height and Maximum image width options to make sure
your images are correctly sized for online delivery.

Responsive image sizing

When enabled, generated output will resize the images based on the available
screen area of the device. The image will never be larger than its generated
size, however, if the available screen size is less than the size of the image,
the image will be scaled down in size so that it fits withing the viewable area.

Scale %

Specifies the percentage ePublisher resizes all images with the selected
graphic style. For example, if you specify 50, ePublisher reduces each image
with the selected graphic style to half its original size. When the actual width
and height of an image is not important, you can specify a scaling percentage
to apply to all images with the selected graphic style. This option allows you
to modify the size of all images associated with the graphic style in relation
to their original sizes. Modifying images in this way retains the original aspect
ratio of each image.

This option works with the Render DPI, Maximum image height, and
Maximum image width options to make sure your images are correctly
sized for online delivery. This option is available only for graphic styles. For
more information, see “Defining the Appearance of Images”.

Graphic Styles Opons | 953

Thumbnail page style

Specifies the name of the page style that ePublisher uses when displaying
full-size images in a separate window after a user clicks a thumbnail image
within the generated output. You can create a custom page style and then
select the name of the custom page style to use for full-size image windows
displayed from thumbnail images. If you leave the Thumbnail page style
option blank, ePublisher uses the page style of the main content for the full-
size image windows displayed from thumbnail images. This option is available
only for graphic styles.

You must enter a value in the Maximum thumbnail height and Maximum
thumbnail width options for ePublisher to recognize and use the Thumbnail
page style option.

Transparency

Specifies whether to transform all white regions in .gif or .png images with
the selected graphic style to transparent areas. In some images, you may
want to set a color to transparent. For example, if your source document has
a white background, images with a white background display as though they
do not have a background. However, if your online content has a different
color background, the background of these images appear as white areas.

Select the graphic style and enable the Transparency option in ePublisher to
transform the white background into a transparent one. Only .gif and .png
images support transparent colors. This option is available only for graphic
styles.

Marker Styles Options
ePublisher provides many options to allow you to customize your content
transformation process and implement the online features you need. For example,
the options define table of contents levels, popup windows, and related topics, as
well as many other features and behaviors.

Marker type

Specifies the function associated with the selected marker style. ePublisher
defines default names for the marker styles to support selected features. For
example, if you have a marker style named Filename, ePublisher sets this
option to allow that marker to define file names for output files. These default
associations automate ePublisher configuration. You can specify your own
marker styles and assign the function for each marker style. This option is
available only for marker styles. For more information, see “Defining Marker
Types”.

Navigation title

954 | Marker Styles Opons

Specifies whether the selected marker type supports the Navigation title
function. If you enable this option for a marker type, you can use the marker
to specify alternate text to display in the table of contents for a topic. For
example, if you have a topic that does not have a heading, such as a topic
that contains just a table or chart, you can add a marker with this option
enabled to that topic and specify the text you want to be displayed in the
table of contents for that topic.

Search relevance weight

Reverb allows you to add a Search relevance weight to your Marker
Styles, giving you the opportunity to control the order of the Search Results,
assigning to every word with that marker style the specified weight and then
saved in the index file. The default value is 1.

The predefined values for this option are defined as follows (but you can
define any integer value): Ignore, 1, 10, 20, 50 and 100. If you choose to
Ignore it (which is going to be 0), it means that the style is not going to be
shown in your results.

Variable

Specifies the name for a variable that ePublisher creates. ePublisher sets the
value of the variable to the contents of the selected marker, paragraph or
character style. You can then use this variable in your page layout override
Page.asp file.

For example, if you want to include a section name in a banner area at the
top of each topic in that section, you can assign a variable for the paragraph
style of the section name. Then, you can modify the override Page.asp file to
include this variable value in the page layout where you want it. Each topic in
a section use the section name for that section, until the next section name
defined by the paragraph style changes the value for the next section of
topics. To insert a variable in the override Page.asp file, insert the following
code in the file, where variable is the name of the variable you specify in this
option:

<div wwpage:content="wwvars:variable">replaced variable value</
div>

After processing the Page.asp file for a topic where the variable value is User
Information , ePublisher replaces this code with the following code in the
output file:

<div>User Information</div>

Marker Styles Opons | 955

Customizing WebWorks Reverb 2.0
Changing the Appearance of WebWorks Reverb 2.0
Target Settings for WebWorks Reverb 2.0
Customizing the Top-Level Entry File
Customizing TOC Menu Item Display
Customizing the Splash Page in WebWorks Reverb 2.0
Using Context-Sensitive Help in WebWorks Reverb 2.0
Configuring Client-Side Search for Reverb 2.0
Searching WebWorks Reverb 2.0 - URL Method
Incorporating Google Analytics for Your Reverb 2.0 Files
Configuring Commenting and End-User Feedback for Reverb 2.0
Customizing Icons in Your Reverb 2.0 Output Using Font Awesome
Incorporating Web Fonts in Your Reverb 2.0 Output
‘Was This Helpful?’ Buttons
Dropdown Collapse/Expand All Toggle Button
Document Last Modified Date/Publish Date
Customizing Related Topics

WebWorks Reverb 2.0 uses SASS technology to build a robust and responsive
layout. Using ePublisher’s implementation of this technology, the user can
customize any aspect of the visual layout.

Changing the Appearance of WebWorks
Reverb 2.0
Most customizations to WebWorks Reverb 2.0 rely upon changing one of three file
types:

Page Templates - Found in the Pages folder and have the extension .asp.
Users may create overrides for these files in their project to change overall
layouts.

SASS Files - Found in the Pages\sass folder. Users may change the color,
icons, and other layout specific behaviors of the skin with these files. Changes
to these files will not have an effect on the content pages if styles have been
defined within the source documents or in the Style Designer.

Images - Found in the Pages\images folder. These files are injected into the
layout via Connect.asp and can be replaced with another image.

For easy reference, see the below table for a list of template files.

956 | Changing the Appearance of WebWorks Reverb 2.0

Page Template Use

Connect.asp Entry point to the Reverb 2.0 run-time. This file
controls the placement of the toolbar buttons, menu
(table of contents/index), page, and footer.

Header.asp Defines the layout and appearance of the Header.

Footer.asp Defines the layout and appearance of the Footer.

Index.asp Data file for each Reverb parcel’s Index information.

Page.asp Defines the layout and appearance of generated pages.

Parcel.asp Data file for each Reverb parcel (help set).

Search.asp Search integration page.

Splash.asp Defines the layout and appearance of the Reverb 2.0
splash page.

Unsupported_Browser.aspDefines the layout and appearance of the message that
displays when a user visits a Reverb 2.0 help set with
an unsupported browser.

Using SASS To Customize WebWorks
Reverb 2.0
WebWorks Reverb 2.0 makes use of SASS to produce a responsive HTML5 layout.
These files are found in the Pages/sass folder of the Format. SASS file names end
with the .scss extension. There are many files in this folder and all of the files have
a specific purpose.

Of these files, they fall into two categories:

Template Files - These are identified by their filename. A Template File’s name
will always begin with the underscore character. These files contain variables

Using SASS To Customize WebWorks Reverb 2.0 | 957

that hold values that can be changed by the user to affect areas of the layout
without changing the implementation of the layout itself.

Layout Files - These files have filenames that do not begin with the
underscore character. These files contain the implementations of the variables
defined in template files.

For reference, refer to the below table for a summary of what each SASS file
pertains to.

958 | Using SASS To Customize WebWorks Reverb 2.0

SASS Filename Pertains To

_borders.scss Contains variables for border values to be applied
across the layout.

_colors.scss Contains variables for color values to be applied across
the layout.

_fonts.scss Contains variables for font values to be applied across
the layout.

_functions.scss Contains definitions of custom SASS functions created
by WebWorks for use in the layout.

_icons.scss Contains variables for icon values to be applied across
the layout.

_sizes.scss Contains variables for size values to be applied across
the layout.

connect.scss Contains the implementation for top-level structure and
core behavior for the layout.

menu_initial_closed.scssContains the menu configuration for when the menu is
set to be closed upon first visit of the help set.

menu_initial_open.scss Contains the menu configuration for when the menu is
set to be open upon first visit of the help set.

print.scss Contains style information for the presentation when a
page is to be printed.

search.scss Contains style information for the presentation of the
search page.

skin.scss Contains the aesthetic implementation for the layout.
This file is where colors, fonts, borders, icons, and
other visual style settings are implemented. This file

Using SASS To Customize WebWorks Reverb 2.0 | 959

SASS Filename Pertains To
also contains the various implementations for individual
skins.

social.scss Contains style information for the social buttons in the
page toolbar.

webworks.scss Contains default style information for tables, the Mini-
TOC, and other various small items in the layout. This
file is implemented last and works well for custom
implementations as well.

SASS Variables In WebWorks Reverb 2.0
WebWorks Reverb 2.0 contains an implementation of SASS variables that has
been constructed with efficiency and user-friendliness in mind. In each Template
File, there are many variables that contain values that are implemented in the
layout. Each variable has been given a name that describes the use of the value it
holds. Variables are named in a procedural manner, each name starting with the
section of the layout that it resides, and with every consecutive word defining more
specifically what it pertains to.

As a reference, these graphics provide a visualization of the regions of the layout.
The graphics can provide a starting point for finding the variable for the item that
needs to be customized. The regions in the graphics have been color coded and
numbered from 1 to 7. These numbers can be matched with a variable prefix that
matches with a collection of variables that affect that region.

960 | SASS Variables In WebWorks Reverb 2.0

SASS Variables In WebWorks Reverb 2.0 | 961

962 | SASS Variables In WebWorks Reverb 2.0

Number Variable Prefix

1 $toolbar_*

2 $menu_*

3 $page_*

4 $mini_toc_*

5 $footer_*

6 $search_*

7 $back_to_top_*

Migrating SASS Overrides To Newer Format
Versions
Upon installation of the latest version of ePublisher, it is recommended that a
migration of overrides is performed on any project that contains overridden
files that match to a prior format version. The migration procedure works for
all file types in an ePublisher project, but is highlighted for SASS because of it’s
interconnected nature between the files. Sometimes, when a project is updated to
the latest Format Version, users will get an error like this one when generating:
[Error] Traceback (most recent call last):
 File "C:\Program Files (x86)\WebWorks\ePublisher\2018.2\Helpers
\python\WebWorks\compile_sass.py", line 25, in <module>
 compile_sass(input_file, output_file)
 File "C:\Program Files (x86)\WebWorks\ePublisher\2018.2\Helpers
\python\WebWorks\compile_sass.py", line 13, in compile_sass
 _cssoutput = sass.compile(string=data)
 File "C:\Program Files (x86)\WebWorks\ePublisher\2018.2\Helpers
\python\lib\site-packages\sass.py", line 640, in compile
 raise CompileError(v)
sass.CompileError: Error: Undefined variable: "$related-topics-title-
background-color".
 on line 143 of stdin
>> background: $related_topics_title_background_color;

Migrang SASS Overrides To Newer Format Versions | 963

 --------------^

This error happens most commonly when a newer version of one of the SASS
files has a reference to a variable that should be inside an older, overridden SASS
file. The solution for this is to migrate the overridden file to the latest version,
comparing the overridden version to the latest version in a diff tool, and copying
your local changes to the latest version of the same file.

Refer to this article for a comprehensive list of free and paid diff tools available for
Windows:

https://www.git-tower.com/blog/diff-tools-windows

Layout Colors In WebWorks Reverb 2.0
Skins
In the file _colors.scss, a convention has been created to allow for ease of use and
user friendliness. The file makes use of Layout Colors that are defined at the top of
the page. Every other color value in the layout inherits from these layout colors, so
with this logic, you could change the color value of one layout color, and this value
would be applied to many aspects of the layout. For the best results, the designer
should take a top-down approach, first changing the values of colors at the top
level, and then changing individual values for items that need minor adjustments.

For reference, we have created a table for each skin that details every variable
that inherits from a certain layout color. These tables may seem like a lot, but just
remember, the fact that one Layout Color affects so many values means that for the
designer, the workload in the end is greatly reduced.

964 | Layout Colors In WebWorks Reverb 2.0 Skins

https://www.git-tower.com/blog/diff-tools-windows

Neo

Layout Color Inherited By

$_layout_color_1 $back_to_top_background_color,
$footer_link_color, $header_link_color,
$link_default_color,
$menu_nav_buttons_background_color_hover,
$menu_toc_item_current_highlight_color,
$mini_toc_entry_background_color_hover,
$page_breadcrumbs_link_color,
$page_breadcrumbs_link_color_hover,
$page_helpful_button_icon_color_selected,
$related_topics_entry_text_color,
$related_topics_title_background_color,
$toolbar_background_color,
$toolbar_button_background_color,
$toolbar_button_home_background_color,
$toolbar_button_menu_background_color,
$toolbar_button_next_background_color,
$toolbar_button_previous_background_color,
$toolbar_button_search_background_color,
$toolbar_button_translate_background_color,
$toolbar_logo_section_background_color,
$toolbar_search_section_background_color,
$toolbar_tab_background_color,
$toolbar_tabs_container_background_color,
$unsupported_browser_heading_text_color

$_layout_color_2 $back_to_top_caret_color,
$menu_index_link_color,
$menu_index_text_color,
$menu_index_title_color,
$menu_nav_buttons_current_icon_color,
$menu_nav_buttons_current_icon_color_click,
$menu_nav_buttons_current_icon_color_hover,
$menu_nav_buttons_icon_color,
$menu_nav_buttons_icon_color_hover,
$menu_text_color,
$menu_toc_item_icon_color,
$menu_toc_item_text_color,
$menu_toc_title_text_color,
$mini_toc_entry_text_color,
$mini_toc_entry_text_color_visited,

Layout Colors In WebWorks Reverb 2.0 Skins | 965

Layout Color Inherited By
$page_dropdown_arrow_color,
$page_helpful_button_icon_color,
$page_helpful_message_text_color,
$page_toolbar_icon_divider_color,
$page_toolbar_social_icon_color,
$page_toolbar_social_icon_facebook_color,
$page_toolbar_social_icon_linkedin_color,
$page_toolbar_social_icon_twitter_color,
$page_toolbar_tool_icon_color,
$related_topics_dropdown_toggle_icon_color,
$related_topics_entry_icon_color,
$related_topics_title_text_color,
$search_filter_message_text_color,
$search_plain_text_color,
$search_result_count_message_text_color,
$search_result_icon_color,
$search_result_summary_highlight_text_color,
$search_result_summary_text_color,
$search_title_text_color,
$toolbar_button_home_icon_color,
$toolbar_button_icon_color,
$toolbar_button_menu_icon_color,
$toolbar_button_next_icon_color,
$toolbar_button_previous_icon_color,
$toolbar_button_search_icon_color,
$toolbar_button_translate_icon_color,
$toolbar_icon_color,
$toolbar_logo_link_text_color,
$toolbar_logo_text_color,
$toolbar_search_scope_option_text_color,
$toolbar_search_scope_options_text_color,
$toolbar_search_scope_selector_icon_color,
$toolbar_search_scope_selector_text_color,
$toolbar_tab_current_text_color,
$toolbar_tab_current_text_color_hover,
$toolbar_tab_text_color,
$toolbar_text_color,
$unsupported_browser_message_text_color

$_layout_color_3 $disqus_background_color,
$footer_text_color,
$header_text_color,
$menu_background_color,
$menu_index_background_color,
$menu_nav_buttons_current_background_color,

966 | Layout Colors In WebWorks Reverb 2.0 Skins

Layout Color Inherited By
$menu_toc_background_color,
$menu_toc_item_background_color,
$mini_toc_background_color,
$toolbar_search_scope_option_background_color,
$toolbar_search_scope_options_background_color,
$toolbar_search_scope_selector_background_color

$_layout_color_4 $lightbox_button_close_icon_color,
$mini_toc_entry_text_color_hover,
$mini_toc_entry_text_color_visited_hover,
$no_javascript_text_color,
$page_breadcrumbs_text_color

$_layout_color_5 $footer_background_color,
$header_background_color,
$page_breadcrumbs_background_color

$_layout_color_6 $page_background_color,
$search_background_color,
$search_result_background_color

Layout Colors In WebWorks Reverb 2.0 Skins | 967

Classic

Layout Color Inherited By

$_layout_color_1 $footer_link_color, $header_link_color,
$link_default_color,
$mini_toc_entry_background_color_hover,
$page_helpful_button_icon_color_selected,
$related_topics_entry_text_color,
$toolbar_button_home_icon_color_click,
$toolbar_button_home_icon_color_hover,
$toolbar_button_menu_icon_color_click,
$toolbar_button_menu_icon_color_hover,
$toolbar_button_next_icon_color_click,
$toolbar_button_next_icon_color_hover,
$toolbar_button_previous_icon_color_click,
$toolbar_button_previous_icon_color_hover,
$toolbar_button_search_icon_color_click,
$toolbar_button_search_icon_color_hover,
$toolbar_button_translate_icon_color_click,
$toolbar_button_translate_icon_color_hover,
$toolbar_tab_current_background_color,
$unsupported_browser_heading_text_color

$_layout_color_2 $back_to_top_caret_color,
$menu_nav_buttons_current_icon_color,
$menu_nav_buttons_current_icon_color_click,
$menu_nav_buttons_current_icon_color_hover,
$menu_nav_buttons_icon_color,
$menu_text_color,
$menu_toc_item_icon_color,
$menu_toc_title_text_color,
$mini_toc_entry_text_color,
$mini_toc_entry_text_color_visited,
$page_dropdown_arrow_color,
$page_helpful_button_icon_color,
$page_toolbar_icon_divider_color,
$page_toolbar_social_icon_color,
$page_toolbar_social_icon_facebook_color,
$page_toolbar_social_icon_linkedin_color,
$page_toolbar_social_icon_twitter_color,
$page_toolbar_tool_icon_color,
$related_topics_dropdown_toggle_icon_color,
$related_topics_entry_icon_color,

968 | Layout Colors In WebWorks Reverb 2.0 Skins

Layout Color Inherited By
$related_topics_title_text_color,
$search_filter_message_text_color,
$search_plain_text_color,
$search_result_count_message_text_color,
$search_result_icon_color,
$search_result_summary_highlight_text_color,
$search_result_summary_text_color,
$search_title_text_color,
$toolbar_button_home_icon_color,
$toolbar_button_icon_color,
$toolbar_button_menu_icon_color,
$toolbar_button_next_icon_color,
$toolbar_button_previous_icon_color,
$toolbar_button_search_icon_color,
$toolbar_button_translate_icon_color,
$toolbar_icon_color,
$toolbar_logo_link_text_color,
$toolbar_logo_text_color,
$toolbar_search_scope_option_text_color,
$toolbar_search_scope_options_text_color,
$toolbar_search_scope_selector_icon_color,
$toolbar_search_scope_selector_text_color,
$toolbar_tab_text_color,
$toolbar_text_color,
$unsupported_browser_message_text_color

$_layout_color_3 $disqus_background_color,
$footer_text_color,
$header_text_color,
$menu_background_color,
$menu_index_background_color,
$menu_nav_buttons_current_background_color,
$menu_toc_background_color,
$menu_toc_item_background_color,
$mini_toc_background_color,
$toolbar_search_scope_option_background_color,
$toolbar_search_scope_options_background_color,
$toolbar_search_scope_selector_background_color,
$toolbar_tab_background_color

$_layout_color_4 $lightbox_button_close_icon_color,
$menu_nav_buttons_icon_color_click,
$menu_nav_buttons_icon_color_hover,
$menu_toc_item_current_icon_color,
$menu_toc_item_current_icon_color_click,

Layout Colors In WebWorks Reverb 2.0 Skins | 969

Layout Color Inherited By
$menu_toc_item_current_icon_color_hover,
$menu_toc_item_current_text_color,
$menu_toc_item_current_text_color_click,
$menu_toc_item_current_text_color_hover,
$menu_toc_item_icon_color_click,
$menu_toc_item_icon_color_hover,
$menu_toc_item_text_color_click,
$menu_toc_item_text_color_hover,
$mini_toc_entry_text_color_hover,
$mini_toc_entry_text_color_visited_hover,
$no_javascript_text_color,
$page_breadcrumbs_link_color,
$page_breadcrumbs_link_color_hover,
$page_breadcrumbs_link_color_visited,
$page_breadcrumbs_link_color_visited_hover,
$page_breadcrumbs_text_color,
$toolbar_search_scope_option_text_color_hover,
$toolbar_search_scope_selector_icon_color_hover,
$toolbar_search_scope_selector_text_color_hover,
$toolbar_tab_current_text_color,
$toolbar_tab_current_text_color_hover,
$toolbar_tab_text_color_hover

$_layout_color_5 $footer_background_color,
$footer_copyright_message_text_color,
$footer_hr_color,
$footer_publish_date_text_color,
$header_background_color,
$page_breadcrumbs_background_color

$_layout_color_6 $page_background_color,
$search_background_color,
$search_result_background_color

$_layout_color_7 $back_to_top_background_color,
$back_to_top_background_color_hover,
$menu_toc_item_current_highlight_color,
$related_topics_title_background_color,
$toolbar_background_color,
$toolbar_button_background_color,
$toolbar_button_home_background_color,
$toolbar_button_home_background_color_click,
$toolbar_button_home_background_color_hover,
$toolbar_button_menu_background_color,

970 | Layout Colors In WebWorks Reverb 2.0 Skins

Layout Color Inherited By
$toolbar_button_menu_background_color_click,
$toolbar_button_menu_background_color_hover,
$toolbar_button_next_background_color,
$toolbar_button_next_background_color_click,
$toolbar_button_next_background_color_hover,
$toolbar_button_previous_background_color,
$toolbar_button_previous_background_color_click,
$toolbar_button_previous_background_color_hover,
$toolbar_button_search_background_color,
$toolbar_button_search_background_color_click,
$toolbar_button_search_background_color_hover,
$toolbar_button_translate_background_color,
$toolbar_button_translate_background_color_click,
$toolbar_button_translate_background_color_hover,
$toolbar_logo_section_background_color,
$toolbar_search_section_background_color

$_layout_color_8 $menu_toc_item_current_background_color,
$menu_toc_item_current_background_color_click,
$menu_toc_item_current_background_color_hover

$_layout_color_9 $menu_nav_buttons_background_color_click,
$menu_nav_buttons_background_color_hover,
$menu_toc_item_background_color_click,
$menu_toc_item_background_color_hover,
$toolbar_search_scope_option_background_color_hover,
$toolbar_search_scope_selector_background_color_hover

$_layout_color_10 $menu_index_link_color,
$menu_index_text_color,
$menu_index_title_color,
$menu_toc_item_text_color,
$page_helpful_message_text_color

Layout Colors In WebWorks Reverb 2.0 Skins | 971

Corporate

Layout Color Inherited By

$_layout_color_1 $mini_toc_entry_background_color_hover,
$page_breadcrumbs_link_color,
$page_breadcrumbs_link_color_hover,
$page_breadcrumbs_link_color_visited,
$page_breadcrumbs_link_color_visited_hover,
$related_topics_entry_text_color,
$unsupported_browser_heading_text_color

$_layout_color_2 $back_to_top_caret_color,
$menu_nav_buttons_icon_color_click,
$menu_nav_buttons_icon_color_hover,
$page_helpful_button_icon_color,
$page_toolbar_icon_divider_color,
$page_toolbar_social_icon_color,
$page_toolbar_social_icon_facebook_color,
$page_toolbar_social_icon_linkedin_color,
$page_toolbar_social_icon_twitter_color,
$page_toolbar_tool_icon_color,
$related_topics_dropdown_toggle_icon_color,
$related_topics_entry_icon_color,
$related_topics_title_text_color,
$toolbar_button_home_icon_color,
$toolbar_button_home_icon_color_click,
$toolbar_button_home_icon_color_hover,
$toolbar_button_icon_color,
$toolbar_button_menu_icon_color,
$toolbar_button_menu_icon_color_click,
$toolbar_button_menu_icon_color_hover,
$toolbar_button_next_icon_color,
$toolbar_button_next_icon_color_click,
$toolbar_button_next_icon_color_hover,
$toolbar_button_previous_icon_color,
$toolbar_button_previous_icon_color_click,
$toolbar_button_previous_icon_color_hover,
$toolbar_button_search_icon_color,
$toolbar_button_search_icon_color_click,
$toolbar_button_search_icon_color_hover,
$toolbar_button_translate_icon_color,
$toolbar_button_translate_icon_color_click,
$toolbar_button_translate_icon_color_hover,

972 | Layout Colors In WebWorks Reverb 2.0 Skins

Layout Color Inherited By
$toolbar_icon_color,
$toolbar_logo_link_text_color,
$toolbar_logo_text_color,
$toolbar_tab_text_color,
$toolbar_text_color

$_layout_color_3 $disqus_background_color,
$footer_text_color, $header_text_color

$_layout_color_4 $menu_index_link_color,
$menu_index_text_color,
$menu_index_title_color,
$menu_toc_title_text_color,
$mini_toc_entry_text_color,
$mini_toc_entry_text_color_visited,
$no_javascript_text_color,
$page_breadcrumbs_text_color,
$page_dropdown_arrow_color,
$page_helpful_message_text_color,
$search_filter_message_text_color,
$search_plain_text_color,
$search_result_count_message_text_color,
$search_result_icon_color,
$search_result_summary_highlight_text_color,
$search_result_summary_text_color,
$search_title_text_color,
$toolbar_search_scope_option_text_color,
$toolbar_search_scope_option_text_color_hover,
$toolbar_search_scope_options_text_color,
$toolbar_search_scope_selector_icon_color,
$toolbar_search_scope_selector_icon_color_hover,
$toolbar_search_scope_selector_text_color,
$toolbar_search_scope_selector_text_color_hover,
$unsupported_browser_message_text_color

$_layout_color_5 $toolbar_button_home_background_color_hover,
$toolbar_button_menu_background_color_hover,
$toolbar_button_next_background_color_hover,
$toolbar_button_previous_background_color_hover,
$toolbar_button_translate_background_color_hover,
$toolbar_search_section_background_color_hover

$_layout_color_6 $menu_background_color,
$menu_index_background_color,

Layout Colors In WebWorks Reverb 2.0 Skins | 973

Layout Color Inherited By
$menu_nav_buttons_current_background_color,
$menu_toc_background_color,
$menu_toc_item_background_color,
$mini_toc_background_color,
$page_background_color,
$page_breadcrumbs_background_color,
$search_background_color,
$search_result_background_color,
$toolbar_search_scope_option_background_color,
$toolbar_search_scope_options_background_color,
$toolbar_search_scope_selector_background_color

$_layout_color_7 $back_to_top_background_color,
$back_to_top_background_color_hover,
$menu_toc_item_current_highlight_color,
$related_topics_title_background_color,
$toolbar_background_color,
$toolbar_button_background_color,
$toolbar_button_home_background_color,
$toolbar_button_menu_background_color,
$toolbar_button_next_background_color,
$toolbar_button_previous_background_color,
$toolbar_button_search_background_color,
$toolbar_button_search_background_color_click,
$toolbar_button_search_background_color_hover,
$toolbar_button_translate_background_color,
$toolbar_logo_section_background_color,
$toolbar_search_section_background_color

$_layout_color_8 $toolbar_button_home_background_color_click,
$toolbar_button_menu_background_color_click,
$toolbar_button_next_background_color_click,
$toolbar_button_previous_background_color_click,
$toolbar_button_translate_background_color_click

$_layout_color_9 $menu_nav_buttons_background_color_click,
$menu_nav_buttons_background_color_hover

$_layout_color_10 $lightbox_button_close_icon_color,
$mini_toc_entry_text_color_hover,
$mini_toc_entry_text_color_visited_hover,
$toolbar_tab_current_text_color,

974 | Layout Colors In WebWorks Reverb 2.0 Skins

Layout Color Inherited By
$toolbar_tab_current_text_color_hover,
$toolbar_tab_text_color_hover

$_layout_color_11 $menu_nav_buttons_current_icon_color,
$menu_nav_buttons_current_icon_color_click,
$menu_nav_buttons_current_icon_color_hover,
$menu_nav_buttons_icon_color,
$menu_text_color,
$menu_toc_item_current_icon_color,
$menu_toc_item_current_icon_color_click,
$menu_toc_item_current_icon_color_hover,
$menu_toc_item_current_text_color,
$menu_toc_item_current_text_color_click,
$menu_toc_item_current_text_color_hover,
$menu_toc_item_icon_color,
$menu_toc_item_icon_color_click,
$menu_toc_item_icon_color_hover,
$menu_toc_item_text_color,
$menu_toc_item_text_color_click,
$menu_toc_item_text_color_hover

$_layout_color_12 $footer_background_color,
$header_background_color,
$toolbar_tab_background_color,
$toolbar_tab_current_background_color,
$toolbar_tabs_container_background_color

Layout Colors In WebWorks Reverb 2.0 Skins | 975

Metro

Layout Color Inherited By

$_layout_color_1 $back_to_top_background_color,
$footer_link_color, $header_link_color,
$link_default_color,
$mini_toc_entry_background_color_hover,
$page_breadcrumbs_link_color,
$page_breadcrumbs_link_color_hover,
$page_helpful_button_icon_color_selected,
$related_topics_entry_text_color,
$related_topics_title_background_color,
$toolbar_tab_background_color,
$unsupported_browser_heading_text_color

$_layout_color_2 $back_to_top_caret_color,
$menu_toc_item_current_text_color,
$menu_toc_item_current_text_color_click,
$menu_toc_item_current_text_color_hover,
$menu_toc_item_text_color_click,
$menu_toc_item_text_color_hover,
$mini_toc_entry_text_color,
$mini_toc_entry_text_color_visited,
$page_dropdown_arrow_color,
$page_helpful_button_icon_color,
$page_helpful_message_text_color,
$page_toolbar_icon_divider_color,
$page_toolbar_social_icon_color,
$page_toolbar_social_icon_facebook_color,
$page_toolbar_social_icon_linkedin_color,
$page_toolbar_social_icon_twitter_color,
$page_toolbar_tool_icon_color,
$related_topics_dropdown_toggle_icon_color,
$related_topics_entry_icon_color,
$related_topics_title_text_color,
$search_filter_message_text_color,
$search_plain_text_color,
$search_result_count_message_text_color,
$search_result_icon_color,
$search_result_summary_highlight_text_color,
$search_result_summary_text_color,
$search_title_text_color,
$toolbar_logo_link_text_color,

976 | Layout Colors In WebWorks Reverb 2.0 Skins

Layout Color Inherited By
$toolbar_logo_text_color,
$toolbar_search_scope_option_text_color,
$toolbar_search_scope_options_text_color,
$toolbar_search_scope_selector_icon_color,
$toolbar_search_scope_selector_text_color,
$toolbar_tab_current_text_color,
$toolbar_tab_current_text_color_hover,
$toolbar_text_color,
$unsupported_browser_message_text_color

$_layout_color_3 $disqus_background_color,
$footer_text_color,
$header_text_color,
$menu_index_link_color,
$menu_index_text_color,
$menu_index_title_color,
$menu_nav_buttons_background_color_click,
$menu_nav_buttons_current_icon_color,
$menu_nav_buttons_current_icon_color_click,
$menu_nav_buttons_current_icon_color_hover,
$menu_nav_buttons_icon_color_hover,
$menu_text_color,
$menu_toc_item_current_icon_color,
$menu_toc_item_current_icon_color_click,
$menu_toc_item_current_icon_color_hover,
$menu_toc_item_icon_color_click,
$menu_toc_item_icon_color_hover,
$menu_toc_item_text_color,
$menu_toc_title_text_color,
$mini_toc_background_color,
$toolbar_button_home_background_color_click,
$toolbar_button_menu_background_color_click,
$toolbar_button_next_background_color_click,
$toolbar_button_previous_background_color_click,
$toolbar_button_translate_background_color_click,
$toolbar_search_scope_option_background_color,
$toolbar_search_scope_options_background_color,
$toolbar_search_scope_selector_background_color

$_layout_color_4 $lightbox_button_close_icon_color,
$mini_toc_entry_text_color_hover,
$mini_toc_entry_text_color_visited_hover,
$no_javascript_text_color,
$page_breadcrumbs_text_color,
$toolbar_button_home_icon_color,

Layout Colors In WebWorks Reverb 2.0 Skins | 977

Layout Color Inherited By
$toolbar_button_home_icon_color_hover,
$toolbar_button_icon_color,
$toolbar_button_menu_icon_color,
$toolbar_button_menu_icon_color_hover,
$toolbar_button_next_icon_color,
$toolbar_button_next_icon_color_hover,
$toolbar_button_previous_icon_color,
$toolbar_button_previous_icon_color_hover,
$toolbar_button_search_icon_color,
$toolbar_button_search_icon_color_hover,
$toolbar_button_translate_icon_color,
$toolbar_button_translate_icon_color_hover,
$toolbar_icon_color,
$toolbar_tab_text_color,
$toolbar_tab_text_color_hover

$_layout_color_5 $footer_background_color,
$header_background_color,
$menu_toc_item_current_highlight_color,
$page_breadcrumbs_background_color,
$toolbar_background_color,
$toolbar_tabs_container_background_color

$_layout_color_6 $page_background_color,
$search_background_color,
$search_result_background_color

$_layout_color_7 $menu_background_color,
$menu_index_background_color,
$menu_nav_buttons_background_color,
$menu_nav_buttons_background_color_hover,
$menu_nav_buttons_current_background_color,
$menu_toc_background_color,
$menu_toc_item_background_color,
$toolbar_button_background_color,
$toolbar_button_home_background_color,
$toolbar_button_home_background_color_hover,
$toolbar_button_menu_background_color,
$toolbar_button_menu_background_color_hover,
$toolbar_button_next_background_color,
$toolbar_button_next_background_color_hover,
$toolbar_button_previous_background_color,
$toolbar_button_previous_background_color_hover,
$toolbar_button_translate_background_color,

978 | Layout Colors In WebWorks Reverb 2.0 Skins

Layout Color Inherited By
$toolbar_button_translate_background_color_hover,
$toolbar_logo_section_background_color,
$toolbar_search_section_background_color

$_layout_color_8 $menu_toc_item_background_color_click,
$menu_toc_item_background_color_hover

$_layout_color_9 $menu_toc_item_current_background_color,
$menu_toc_item_current_background_color_click,
$menu_toc_item_current_background_color_hover,
$toolbar_tab_current_background_color

Layout Colors In WebWorks Reverb 2.0 Skins | 979

Social

Layout Color Inherited By

$_layout_color_1 $back_to_top_background_color,
$footer_link_color, $header_link_color,
$link_default_color,
$menu_nav_buttons_background_color_hover,
$menu_toc_item_current_highlight_color,
$mini_toc_entry_background_color_hover,
$page_breadcrumbs_link_color,
$page_breadcrumbs_link_color_hover,
$page_helpful_button_icon_color,
$page_helpful_button_icon_color_selected,
$related_topics_entry_text_color,
$related_topics_title_background_color,
$toolbar_background_color,
$toolbar_button_background_color,
$toolbar_button_home_background_color,
$toolbar_button_menu_background_color,
$toolbar_button_next_background_color,
$toolbar_button_previous_background_color,
$toolbar_button_search_background_color,
$toolbar_button_translate_background_color,
$toolbar_logo_section_background_color,
$toolbar_search_section_background_color,
$toolbar_tab_background_color,
$toolbar_tabs_container_background_color,
$unsupported_browser_heading_text_color

$_layout_color_2 $back_to_top_caret_color,
$menu_index_link_color,
$menu_index_text_color,
$menu_index_title_color,
$menu_nav_buttons_current_icon_color,
$menu_nav_buttons_current_icon_color_click,
$menu_nav_buttons_current_icon_color_hover,
$menu_nav_buttons_icon_color,
$menu_text_color,
$menu_toc_item_icon_color,
$menu_toc_item_text_color,
$menu_toc_title_text_color,
$mini_toc_entry_text_color,
$mini_toc_entry_text_color_visited,

980 | Layout Colors In WebWorks Reverb 2.0 Skins

Layout Color Inherited By
$page_breadcrumbs_text_color,
$page_dropdown_arrow_color,
$page_helpful_message_text_color,
$page_toolbar_icon_divider_color,
$page_toolbar_social_icon_color,
$page_toolbar_social_icon_facebook_color,
$page_toolbar_social_icon_linkedin_color,
$page_toolbar_social_icon_twitter_color,
$page_toolbar_tool_icon_color,
$related_topics_entry_icon_color,
$search_filter_message_text_color,
$search_plain_text_color,
$search_result_count_message_text_color,
$search_result_icon_color,
$search_result_summary_highlight_text_color,
$search_result_summary_text_color,
$search_title_text_color,
$toolbar_search_scope_option_text_color,
$toolbar_search_scope_options_text_color,
$toolbar_search_scope_selector_icon_color,
$toolbar_search_scope_selector_text_color,
$unsupported_browser_message_text_color

$_layout_color_3 $disqus_background_color,
$footer_text_color,
$header_text_color,
$menu_background_color,
$menu_index_background_color,
$menu_nav_buttons_current_background_color,
$menu_toc_background_color,
$menu_toc_item_background_color,
$mini_toc_background_color,
$toolbar_search_scope_option_background_color,
$toolbar_search_scope_options_background_color,
$toolbar_search_scope_selector_background_color

$_layout_color_4 $lightbox_button_close_icon_color,
$menu_nav_buttons_icon_color_hover,
$mini_toc_entry_text_color_hover,
$mini_toc_entry_text_color_visited_hover,
$no_javascript_text_color,
$related_topics_dropdown_toggle_icon_color,
$related_topics_title_text_color,
$toolbar_button_home_icon_color,
$toolbar_button_home_icon_color_click,

Layout Colors In WebWorks Reverb 2.0 Skins | 981

Layout Color Inherited By
$toolbar_button_home_icon_color_hover,
$toolbar_button_icon_color,
$toolbar_button_menu_icon_color,
$toolbar_button_menu_icon_color_click,
$toolbar_button_menu_icon_color_hover,
$toolbar_button_next_icon_color,
$toolbar_button_next_icon_color_click,
$toolbar_button_next_icon_color_hover,
$toolbar_button_previous_icon_color,
$toolbar_button_previous_icon_color_click,
$toolbar_button_previous_icon_color_hover,
$toolbar_button_search_icon_color,
$toolbar_button_search_icon_color_click,
$toolbar_button_search_icon_color_hover,
$toolbar_button_translate_icon_color,
$toolbar_button_translate_icon_color_click,
$toolbar_button_translate_icon_color_hover,
$toolbar_icon_color,
$toolbar_logo_link_text_color,
$toolbar_logo_text_color,
$toolbar_tab_current_text_color,
$toolbar_tab_current_text_color_hover,
$toolbar_tab_text_color,
$toolbar_tab_text_color_hover,
$toolbar_text_color

$_layout_color_5 $footer_background_color,
$header_background_color

$_layout_color_6 $page_background_color,
$page_breadcrumbs_background_color,
$search_background_color,
$search_result_background_color

$_layout_color_7 $toolbar_button_icon_color_disabled,
$toolbar_button_menu_icon_color_disabled

Target Settings for WebWorks Reverb
2.0
WebWorks Reverb defines several format specific settings.

982 | Target Sengs for WebWorks Reverb 2.0

WebWorks Reverb 2.0 Target Settings
The complete reference of WebWorks Reverb 2.0 Settings.

WebWorks Reverb 2.0 Target Sengs | 983

Format Setting Use

Browser Tab Icon
(favicon)

Specifies a .png .ico or .jpg file to use as the Browser
Tab Icon (favicon) for the Reverb 2.0 help set.

Display large images
in lightbox

When a thumbnail is used for an image, the full size
version of the image can be viewed by clicking the
image which is then displayed in a lightbox. When
disabled the image displays in a separate file.

Enable Print Icon Enables/disables the print icon in generated pages

Entry Filename Specifies the name of the Reverb entry-point file name
(default is “index.html”)

Feedback Email Defines the feedback email address for use in
generated pages

Feedback Email
Message

Defines the contents of the feedback email subject line
and body section. Use $Location; to insert the URL of
the current page

Skin Specifies an alternate plugin file to use for changing the
look-and-feel of the Reverb skin.

Use first document as
splash page

Determines initial page displayed

WebWorks Help API
Compatibility

Enables/disables compatability with the WebWorks
Help API allowing Reverb to replace existing
implementations of WebWorks Help while using the
same API.

WebWorks Reverb 2.0 Toolbar Target
Settings
The complete reference of WebWorks Reverb 2.0 Target Settings that affect the
toolbar.

984 | WebWorks Reverb 2.0 Toolbar Target Sengs

WebWorks Reverb 2.0 Toolbar Target Sengs | 985

Format Setting Use

Google Translate
Button

Enables/disables Google Translate on content pages.
The Reverb 2.0 output must be hosted on a server in
order for the button to render in the toolbar.

Home Enables/disables the home navigation button which
navigates users to the first page in the browse
sequence

Linked Toolbar Logo Enables or Disables linking of the Toolbar Logo. If this
setting is Enabled, the user must also set an address in
the Toolbar Logo Link Address setting.

Toolbar Logo Determines what Company Info item should be used,
if any. Users can select None, Company name, or
Company logo image.

Toolbar Logo Link
Address

Determines an address the Linked Toolbar Logo directs
to when a user clicks on the Toolbar Logo.

Toolbar Logo Override Allows the user to set a custom image for the Toolbar
Logo. As the name suggests, this setting will override
any setting selected in the Toolbar Logo setting.

WebWorks Reverb 2.0 Analytics Target
Settings
The complete reference of WebWorks Reverb 2.0 Target Settings that pertain to
analytics.

986 | WebWorks Reverb 2.0 Analycs Target Sengs

Format Setting Use

Google Tracking ID Sets the Tracking ID associated with a view on your
Google Analytics account. Setting a value in this field
enables analytics.

Page “Was This
Helpful?” Buttons

Enables a set of buttons on content pages that provides
the user with a pair of icon buttons that reports to
analytics whether a page was helpful or not.

Search “Was This
Helpful?” Buttons

Enables a set of buttons the search results page that
provides the user with a pair of icon buttons that
reports to analytics whether a set of search results was
helpful or not.

WebWorks Reverb 2.0 Menu Target
Settings
The complete reference of WebWorks Reverb 2.0 Target Settings that affect the
menu.

WebWorks Reverb 2.0 Menu Target Sengs | 987

Format Setting Use

Generate Menu Determines whether the menu is generated or not.

Menu Initial State Determines whether the menu is visible or hidden to
users when they first visit the help set.

Minimum Page Width
for Docked Menu

Sets the minimum width that the viewport must be to
allow the menu to use docked behavior. If the viewport
is less wide than this value, the user will be presented
with the mobile view.

WebWorks Reverb 2.0 Page Target Settings
The complete reference of WebWorks Reverb 2.0 Target Settings that affect the
page.

988 | WebWorks Reverb 2.0 Page Target Sengs

Format Setting Use

Document Last
Modified Date

When enabled, this setting will display the date that
the source document a content page is generated from
was last modified. The date will be added to the content
page in the output after source content.

Dropdown Expand/
Collapse Toggle Button

This setting will render a button in the page toolbar
that, when clicked, will simultaneously toggle all
available dropdowns on a content page to an expanded
or collapsed state. This button is only rendered on a
content page if there are also dropdowns present on
that page.

Publish Date When enabled, this setting will display the date that the
output was generated from ePublisher. The date will be
added to the content page in the output after source
content.

Related Topic
Dropdown Icon
Position

This setting determines whether the icon that handles
the expand/collapse behavior for Related Topics is
positioned to the Left or Right of the title of the Related
Topics.

Related Topic
Dropdown Start
Behavior

This setting determines whether a set of Related Topics
will be expanded or collapsed upon first visit of a
content page.

Reverb 2.0 Page Style Specifies the page style to use when processing the
Reverb entry-point file that encapsulates the TOC,
Index, Search, and content panels.

Splash Page Style Specifies the page style to use when processing the
splash page (move)

Use Dropdown for
Related Topics

When enabled, this setting applies dropdown behavior
to Related Topics, allowing it to be expanded or
collapsed with the click of a button.

WebWorks Reverb 2.0 Page Target Sengs | 989

WebWorks Reverb 2.0 Footer Target
Settings
The complete reference of WebWorks Reverb 2.0 Target Settings that affect the
footer.

990 | WebWorks Reverb 2.0 Footer Target Sengs

Format Setting Use

Footer Location Determines where the footer is generated. If End
of Layout is selected, the footer will be generated
underneath both the menu and the page content. If
End of Page is selected, the footer will be generated
next to the menu and underneath the page content.

Footer Logo Determines what Company Info item should be used,
if any. Users can select None, Company name, or
Company logo image.

Footer Logo Link
Address

Determines an address the Linked Footer Logo directs
to when a user clicks on the Footer Logo.

Footer Logo Override Allows the user to set a custom image for the Footer
Logo. As the name suggests, this setting will override
any setting selected in the Footer Logo setting.

Generate Footer Determines whether the footer is generated or not.

Linked Footer Logo Enables or Disables linking of the Footer Logo. If this
setting is Enabled, the user must also set an address in
the Footer Logo Link Address setting.

Publish Date When enabled, this setting will display the date that the
output was generated from ePublisher. The date will be
added to the footer in the same area that the copyright
information is displayed by default.

Social Target Settings
The complete reference of Social Media Settings.

Social Target Sengs | 991

Format Setting Use

Disqus Identifier Enables support for user comments using the Disqus
comment web service

Disqus - Allow non-
public networks

Enable users to post Disqus comments behind a firewall
or non-public website

FaceBook Like Enables users to report “I like this!” in Facebook

Google +1 Button Enables users to recommend the current page to their
Google +1 social networks

LinkedIn Share Enables users to share the current page to their
LinkedIn community as well as increment the counter
that shows how many times the link has been shared.

Tweet This! Enable Twitter “Tweet This!” support

Selecting an Alternate Skin for WebWorks
Reverb 2.0
In WebWorks Reverb 2.0, you can select among several alternate skins to define
the appearance of your help. When you specify an alternate skin, the underlying
ASP and CSS files will be automatically updated to reflect the differences in that
skin.

To choose an alternate skin for WebWorks Reverb

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. In the WebWorks Reverb 2.0 category, select the right column of the Skin
entry to display the file picker button.

4. Click the file picker button to bring up an Open file dialog which will display
a list of skin plugin files. Each skin plugin file is identifiable by a .weplugin
extension.

992 | Selecng an Alternate Skin for WebWorks Reverb 2.0

5. Browse to the plugin file that you wish to use and double-click it to set the
skin to that value.

Once you have set an alternate skin, you can later change it again using the same
procedure.

Warning:If you have customized any files using the Advanced menu to create
a Target override, then you will need to remove that customization and
then re-implement it again after you change the skin setting. For more
information on implementing and managing Target overrides see “Creating
Target Overrides”.

Note: If you are going to customize an alternative Reverb 2.0 skin, first set the
skin type in the Target Settings then create a Target Customization
override for the file(s) that you want to customize.

Customizing the Top-Level Entry File
Specifying the Entry Page Name
When you generate output for your project, a top-level entry file is created. This file
defines the frameset for the help and gives the user a file to open that displays the
complete help. By default, the top-level entry file is named index.html , but you
can specify any name you need for the top-level entry file as long as you specify an
.html or .htm extension.

To rename the top-level file

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. In Entry filename, type the name you want to use for the top-level entry
file.

4. Click OK.

5. Regenerate the project and review the results.

Specifying the Entry Page Style
WebWorks Reverb 2.0 allows users to leverage ePublisher’s Style Designer to set
color and layout properties of the generated entry page. Users can specify a page
style to use under the WebWorks Reverb 2.0 section of the Target Settings dialog.

Specifying the Entry Page Style | 993

Customizing TOC Menu Item Display
Specifying TOC Item CSS Class
WebWorks Reverb 2.0 allows users to be able to customize the style of each
individual entry in the Table of Contents. Users can specify an entry style by simply
editing the TOCEntryStyle marker to contain the name of the CSS class.

Customizing the Splash Page in
WebWorks Reverb 2.0
You can modify or remove the splash page that is displayed while your WebWorks
Reverb 2.0 opens. You can customize the splash page in the Stationery, and then
writers can override this customization in each project, as needed.

Specifying the Splash Page Style
WebWorks Reverb 2.0 allows users to leverage ePublisher’s Style Designer to set
color and layout properties of the generated splash page. Users can specify a page
style to use under the WebWorks Reverb 2.0 section of the Target Settings dialog.

Replacing the Splash Image
The splash page is the first page that displays in the topic pane when the help set
launches initially. By default, WebWorks Reverb 2.0 systems display the WebWorks
Reverb 2.0 splash image. You can replace the default splash image with a custom
image.

To replace the splash page image

1. Identify the theme in use for your WebWorks Reverb 2.0 target that you want
to modify.

2. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

3. If you want to override the image for all WebWorks Reverb 2.0
targets, create the Formats\WebWorks Reverb 2.0\Pages\images folder in
your projectname folder, where projectname is the name of your ePublisher
project.

4. If you want to override the image for one WebWorks Reverb 2.0
target, create the Targets\<Target Name>\Pages\images folder in your

994 | Replacing the Splash Image

projectname folder, where projectname is the name of your ePublisher project
and Target Name is the name of the specific target that will use this splash
page image.

5. Copy the splash.png file from the following folder to the images override
folder you created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats
\WebWorks Reverb 2.0\ Pages\images

6. Open the splash.png file you copied to your project override folder and
modify it to be the splash page image you want.

7. Save and close the splash.png file.

8. Regenerate your project to review the changes.

Modifying the Splash Page
Users may also create an override for the splash page template, Splash.asp. This
allows users to change every aspect of a splash page’s appearance.

Removing the Splash Page
When WebWorks Reverb 2.0 opens, it displays the splash page. However, instead of
displaying the splash page, you can configure WebWorks Reverb 2.0 to display the
first topic in the help.

To remove the splash page

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. Set Use first document as splash page to Enabled.

4. Click OK.

5. Regenerate the project and review the results.

Using Context-Sensitive Help in
WebWorks Reverb 2.0
Context-sensitive help links provide content based on the context of what the user
is doing. In many cases, this help content is based on the window that is open and
active. For example, the Help button on a window in a software product can open a

Using Context-Sensive Help in WebWorks Reverb 2.0 | 995

specific help topic that provides important information about the window and links
to related topics.

WebWorks Reverb 2.0 allows you to use a TopicAlias marker to define an internal
identifier for each topic. The benefit of using an internal identifier is that it allows
file names to change without impacting the links from the product. The writer
inserts this marker in a topic and specifies a unique value for that topic. ePublisher
creates a mapping file to identify each topic associated with a unique value. Then,
WebWorks Reverb 2.0 uses this internal identifier and the mapping file to display
the correct topic. Before you can reference topics in WebWorks Reverb 2.0 using
topic aliases, you must enable TopicAlias markers in your Stationery. For more
information, see “Defining Filename Markers for Context-Sensitive Help Links”.

Mapping Files in WebWorks Reverb 2.0
WebWorks Reverb 2.0 does not generate a mapping file. However, you can see a
list of defined contexts and topics in the parcel file. You can also use the Topics
Report to verify that context-sensitive help topics have been created for each topic
ID specified in your source document. The Topics Report lists the topic ID and the
topic file created for each topic ID.Topic aliases report. For more information about
the topics report, see “Topics Reports”.

Opening Context-Sensitive Help in
WebWorks Reverb 2.0 using Standard URLs
You can open WebWorks Reverb 2.0 from the application using standard URLs.

To open a specific topic in WebWorks Reverb 2.0, use the following URL:
helplocation/index.html#context/topic_alias

or with the now optional group_context parameter:
helplocation/index.html#context/group_context/topic_alias

The variable parts of this URL are defined as follows:

helplocation

Specifies the location of the desired WebWorks Reverb 2.0 help set. If the help
is on a Web server, specify the location using the http protocol and the Web
site path to the root of the help, such as http://www.webworks.com/help .

group_context

996 | Opening Context-Sensive Help in WebWorks Reverb 2.0 using Standard URLs

Now optional, but useful when you have the same topic alias value used in
more than one group.
Specifies the group context value for the top-level group in which the topic
resides in Document Manager. This group context is specified in merge
settings for each top-level group.

topic_alias

Specifies the value of the TopicAlias marker in the topic to open.

URL Commands Support by WebWorks
Reverb 2.0
WebWorks Reverb 2.0 supports additional commands in addition to context-
sensitive help.

URL Commands Support by WebWorks Reverb 2.0 | 997

Command Related Action

index.html# context / group_context / topic_aliasDisplay specified context-sensitive help topic

index.html# page / child_page_pathDisplays define child page

index.html# search / search
words

Initiates search for specific terms

index.html# search / search
words #scope / group_name

Initiates search for specific terms using only the
specified groups

index.html# toc / Display the table of contents panel

index.html# index / Display the index panel

index.html# parcels /
group_name

Loads the help set with only the specified groups

Opening Context-Sensitive Help in
WebWorks Reverb 2.0 using JavaScript
You can use JavaScript to open your context-sensitive help links when working with
web applications or websites designed with HTML and JavaScript. For complete
details of using WebWorks Reverb with web applications and websites, see http://
wiki.webworks.com/DevCenter/Projects/Reverb/For Web Applications.

Opening Context-Sensitive Help in
WebWorks Reverb 2.0 using the WebWorks
Help API
In addition to using simple URLs for opening context-sensitive help, you can
alternatively use an API that is incorporated into your application. Using an API
makes it easier to enable help buttons in your application so that the load the
correct page in your Reverb 2.0 output.

WebWorks Reverb 2.0 uses the same API as WebWorks Help 4 and 5.

998 | Opening Context-Sensive Help in WebWorks Reverb 2.0 using the WebWorks Help API

http://wiki.webworks.com/DevCenter/Projects/Reverb/For%20Web%20Applications
http://wiki.webworks.com/DevCenter/Projects/Reverb/For%20Web%20Applications

Steps for Enabling the Context-Sensitive Help API for use with WebWorks
Reverb 2.0

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. In the WebWorks Reverb 2.0 category, set
WebWorksHelpAPICompatibility to Enabled.

4. Click OK to save the target settings.

5. Have your application developers download the WebWorks Help SDK
located at: http://wiki.webworks.com/DevCenter/Projects/WebWorksHelp/
WebWorksHelpSDK. Depending on the technologies your application uses,
your developers will be able to incorporate the API and then make context-
sensitive API calls to your published Reverb 2.0 output.

Configuring Client-Side Search for
Reverb 2.0
This is the default search configuration for WebWorks Reverb 2.0 in the Target
Settings. This search implementation requires no additional setup or configuration.
The search implementation supports both wildcard (*) and phrase searching.

Configuring Synonyms
By defining a list of synonyms, you can increase the effectiveness of a search by
grouping similar words together as a single result. You can define as synonyms
words that are not in your source documents, but the main word does need to be
in a source file. For example, if you define video and avi as synonyms of movie
(main word), then when a user searches for video , a match will be scored showing
the source files where the word itself is in, but also where the main word movie
is as well. Please note that the inverse is not true, meaning that if a user searches
instead for movie , files where the word video is will not be scored because of the
synonym entry.

To add these definitions, you’ll need to perform an override on a file called
locales.xml , located by default in the ePublisher Designer installation directory
here:
 \Formats\WebWorks Reverb 2.0\Shared\common\locale

Once the file is copied to the correct location in your project directory, open it in any
text- or XML-editing application (e.g., NotePad), and add entries to the <Synonyms>
section. For example, your synonyms might look like this:

Configuring Synonyms | 999

http://wiki.webworks.com/DevCenter/Projects/WebWorksHelp/WebWorksHelpSDK
http://wiki.webworks.com/DevCenter/Projects/WebWorksHelp/WebWorksHelpSDK

 <Synonyms>

 <Word value="movie">

 <Synonym value="avi" />

 <Synonym value="video" />

 </Word>

 <Word value="designer">

 <Synonym value="pro" />

 <Synonym value="publisher" />

 </Word>

 </Synonyms>

Please note that the Synonyms feature does not recognize multiple word values
or synonyms. And, it ignores words (and synonyms) shorter in length than the
specified value for MinimumWordLength defined in the same file. Synonyms are not
case sensitive.

Searching WebWorks Reverb 2.0 - URL
Method
When viewing the URL for your help, you can use a search term after the URL, for
example you can go to the link here: https://www.webworks.com/Documentation/
Reverb/index.html#search/ePublisher

When clicked, the link above searches for the term “ePublisher” this can be changed
to any search term, which will produce results accordingly.

Incorporating Google Analytics for
Your Reverb 2.0 Files
WebWorks Reverb 2.0 is not only a fully functional help system for your content,
it’s also a collection of distinct web page files that can be viewed individually on a
website. In fact, you can very easily share URLs of individual page files from your
Reverb 2.0 help system. These URLs will load just like a single web page within a
browser. While this is very nice from an end-user perspective, because the load
times are very minimal, it is even better from a publisher perspective. Simply put,
you can now easily track the usage patterns and frequencies of all your Reverb

1000 | Incorporang Google Analycs for Your Reverb 2.0 Files

https://www.webworks.com/Documentation/Reverb/index.html#search/ePublisher
https://www.webworks.com/Documentation/Reverb/index.html#search/ePublisher

2.0 help pages, which is where the value of Google Analytics comes in; all you
have to do is either determine the appropriate Google Analytics Account ID that
your website is currently using (if Google Analytics has already been setup for your
website), or create a Google Analytics Account which will then provide a unique
identifier for your website or website path.

Once you have obtained the appropriate Google Analytics Account ID, then you
simply set your ePublisher project’s target setting located at: Analytics > Google
Tracking ID.

Configuring Commenting and End-User
Feedback for Reverb 2.0
WebWorks Reverb 2.0 uses the Disqus commenting platform for enabling a very
powerful and cost-effective commenting and discussion system. The integration
with WebWorks Reverb 2.0 is not only transparent, it is optimized to ensure fast
downloads. To enable this feature, all you need to do is set up a Disqus account and
then create a Disqus Site for your Reverb 2.0 help volume(s). Once you create a
Disqus Site, you will then use the site’s Disqus Site Shortname as the setting value
for your ePublisher project’s target setting located at: Social > Disqus Identifier.
The Disqus Site can then be used to track and manage all the threads used within
your deployed Reverb 2.0 help volume(s). For the reports, you can use the Disqus
engagement features: https://disqus.com/.

For more information regarding the API, refer to the documentation: https://
disqus.com/api

Customizing Icons in Your Reverb 2.0
Output Using Font Awesome
In WebWorks Reverb 2.0, all icons in the output can be configured to use another
icon that is a part of Font Awesome's 5.15.4 package. In Reverb 2.0, all icons are
injected to the output by using a unique character code defined by Font Awesome.

The icons can be found in the file _icons.scss .

Steps to customize a font awesome icon:

1. Create a format or target override for the file _icons.scss .

2. Open _icons.scss in a text editor.

3. Open the Font Awesome cheatsheet. You can use the cheatsheet found on the
web.

Cheatsheet web location:

Customizing Icons in Your Reverb 2.0 Output Using Font Awesome | 1001

https://disqus.com/
https://disqus.com/api
https://disqus.com/api

https://fontawesome.com/v5/cheatsheet/free

4. Find the 4-character code for the icon that is to be used.

Note: The web cheatsheet's character codes look like: f2bb. You only need the
4 characters starting at 'f'.

5. Find the variable for the icon that is to be changed.

6. Change the value of the variable to the new character code, wrapped in
quotes with a leading backslash, ex: \f2bb.

7. Save the file and generate a new Reverb 2.0 output.

Incorporating Web Fonts in Your
Reverb 2.0 Output
In WebWorks Reverb 2.0, you can select from many of the built-in fonts in the
Font Family Picker window. However, it is possible to incorporate web fonts in to
your Reverb 2.0 output.

Steps for integrating web fonts

1. Save the font file in the Files folder of your project. For the example below,
mycustomfont.ttf would be placed into this folder.

2. Add the following to your webworks.scss file, just below the @import
statements at the top of the file.

@font-face {
 font-family: 'Custom Font';
 src: url('../mycustomfont.ttf') format('truetype');
}

Note: The URL contains the path to the location where the font is saved. The
path must be entered correctly for the font to be located and used by
the browser. By default, ePublisher copies any file inside the files folder
of your project to the appropriate location of your output. The URL in the
example above is a relative path from the output CSS file to the font file.

3. In the WebWorks Reverb 2.0 Font Family Picker window, enter the name
of your custom font in the Custom font family input. Press the right arrow
button to add the custom font to your selected fonts.

1002 | Incorporang Web Fonts in Your Reverb 2.0 Output

https://fontawesome.com/v5/cheatsheet/free

4. Click OK to save the target settings.

Steps for integrating Google Fonts

1. Copy the @import statement for the selected Google font (Do not copy the
style tags).

Example:

@import url('https://fonts.googleapis.com/css?family=Rubik');

2. Paste the @import statement in to your webworks.scss file, just below the
other @import statements at the top of the file.

3. Add the following code just below the @import statement, replacing the font-
family in the example with the the font-family of the selected font.

 @font-face {
 font-family: 'Rubik', sans-serif;
}

4. In the WebWorks Reverb 2.0 Font Family Picker window, enter the name
of your selected Google font in the Custom font family input. Press the right
arrow button to add the custom font to your selected fonts

5. Click OK to save the target settings.

Incorporang Web Fonts in Your Reverb 2.0 Output | 1003

Steps to Create Your First Disqus Site
1. Visit the URL: https://disqus.com/. Then select the Sign Up button. You will

then be taken through a few simple forms which will create your Disqus Login
as well as your initial Disqus Site.

2. In the field Site URL , specify the URL that best describes where your Reverb
volume(s) will exist on your website.

Note: You can use a single Disqus site for all your Reverb deployments that
exist on the same website or you can use separate Disqus sites for
each separately deployed Reverb volume. Disqus provides a wide range
of solutions for managing and moderating threads so choosing either
strategy will be effective and depends more on how your organization’s
process will be handled.

3. In the field Site Name , specify a unique, human readable name that best
describes the site. Then check the Site Shortname text box field and correct
it to suit your preference. The Site Shortname will not only be used by
ePublisher, but will also become the sub-domain used on Disqus. So if your
Site Shortname is epub , then the URL used for this site’s threads will be
http://epub.disqus.com .

4. On the same page, specify the information for the Primary Moderator, other
moderators can be added later. Then select the Continue button.

5. On the Settings page, specify your language and any optional features that
you wish to also use. Then select the Continue button. You now have a
Disqus Login as well as your first Disqus Site. No additional steps are required
to begin using your new site

‘Was This Helpful?’ Buttons
The Was This Helpful? buttons feature allows you to provide your end-uses with
the ability to give anonymous feedback about their experience. The Was This
Helpful? buttons feature can be used to record feedback on the current page or
search results being viewed. A Google Tracking ID is required for these buttons to
record analytic events.

Dropdown Collapse/Expand All Toggle
Button
Enables/disables a button that toggles all paragraph dropdown on the currently
displayed page. This applies to all paragraphs with dropdown behavior, as well as

1004 | Dropdown Collapse/Expand All Toggle Buon

https://disqus.com/

Related Topics with dropdown behavior enabled. This feature is made available by
enabling the Dropdown Expand/Collapse Toggle Button Target Setting.

Document Last Modified Date/Publish
Date
ePublisher can add a time stamp to Reverb 2.0 output that displays the date
of the most recent generation, as well as the last time a source document was
modified. The last modified date can be displayed in the page content area just
after the content by default, and the publish date is available in the same area
as the last modified date, as well as near the copyright information in the footer.
These features are made available by enabling the Document Last Modified Date
and Publish Date Target Settings.

Document Last Modified Date/Publish Date | 1005

If you would like to change the date format, it can be done with an override to the
locales.xml file.

Copy locales.xml from:
C:\Program Files\WebWorks\ePublisher\2024.1\Formats\Shared\common
\locale\locales.xml

To:
<Project Folder>\Formats\Shared\common\locale\locales.xml

In the locales.xml file, locate the element with the name PublishDateFormat. The
value inside this element can be changed to match the desired date format. For
more information on how to write proper format values in this element, refer to
Microsoft's documentation on Custom date and time format strings at: https://
docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-
format-strings.

Customizing Related Topics
In Reverb 2.0, Related Topics have been given a generous set of customization
options related to sizing, color, and an assignable icon for each topic entry.

Customizing Related Topic Styling/
Appearance
The appearance of Related Topics can customized by making SASS changes to the
file webworks.scss. In this file, all CSS declarations for items with a class name
that contains .Related_Topics can be modified to change the appearance of
Related Topics.

Enabling/Disabling Related Topic
Dropdown Behavior
Related Topics can be given dropdown behavior by enabling the Use Dropdown
for Related Topics Target Setting. This will add an icon to the title bar, and enable
collapsing and expanding of the Related Topic list when the title bar is clicked. This
feature also works with the Dropdown Toggle Button feature.

1006 | Enabling/Disabling Related Topic Dropdown Behavior

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings

Customizing PDF - XSL-FO
Custom Header and Footers
Document Last Modified Date/Publish Date
Page Template Customizations

The PDF - XSL-FO output format is used by ePublisher to generate PDF files
from the documents that ePublisher is generating. All of the styling and layout is
controlled using the user interface of ePublisher, however some customizations
require specific knowledge. This section covers common customizations.

Custom Header and Footers
One of the advantages of selecting this format over the traditional PDF format is
the ability to customize the footer and header depending on the Page Styles in the
Style Designer. Please keep in mind that this will only be available per ePublisher
Designer as the Style Designer is not available in ePublisher Express.

To customize the Header or Footer

1. In ePublisher Designer, go to the Style Designer -> Page Styles

2. Select the Page Style that you have defined and click the Options tab

3. Depending on where you would like to have your information you can enter in
information for Even or Odd pages

4. Chose to Enable or Disable Header and Footer text under the Generate Output
option

5. Chose from the following Variables to customize the content

Custom Header and Footers | 1007

$Title; This variable expands to the title of the PDF. For
the document-level PDF, this value is the title of the
document or the value of the first paragraph. For the
group-level PDF, this value is the name of the Group.
For the project-level PDF, this value is the name of the
Target

$PageNumber; This variable expands to the current page number

$RunningTitle; This variable expands to the text of the last paragraph
that has a “Table of contents level” option value in the
page sequence which generated a TOC entry

$ChapterTitle; This variable expands to the text of the top-most TOC
entry of the document.

$PublishDate; This variable expands to the date of output generation
using the same format settings configured in the
locales.xml file.

Note: Project Variables and Style Variables can also be used in this option.

Document Last Modified Date/Publish
Date
ePublisher can add a time stamp to PDF XSL-FO Title Page that displays the date of
the most recent generation. This feature is made available by enabling the Generate
Publish Date on Title Page Target Setting.

If you would like to change the date format, it can be done with an override to the
locales.xml file.

Copy locales.xml from:
C:\Program Files\WebWorks\ePublisher\2024.1\Formats\Shared\common
\locale\locales.xml

To:
<Project Folder>\Formats\Shared\common\locale\locales.xml

In the locales.xml file, locate the element with the name PublishDateFormat. The
value inside this element can be changed to match the desired date format. For

1008 | Document Last Modified Date/Publish Date

more information on how to write proper format values in this element, refer to
Microsoft's documentation on Custom date and time format strings.

Page Template Customizations
To customize your PDF-XSL-FO output, you can edit the following files:

Note: Page.asp in PDF-XSL-FO output is not the same as the Page.asp file
in Reverb and Reverb 2.0 outputs. It is used to layout the other .asp
files.

Page.asp

It is recommended that you do not make edits to this file.

Body.asp

Edit this file if you would like to make customizations to the body pages of
your output.

Index.asp

Edit this file if you would like to make customizations to the index pages of
your output.

Title.asp

Edit this file if you would like to make customizations to the title page of your
output.

TOC.asp

Edit this file if you would like to make customizations to the table of contents
of your output.

Page Template Customizaons | 1009

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings

Customizing Dynamic HTML
Using SASS to change the Appearance of Dynamic HTML
Modifying the Appearance of the Table of Contents in Dynamic HTML
Modifying the Appearance of the Index in Dynamic HTML
Other Changes to Text in the TOC and Index in Dynamic HTML
Document Last Modified Date/Publish Date

You can customize the appearance of Dynamic HTML in several ways. For example,
you can customize the appearance of the table of contents and the index entries.
The following sections describe these Dynamic HTML-specific customizations.

Using SASS to change the Appearance
of Dynamic HTML
To facilitate more advanced CSS handling you can enable a Target Setting in
the group Files called Use SASS to compile CSS. If this setting is Enabled
webworks.css will be generated from the SASS file called webworks.scss . This file
is located in the css folder next to the webworks.css file.

Modifying the Appearance of the Table
of Contents in Dynamic HTML
ePublisher stores CSS settings that control the appearance of table of contents
entries in the webworks.css file. You can create an override file to modify these
settings for specific levels of the table of contents. For example, you can define a
different font size and margin for each level in the table of contents.

To modify the appearance of the table of contents

1. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

2. If you want to override the CSS settings for all Dynamic HTML targets
in the project, create the Formats\Dynamic HTML\Pages\css folder in your
project folder.

3. If you want to override the CSS settings for a specific target, create
the Targets\ targetname\Pages\css folder in your project folder, where
targetname is the name of the target you want to override.

4. Copy the webworks.css file from the following folder to the override folder
you created within your project folder:

1010 | Modifying the Appearance of the Table of Contents in Dynamic HTML

Program Files\WebWorks\ePublisher Designer\Formats\Dynamic HTML
\Pages\css

5. Open the webworks.css file you copied to your project override folder.

6. Find the code for div.WebWorks_TOC_Levelx, where x is the level number
you want to modify. Then, specify the values within the braces to modify the
font or margin:

To modify the font of all table of contents entries for the specified level,
specify the name of the font you want, such as font-family: Arial; .

To modify the font size of all table of contents entries for the specified
level, specify the size of the font you want, such as font-size: 14pt; .

To modify the left margin indent of all table of contents entries for the
specified level, specify the indent you want, such as margin-left:
10px; .

7. Save the webworks.css file.

8. Regenerate your project to review the changes.

For example, the following figure illustrates how you could customize your table of
contents entries.
div.WebWorks_TOC_Level1
{ font-size: 14pt;
 font-family: Arial;
 margin-left: 12px;
}
div.WebWorks_TOC_Level2
{ font-size: 12pt;
 font-family: Arial;
 margin-left: 24px;
}

Modifying the Appearance of the Index
in Dynamic HTML
ePublisher stores CSS settings that control the appearance of index entries in the
webworks.css file. You can create an override file to modify these settings for
specific index entry levels. For example, you can define a different font size and
margin for each level in the index.

To modify the appearance of the index

Modifying the Appearance of the Index in Dynamic HTML | 1011

1. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

2. If you want to override the CSS settings for all Dynamic HTML targets
in the project, create the Formats\Dynamic HTML\Pages\css folder in your
project folder.

3. If you want to override the CSS settings for a specific target, create
the Targets\ targetname\Pages\css folder in your project folder, where
targetname is the name of the target you want to override.

4. Copy the webworks.css file from the following folder to the override folder
you created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats\Dynamic HTML
\Pages\css

5. Open the webworks.css file you copied to your project override folder.

6. Find the code for div.WebWorks_Index_Levelx, where x is the level number
you want to modify. Then, specify the values within the braces to modify the
font or margin:

To modify the font of all index entries for the specified level, specify the
name of the font you want, such as font-family: Arial; .

To modify the font size of all index entries for the specified level, specify
the size of the font you want, such as font-size: 14pt; .

To modify the left margin indent of all index entries for the specified
level, specify the indent you want, such as margin-left: 10px; .

7. Save the webworks.css file.

8. Regenerate your project to review the changes.

For example, the following figure illustrates how you could customize your index
entries.
div.WebWorks_Index_Level1
{ font-size: 14pt;
 font-family: Arial;
 margin-left: 12px;
}
div.WebWorks_Index_Level2
{ font-size: 12pt;
 font-family: Arial;
 margin-left: 24px;

1012 | Modifying the Appearance of the Index in Dynamic HTML

}

Other Changes to Text in the TOC and
Index in Dynamic HTML
You can change the text in the table of contents and the index by adding the proper
CSS coding between the braces for the appropriate style and class. Put the value
after a colon, and put a semicolon at the end of the added coding. The following
table summarizes the CSS coding for some common modifications.

Other Changes to Text in the TOC and Index in Dynamic HTML | 1013

Markup Possible Values Explanation

font-style: normal | italic |
oblique

Specifies whether the font
should use the normal,
also known as upright or
roman, italic, or oblique
faces within a font family.

font-weight: normal | bold | bolder
| lighter | 100 | 200 |
300 | 400 | 500 | 600 |
700 | 800 | 900

Specifies the thickness of
the font. The value normal
is equal to 400 , and the
value bold is equal to
700 .

text-transform: capitalize | uppercase
| lowercase | none

Specifies whether to
transform the case of the
text.

text-align: left | right | center
| justify

Specifies how to align the
text on the page.

Document Last Modified Date/Publish
Date
ePublisher can add a time stamp to Dynamic HTML output that displays the date of
the most recent generation. The publish date can be displayed in the page content
area just after the content by default. This feature is made available by enabling the
Page Style Option Publish Date shown at bottom of page.

If you would like to change the date format, it can be done with an override to the
locales.xml file.

Copy locales.xml from:
C:\Program Files\WebWorks\ePublisher\2024.1\Formats\Shared\common
\locale\locales.xml

To:
<Project Folder>\Formats\Shared\common\locale\locales.xml

In the locales.xml file, locate the element with the name PublishDateFormat. The
value inside this element can be changed to match the desired date format. For

1014 | Document Last Modified Date/Publish Date

more information on how to write proper format values in this element, refer to
Microsoft's documentation on Custom date and time format strings.

Document Last Modified Date/Publish Date | 1015

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings

Customizing Eclipse Help
Using Markers to Specify Context Plug-ins in Eclipse Help
Using Markers to Specify Topic Descriptions for Context-Sensitive Help Topics in Eclipse Help

You can customize the appearance and behavior of Eclipse Help in several ways. For
example, you can specify context plug-in IDs for your Eclipse Help system. You can
also specify topic descriptions for context-sensitive help topics.

Using Markers to Specify Context Plug-
ins in Eclipse Help
You can specify Eclipse Help context plug-ins by using Context Plugin markers in
your source documents. Obtain the context plug-in IDs you need to specify for
your source document groups from your development team. ePublisher places
the context plug-ins you specify in your source documents in the plugin.xml file
generated for each source document group you have in your project. The Eclipse
developers use the context plug-ins defined in plugin.xml files to call your Eclipse
Help system as appropriate from Eclipse plug-ins.

To enable specifying context plug-ins for Eclipse Help systems, you need to enable
the Context Plugin marker. By default, ePublisher sets the Marker type option for
a marker named Context Plugin to Context Plugin. You can create a marker with a
different name and set the Marker type option for that marker to Context Plugin.

Then, writers can use this marker in the source documents to define context plug-
in IDs for each of the source document groups in their project. Context plug-in IDs
must follow these guidelines:

Must be unique

May specify only one context plug-in ID in each Context Plugin marker

May contain alphanumeric characters

Should not contain special characters or spaces, with the exception of
underscore (_) characters

To assign context plug-in behavior to context plug-in markers

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In the Marker Styles, select the marker style you want to modify.

4. On the Options tab, set Marker type to Context Plugins.

1016 | Using Markers to Specify Context Plug-ins in Eclipse Help

Using Markers to Specify Topic
Descriptions for Context-Sensitive Help
Topics in Eclipse Help
In Eclipse Help, you can specify the topic description you want to display for each
context-sensitive link. When you use a TopicAlias marker to create context-sensitive
links, Eclipse creates a contexts.xml file that lists all of the context IDs for the
Eclipse Help system you created using TopicAlias markers. In the context.xml
file, Eclipse also provides a description of the context-sensitive link. By default,
the description Eclipse provides for the context-sensitive link is the text of the first
paragraph of the topic. However, if you want to specify a different description for
the context-sensitive link, you can do this by using the TopicDescription marker.

To enable specifying topic descriptions for context-sensitive help topics in
Eclipse Help, you need to enable the TopicDescription marker. By default,
ePublisher sets the Marker type option for a marker named TopicDescription to
TopicDescription. You can create a marker with a different name and set the
Marker type option for that marker to TopicDescription. Then, writers can
use this marker in the source documents to specify topic descriptions for each of
context-sensitive help topics in their project.

To assign topic description behavior to topic description markers

1. Open your Stationery design project.

2. On the View menu, click Style Designer.

3. In the Marker Styles, select the marker style you want to modify.

4. On the Options tab, set Marker type to TopicDescription.

Using Markers to Specify Topic Descripons for Context-Sensive Help Topics in Eclipse Help | 1017

Customizing Oracle Help and Sun
JavaHelp

Defining the Navigation Pane in Oracle Help
Using Custom Windows in Oracle Help
Defining the Navigation Pane in Sun JavaHelp
Using Context-Sensitive Help in Oracle Help and Sun JavaHelp

You can customize the appearance and behavior of Oracle Help and Sun JavaHelp
in several ways. For example, you can customize which buttons are included in the
toolbar pane. The following sections describe these Oracle Help and Sun JavaHelp-
specific customizations.

Defining the Navigation Pane in Oracle
Help
You can specify whether to include the Search tab in your Oracle Help output.

To specify whether to include the Search tab in your Oracle Help

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. In the Oracle Help category, set Enable Search tab to Enabled or
Disabled.

4. Click OK to save the target settings.

Using Custom Windows in Oracle Help
By default, Oracle Help uses the standard Oracle Help viewer. You can modify the
size, position, and other characteristics of the Oracle Help windows. You can also
define and use custom windows in your Oracle Help project. To define custom
windows, you need to override the template.hs file, which is used to create your
helpset .hs file.

Once you have defined custom windows in a project, you can assign topics to them
by adding the WindowType marker in specific topics in your source documents.
When you assign a topic to a custom window, the topic is displayed in that window
whenever users view the topic.

To override the template.hs file in Oracle Help

1018 | Using Custom Windows in Oracle Help

1. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

2. If you want to override the default settings for all Oracle Help targets
in the project, create the Formats\Oracle Help\Pages folder in your
project folder.

3. If you want to override the default settings for a specific target,
create the Targets\ targetname\Pages folder in your project folder, where
targetname is the name of the target you want to override.

4. Copy the template.hs file from the following folder to the override folder you
created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats\Oracle Help
\Pages

5. Open the template.hs file you copied to your project override folder.

6. Modify the template.hs file as needed. For more information about this file,
see the Oracle Help documentation.

7. Save and close the template.hs file.

8. Regenerate your output and review the results.

Defining the Navigation Pane in Sun
JavaHelp
By default, the navigation pane includes the Contents, Index, Search, and Favorites
tabs. You can select whether to include the Favorites, Glossary, and Search tabs
in your output. You can also define your own views in Sun JavaHelp by overriding
the template.hs file. For example, you can create an alternate list of topics and
provide that list as a separate view.

To specify which tabs to include in your Sun JavaHelp

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. In the Java Help category, set each tab you want to include to Enabled.

4. Click OK to save the target settings.

Defining the Navigaon Pane in Sun JavaHelp | 1019

Using Context-Sensitive Help in Oracle
Help and Sun JavaHelp
Context-sensitive help links allow you to open a specific help topic. For example,
the Help button on a window in a software product can open a specific help topic
that describes the window and provides links to related topics.

You can reference topics in Oracle Help and Sun JavaHelp using the file name or an
internal identifier called a topic ID or topic alias. To use file names, use a Filename
marker to assign a file name to a topic. Then, you can open that specific topic
with that file name. However, if your file naming changes, you need to change the
link to the topic. To use an internal identifier, use a TopicAlias marker to define
the identifier for each topic. The benefit of using this approach is that it allows file
names to change without impacting the links from the product. The writer inserts
this marker in a topic and specifies a unique value for that topic. Then, Oracle Help
and Sun JavaHelp use a mapping file that defines these topic aliases.

To simplify the coding of your source documents, you can use the same marker to
define both the name and the topic alias for each topic file. In Style Designer, set
the Marker type option for the marker you want to use to Filename and topic
alias. However, if you change the value of this marker, you need to change the
application that uses this value.

To use context-sensitive help in Oracle Help and Sun JavaHelp

1. Meet with your application developers and define the topic ID for each
context-sensitive help topic. Also discuss how ePublisher generates the
mapping file.

2. In your source documents, use TopicAlias markers to identify the topic ID for
each topic.

3. Generate output from your project and test your context-sensitive help links.

Mapping Files in Oracle Help and Sun
JavaHelp
Implementing context-sensitive help requires cooperation between the help author
and the developer of the application that displays the context-sensitive help topics.
You both need a mapping .jhm file that associates topic IDs with the target URL.
When an application calls a context-sensitive help topic, it uses the topic ID to
display the correct topic. Therefore, both the help and the application must use the
same mapping file. If the topic IDs and target URLs do not match, the application
displays either the wrong topic or no topic.

1020 | Mapping Files in Oracle Help and Sun JavaHelp

The mapping .jhm file lists topic IDs and target URLs. This mapping file is also
referred to as a header file. For Oracle Help and Sun JavaHelp, the mapping file is
similar to the following sample file:
<mapID target="ch1_htm_999374" url="ch1.htm#999374">
<mapID target="ch2_htm_999640" url="ch2.htm#999640">
<mapID target="ch9_htm_999786" url="ch9.htm#999786">

In this example, ch1_htm_99374 is a topic ID, and ch1.htm#99374 is the target
URL for this particular topic ID. The marker in the appropriate topic has the
ch1_htm_999374 value.

When you implement context-sensitive help, you need to work with your application
developers to decide how to choose the topic ID for each context-sensitive help
topic. You can choose a set of topic IDs and embed them in your source documents
using TopicAlias markers. When you generate output, ePublisher generates a
mapping file using those topic IDs and assigns the target URL to each topic ID
based on your source documents. You can provide the generated mapping file to
your application developers, who can embed the topic IDs in the application code.
ePublisher generates an updated file each time you generate the help. Remember
to give the updated file to your application developers each time.

Note: Once you choose a set of topic IDs, embed them in your source documents
using TopicAlias markers and do not change them.

Testing Context-Sensitive Oracle Help and
Sun JavaHelp
The best way to verify that your context-sensitive help topics function correctly is to
test the help system with the application that displays the help topics. This testing
process ensures the whole implementation works correctly.

Tesng Context-Sensive Oracle Help and Sun JavaHelp | 1021

Customizing WebWorks Help
Renaming the Top-Level Entry File
Selecting a Theme
Customizing the Splash Page in WebWorks Help
Customizing the Toolbar in WebWorks Help
Customizing the Navigation Pane in WebWorks Help

You can customize the appearance and behavior of WebWorks Help in several
ways. For example, you can customize the colors and images, and toolbar buttons
displayed in the browser. You can also define which buttons are included in the
toolbar pane. The following sections describe these WebWorks Help-specific
customizations.

Renaming the Top-Level Entry File
When you generate output for your project, a top-level entry file is created. This file
defines the frameset for the help and gives the user a file to open that displays the
complete help. By default, the top-level entry file is named index.html , but you
can specify any name you need for the top-level entry file as long as you specify an
.html or .htm extension.

To rename the top-level file

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. In Top level filename, type the name you want to use for the top-level entry
file.

4. Click OK.

5. Regenerate the project and review the results.

Selecting a Theme
In WebWorks Help, you can select a theme (skin) to define the appearance of your
help. ePublisher provides many different WebWorks Help themes. Each theme
provides a custom skin, which defines the toolbar color, button images, navigation
pane, tabs, and splash image.

To choose a theme for WebWorks Help

1. On the Project menu, select the Active Target you want to specify settings
for.

1022 | Selecng a Theme

2. On the Target menu, click Target Settings.

3. Click on the WebWorks Help setting to reveal its contents.

4. In Theme, select the appropriate value.

5. Click OK.

6. Regenerate the project and review the results.

You can further customize your theme to deliver the specific appearance you want.
For example, you can override images in your selected theme.

Customizing the Splash Page in
WebWorks Help
You can replace or remove the splash page that is displayed while your WebWorks
Help opens. You can customize the splash page in the Stationery, and then writers
can override this customization in each project, as needed.

Replacing the Splash Image
The splash page is the first page that displays in the topic pane when the help set
launches initially. By default, WebWorks Help systems display the WebWorks splash
image. You can replace the default splash image with a custom image.

To replace the splash page image

1. Identify the theme in use for your WebWorks Help target that you want to
modify. For more information, see “Selecting a Theme”.

2. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

3. If you want to override the image for all WebWorks Help targets,
create the Formats\WebWorks Help 5.0\Pages\images folder in your
projectname folder, where projectname is the name of your ePublisher
project.

4. If you want to override the image for one WebWorks Help target,
create the Targets\WebWorks Help 5.0\Pages\images folder in your
projectname folder, where projectname is the name of your ePublisher
project.

5. Copy the splash.jpg file from the following folder to the images override
folder you created within your project folder:

Replacing the Splash Image | 1023

Program Files\WebWorks\ePublisher Designer\Formats
\WebWorks Help 5.0\ Pages\images

6. Open the splash.jpg file you copied to your project override folder and
modify it to be the splash page image you want.

7. Save and close the splash.jpg file.

8. Regenerate your project to review the changes.

Removing the Splash Page
When WebWorks Help opens, it displays the splash page. However, instead of
displaying the splash page, you can configure WebWorks Help to display the first
topic in the help.

To remove the splash page

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. Set Show first document instead of splash page to Enabled.

4. Click OK.

5. Regenerate the project and review the results.

Customizing the Toolbar in WebWorks
Help
You can customize the toolbar pane in WebWorks help to provide the buttons and
options you need. You can add, remove, and replace toolbar buttons. You can also
customize the appearance of the toolbar pane. For more information about the
toolbar pane, see “Toolbar Pane in WebWorks Help”.

Adding and Removing Toolbar Buttons in
WebWorks Help
You can add and remove toolbar buttons from the toolbar pane in WebWorks
Help. To add a button, set the format setting for that button to Enabled for your
WebWorks Help target. To remove a button, set the format setting for that button to
Disabled for your WebWorks Help target.

1024 | Adding and Removing Toolbar Buons in WebWorks Help

To add or remove one or more toolbar buttons from the toolbar pane

1. On the Project menu, select the Active Target you want to specify settings
for.

2. On the Target menu, click Target Settings.

3. Set the following target settings to Enabled or Disabled to define whether a
button is displayed in the toolbar pane:

Adding and Removing Toolbar Buons in WebWorks Help | 1025

Button Format Setting to Modify

Show in Contents Automatically synchronize in TOC

Bookmark Show bookmark toolbar button

PDF Show PDF button

Previous and Next
browse buttons

Show previous & next toolbar buttons

Print Show print toolbar button

Related Topics Show related topics toolbar button

4. Click OK.

Replacing the Toolbar Buttons in
WebWorks Help
WebWorks Help provides several default buttons. These buttons allow the user to
navigate through the help, and they provide additional features, such as printing a
page from the help or emailing a link to a topic page. The toolbar buttons are .gif
images for which you can provide override files. You can replace these standard
buttons with other .gif images.

To replace one or more toolbar buttons in WebWorks Help

1. Identify the theme in use for your WebWorks Help target that you want to
modify. For more information, see “Selecting a Theme”.

2. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

3. If you want to override the images for all WebWorks Help targets,
create the WebWorks Help 5.0\Skins\ theme\Files\wwhelp\wwhimpl
\common\images folder in your projectname\Formats folder, where theme
is the name of the WebWorks Help theme you want to override, such as
Lobby_Blue , and projectname is the name of your ePublisher project. If the

1026 | Replacing the Toolbar Buons in WebWorks Help

theme name is two words, include an underscore instead of a space between
the words.

4. If you want to override the images for one WebWorks Help target,
create the WebWorks Help 5.0\Skins\ theme\Files\wwhelp\wwhimpl
\common\images folder in your projectname\Targets folder, where theme
is the name of the WebWorks Help theme you want to override, such as
Lobby_Blue , and projectname is the name of your ePublisher project. If the
theme name is two words, include an underscore instead of a space between
the words.

5. Paste the .gif files you want to use with names identical to those you want
to replace in the images folder you created. The following table lists several
default button images and their file names. For a complete list of image file
names, see the appropriate folder in the ePublisher installation folder within
Program Files . You can copy the files from the installation folder and then
modify them in your project.

Replacing the Toolbar Buons in WebWorks Help | 1027

Button File Name Description

Show in Contents sync.gif Highlights the currently
displayed topic in the table
of contents.

Show in Contents
(not available)

syncx.gif Displayed when a topic is
not currently displayed in
the topic pane.

Previous prev.gif Displays the previous topic
in the help.

Previous (not available) prevx.gif Displayed when there is no
previous HTML document
available.

Next next.gif Displays the next topic in
the help.

Next (not available) nextx.gif Displayed when there is
no next HTML document
available.

6. Regenerate your project to review the changes.

Changing the Background Color of the
Toolbar
The toolbar in WebWorks Help is composed of a single repeating .gif image. This
image is located in the images folder of your WebWorks Help theme. To modify the
background color of the toolbar, you can override the toolsbg.gif file.

To change the background color of the toolbar

1. Identify the theme in use for your WebWorks Help target that you want to
modify. For more information, see “Selecting a Theme”.

1028 | Changing the Background Color of the Toolbar

2. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

3. If you want to override the image for all WebWorks Help targets,
create the WebWorks Help 5.0\Skins\ theme\Files\wwhelp\wwhimpl
\common\images folder in your projectname\Formats folder, where theme
is the name of the WebWorks Help theme you want to override, such as
Lobby_Blue , and projectname is the name of your ePublisher project. If the
theme name is two words, include an underscore instead of a space between
the words.

4. If you want to override the image for one WebWorks Help target,
create the WebWorks Help 5.0\Skins\ theme\Files\wwhelp\wwhimpl
\common\images folder in your projectname\Targets folder, where theme
is the name of the WebWorks Help theme you want to override, such as
Lobby_Blue , and projectname is the name of your ePublisher project. If the
theme name is two words, include an underscore instead of a space between
the words.

5. Copy the toolsbg.gif file from the following folder to the images override
folder you created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats
\WebWorks Help 5.0\ Skins\ theme\Files\wwhelp\wwhimpl\common
\images

6. Open the toolsbg.gif file you copied to your project override folder and
modify it to be the background image of the toolbar pane.

7. Save and close the toolsbg.gif file.

8. Regenerate your project to review the changes.

Customizing the Navigation Pane in
WebWorks Help
You can customize the navigation pane in several ways. For more information about
the navigation pane, see “Navigation Pane in WebWorks Help”.

Setting the Initial Width of the WebWorks
Help Navigation Pane
The navigation pane provides the Contents, Index, Search, and Favorites tabs.
When the WebWorks Help opens, the initial width of the navigation pane is 300

Seng the Inial Width of the WebWorks Help Navigaon Pane | 1029

pixels by default. You can override the wwhelp.htm file to define the initial width of
the navigation pane.

To set the initial width of the navigation pane

1. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

2. If you want to override the initial width for all WebWorks Help
targets, create the Formats\WebWorks Help 5.0\Files\wwhelp\wwhimpl
\js\html folder in your projectname folder, where projectname is the name
of your ePublisher project.

3. If you want to override the initial width for one WebWorks Help
target, create the Targets\WebWorks Help 5.0\Files\wwhelp\wwhimpl\js
\html folder in your projectname folder, where projectname is the name of
your ePublisher project.

4. Copy the wwhelp.htm file from the following folder to the html override
folder you created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats
\WebWorks Help 5.0\ Files\wwhelp\wwhimpl\js\html

5. Open the wwhelp.htm file you copied to your project override folder.

6. Find the following line of code and modify the 300 to be the number of pixels
wide you want the navigation pane to use as its initial width.

<frameset cols="300,*" onLoad ...

7. Save and close the wwhelp.htm file.

8. Regenerate your project to review the changes.

Controlling the Navigation Pane Hover Text
Appearance
Hover text refers to the popup window that WebWorks Help displays when you
mouseover (hover over) a link on the Contents tab, as shown in the following
figure.

1030 | Controlling the Navigaon Pane Hover Text Appearance

You can adjust the appearance of the hover text by overriding the
wwhelp_settings.xml file. This file allows you to modify the font, font color,
background color, and border color of the hover text and its popup window. You can
also disable the hover text.

To change the navigation pane hover text appearance

1. Identify the theme in use for your WebWorks Help target that you want to
modify. For more information, see “Selecting a Theme”.

2. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

3. If you want to override the hover text settings for all WebWorks Help
targets, create the Formats\WebWorks Help 5.0\Skins\ theme folder in
your projectname folder, where theme is the name of the WebWorks Help
theme you want to override, such as Lobby_Blue , and projectname is the
name of your ePublisher project. If the theme name is two words, include an
underscore instead of a space between the words.

4. If you want to override the hover text settings for one WebWorks
Help target, create the Targets\WebWorks Help 5.0\Skins\ theme folder
in your projectname folder, where theme is the name of the WebWorks Help
theme you want to override, such as Lobby_Blue , and projectname is the
name of your ePublisher project. If the theme name is two words, include an
underscore instead of a space between the words.

5. Copy the wwhelp_settings.xml file from the following folder to the theme
override folder you created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats
\WebWorks Help 5.0\ Skins\ theme

6. Open the wwhelp_settings.xml file you copied to your project override
folder.

Controlling the Navigaon Pane Hover Text Appearance | 1031

7. Find the following block of code:

<HoverText enable="true">
...
</HoverText>

8. If you want to disable the hover text, replace <HoverText
enable="true"> with <HoverText enable="false">.

9. If you want to change the font family of the hover text, replace font-
family: Verdana, Arial, Helvetica, sans-serif with the names of the
font family you want to use for the text. Make sure you specify fonts that are
installed by default.

10. If you want to change the font size of the hover text, replace font-
size: 8pt with the size of the font you want to use for the text, such as
font-size: 10pt.

11. If you want to change the font color of the hover text, replace the color
defined by foreground="#000000" with the RGB color value you want to use
for the text.

12. If you want to change the background color of the popup window,
replace the color defined by background="#FFFFCC" with the RGB color value
you want to use for the background.

13. If you want to change the border color of the popup window, replace
the color defined by border="#999999" with the RGB color value you want to
use for the border.

14. Save and close the wwhelp_settings.xml file.

15. Regenerate your project to review the changes.

Changing the Font Color on the Navigation
Pane Tabs in WebWorks Help
The tabs in the navigation pane all share the same font and text style properties.
These style properties are specified in the wwhelp_settings.xml file.

To change the font color on all the tabs in the navigation pane

1. Identify the theme in use for your WebWorks Help target that you want to
modify. For more information, see “Selecting a Theme”.

2. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

1032 | Changing the Font Color on the Navigaon Pane Tabs in WebWorks Help

3. If you want to override the tab font color for all WebWorks Help
targets, create the Formats\WebWorks Help 5.0\Skins\ theme folder in
your projectname folder, where theme is the name of the WebWorks Help
theme you want to override, such as Lobby_Blue , and projectname is the
name of your ePublisher project. If the theme name is two words, include an
underscore instead of a space between the words.

4. If you want to override the tab font color for one WebWorks Help
target, create the Targets\WebWorks Help 5.0\Skins\ theme folder in
your projectname folder, where theme is the name of the WebWorks Help
theme you want to override, such as Lobby_Blue , and projectname is the
name of your ePublisher project. If the theme name is two words, include an
underscore instead of a space between the words.

5. Copy the wwhelp_settings.xml file from the following folder to the theme
override folder you created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats
\WebWorks Help 5.0\ Skins\ theme

6. Open the wwhelp_settings.xml file you copied to your project override
folder.

7. Find the following block of code:

<Tabs>
 <DefaultColors foreground="#666666" />
 <SelectedColors foreground="#FFFFFF" />
</Tabs>

8. If you want to change the color of the text on the unselected tabs,
replace #666666 with the RGB color value you want to use for the text on
those tabs.

9. If you want to change the color of the text on the selected tab, replace
#FFFFFF with the RGB color value you want to use for the text on that tab.

10. Save and close the wwhelp_settings.xml file.

11. Regenerate your project to review the changes.

Using Custom Icons on the Contents Tab in
WebWorks Help
When you navigate through the table of contents on the Contents tab, you can see
two types of icons for entries that have subentries. The open book icons (fo.gif)

Using Custom Icons on the Contents Tab in WebWorks Help | 1033

represent expanded table of contents levels, and the closed book icons (fc.gif)
represent unexpanded table of contents levels, as shown in the following figure.

These icons are .gif images stored in the WebWorks Help theme folder. You can
create override files for the fo.gif and fc.gif files to replace these files and use
your own custom table of content icons instead.

To replace the book icons used on the Contents tab

1. Identify the theme in use for your WebWorks Help target that you want to
modify. For more information, see “Selecting a Theme”.

2. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

3. If you want to override the images for all WebWorks Help targets,
create the WebWorks Help 5.0\Skins\ theme\Files\wwhelp\wwhimpl
\common\images folder in your projectname\Formats folder, where theme
is the name of the WebWorks Help theme you want to override, such as
Lobby_Blue , and projectname is the name of your ePublisher project. If the
theme name is two words, include an underscore instead of a space between
the words.

4. If you want to override the images for one WebWorks Help target,
create the WebWorks Help 5.0\Skins\ theme\Files\wwhelp\wwhimpl
\common\images folder in your projectname\Targets folder, where theme
is the name of the WebWorks Help theme you want to override, such as
Lobby_Blue , and projectname is the name of your ePublisher project. If the
theme name is two words, include an underscore instead of a space between
the words.

5. Copy the fo.gif and fc.gif files from the following folder to the images
override folder you created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats
\WebWorks Help 5.0\ Skins\ theme\Files\wwhelp\wwhimpl\common
\images

1034 | Using Custom Icons on the Contents Tab in WebWorks Help

6. Open the fo.gif and fc.gif files you copied to your project override folder
and modify these files to be the book icons you want to use.

7. Save and close the fo.gif and fc.gif files.

8. Regenerate your project to review the changes.

Modifying the Appearance of the Search
Message in WebWorks Help
In WebWorks Help, when users click on the Search tab, the message “Type in the
word(s) to search for:” is displayed. Once the user types in a word to search for
and clicks Go, the “(Searching)” message is briefly displayed in the search results
box. The appearance of these messages is controlled by the h2 and h3 HTML tags,
and these tags are located in the search.js file. To modify the appearance of the
search message, you need to specify the style properties for h2 and h3 tags in a
separate .css file.

Note: If you customize the appearance of the search message by
modifying the search.js file, you will be responsible for maintaining your
customizations as needed each time you update your Stationery to work with
a new version of ePublisher.

For more information about override files and locations, see “Stationery, Projects,
and Overrides”.

To change the appearance of the “Type in the word(s) to search for” message,
create a style definition for the h2 tag. To modify the appearance of the
“(Searching)” message, create a style definition for the h3 tag. After you specify the
font properties in a .css file for the h2 and h3 tags, reference the .css file in the
search.js file.

Note: The messages.xml file in the Formats\WebWorks Help 5.0\Files\wwhelp
folder controls the message text used throughout WebWorks Help for multiple
languages. You can override this file to provide customized messages for your
specific needs.

To modify the appearance of the search messages

1. If you want to override the message appearance for all WebWorks
Help targets, complete the following steps:

a. In your Stationery design project, on the View menu, click Format
Override Directory.

b. Create the following folder in your projectname folder, where
projectname is the name of your ePublisher project:

Modifying the Appearance of the Search Message in WebWorks Help | 1035

Formats\WebWorks Help 5.0\Files\wwhelp\wwhimpl\js\scripts

2. If you want to override the message appearance for one WebWorks
Help target, complete the following steps:

a. In your Stationery design project, on the View menu, click Target
Override Directory.

b. Create the following folder in your projectname folder, where
projectname is the name of your ePublisher project:

Targets\WebWorks Help 5.0\Files\wwhelp\wwhimpl\js\scripts

3. Copy the search.js file from the following folder to the scripts override
folder you created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats
\WebWorks Help 5.0\ Files\wwhelp\wwhimpl\js\scripts

4. Open the search.js file you copied to your project override folder.

5. Find the following block of code:

// Display initializing message
//

HTML.fAppend("<h2>" +
WWHFrame.WWHJavaScript.mMessage.mInitializingMessage + "</h2>
\n");

6. Replace that block of code with the following code:

// Display searching message
//

HTML.fAppend("<h2 style=\"color:#FF00FF; text-
decoration: underline; font-size: 12pt;\">" +
WWHFrame.WWHJavaScript.mMessages.mSearchSearchingMessage + "</h2>
\n");

7. Find both instances of the following block of code:

// Display searching message
//

HTML.fAppend("<h2>" +
WWHFrame.WWHJavaScript.mMessages.mSearchSearchingMessage + "</h2>
\n");

1036 | Modifying the Appearance of the Search Message in WebWorks Help

8. Replace each instance of that block of code with the following code:

// Display searching message
//

HTML.fAppend("<h2 style=\"color:#FF00FF; text-
decoration: underline; font-size: 12pt;\">" +
WWHFrame.WWHJavaScript.mMessages.mSearchSearchingMessage + "</h2>
\n");

9. Find the following block of code:

// Display search message and/or prepare results for display
//
if (this.mSavedSearchWords.length == 0)
}
HTML.fAppend("<h3>" +
WWHFrame.WWHJavaScript.mMessages.mSearchDefaultMessage + "</h3>
\n");

10. Replace that block of code with the following code:

// Display search message and/or prepare results for display
//
if (this.mSavedSearchWords.length == 0)
{
HTML.fAppend("<h3 style=\" color:#FF00FF;
text-decoration: none; font-size: 14pt;\">" +
WWHFrame.WWHJavaScript.mMessages.mSearchDefaultMessage + "</h3>
\n");

11. Save and close the search.js file.

12. Regenerate your project to review the changes.

Modifying the Search Ranking
The search results are displayed in the Search tab when a user types a word to
search for and clicks Go. The search results are sorted by the relevancy ranking,
which is calculated based on the scoring preference defined for the HTML tags in
the wwhelp_files.xml file. By default, WebWorks Help assigns relevancy rankings
based on where in a topic a particular item is found.

For example, if you set the scoring preference, or weight, for Heading 1 to 25 and
you set the weight for Heading 2 to 15, then any search term found in a Heading 1
returns a higher relevancy ranking than if the search term is found in a Heading 2.

The following scenario illustrates how the relevancy ranking is calculated:

Modifying the Search Ranking | 1037

If you search for the word popup, and that word appears in both a Heading 1 and
a Heading 2 on one page, and in a Heading 1 on another page, the search returns
two results sorted by the relevancy ranking.

To get the relevancy ranking, WebWorks Help takes the score of each search result
and divides it by the highest score found. To get the score of each search result, the
scoring preference for each HTML tag is used.

For example, Heading 1 has a scoring preference of 25 and Heading 2 has a scoring
preference of 15. If the word “popup” appears in a Heading 1 and a Heading 2 on
a topic page, then the score for that word on that page is 25+15=40. If the word
“popup” appears in a Heading 1 on another topic page, then the score for that word
on that page is 25. Therefore, if 40 is the highest score that a search for “popup”
returns, the relevancy ranking of the first search result is 100%=40/40x100%, and
the relevancy ranking for the second search result is 38%=15/40x100%.

To modify the relevancy ranking for search results

1. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

2. If you want to override the message appearance for all WebWorks
Help targets, create the Formats\WebWorks Help 5.0\Transforms folder
in your projectname folder, where projectname is the name of your ePublisher
project.

3. If you want to override the message appearance for one WebWorks
Help target, create the Targets\WebWorks Help 5.0\Transforms folder in
your projectname folder, where projectname is the name of your ePublisher
project.

4. Copy the wwhelp_files.xml file from the following folder to the Transforms
override folder you created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats
\WebWorks Help 5.0\ Transforms

5. Open the wwhelp_files.xml file you copied to your project override folder.

6. Find the following block of code:

<ScoringPrefs>
 <meta name="keywords" weight="100"/>
 <meta name="description" weight="50"/>
 <meta name="summary" weight="50"/>
 <title weight="20"/>
 <h1 weight="15"/>
 <h2 weight="10"/>

1038 | Modifying the Search Ranking

 <caption weight="10"/>
 <h3 weight="7"/>
 <th weight="5"/>
 <h4 weight="5"/>
 <h5 weight="4"/>
 <h6 weight="3"/>
 <h7 weight="2"/>
</ScoringPrefs>

7. Modify the weight attributes for any tags, such as h1 and h2 , you want to
change.

8. Save and close the wwhelp_files.xml file.

9. Regenerate your project to review the changes.

Modifying the Search Highlighting
You can control search highlighting with an override:
 Formats\WebWorks Help 5.0\Skins\[skin name]\wwhelp_settings.xml

For more information regarding overrides, See “Creating Format Overrides”.

The following markup controls the behavior:
 <Search enable="true">

 <Results showrank="true" />

 <Highlighting enable="true">

 <Colors foreground="#FFFFFF" background="#333399" />

 </Highlighting>

 </Search>

Using an HTML value for the color will help you control the search highlighting color
for the text and for the background of the word that is being searched in the output
page.

Note: This browser behavior is limited to Internet Explorer.

Synonyms
By defining a list of synonyms, you can increase the effectiveness of a search by
grouping similar words together as a single result. For example, you define movie,
video, and avi as synonyms. If a user searches for one of those terms, a match will
be scored if any of the three are found in a document.

Synonyms | 1039

To add these definitions, you’ll need to perform an override on a file called
synonyms.xml, located by default in the ePublisher Designer installation directory
here:
 \Formats\WebWorks Help 5.0\Files\wwhdata\common

Once the file is copied to the correct location in your project directory, open it
in any text- or XML-editing application (e.g., NotePad), and add entries to the
<WebWorksSynonyms> section. For example, your synonyms might look like this:
 <WebWorksSynonyms>

 <Word value="movie">

 <Synonym value="avi" />

 <Synonym value="video" />

 </Word>

 <Word value="picture">

 <Synonym value="image" />

 <Synonym value="graphic" />

 <Synonym value="photo" />

 </Word>

 </WebWorksSynonyms>

Please note that the Synonyms feature does not recognize multiple word values
or synonyms. And, it ignores words (and synonyms) of 2 letters or less. Also, its
search logic is quite literal. That is, it finds only what you type, and only if the exact
form is in the text. For example, it does not find plurals or phrases, and it even
includes punctuation.

Minimum word length & common words
When performing a text search, the WebWorks Help 5.0 search engine follows a
couple of guidelines designed to make the search more efficient and the results
more helpful. By default, the minimum length of a word in the search results is 3
letters. ePublisher Designer also comes with a list of terms which appear commonly
in many types of documents, and are therefore left out of search results. You can
modify both the minimum length and the list of common words by performaing
a target override on a file called locales.xml, located by default in the ePublisher
Designer installation directory, here:

1040 | Minimum word length & common words

2024.1\Formats\Shared\common\locale

Because this file is in the Shared formats directory, your project folder hierarchy
should look like this:

MyProject\Targets\MyWWHelpTarget\Shared\common\locale

To change the minimum number of letters in a WebWorks Help 5.0 search
result:

1. Open locales.xml in an XML- or text-editing application (e.g., NotePad).

2. Find the Locale used by your project (default English is “en”).

3. Under the <Search> section, change the MinimumWordLength value to the
desired number of characters in the shortest word the search should return.

To change the list of words which will not be returned in a WebWorks Help
5.0 search:

1. Open locales.xml in an XML- or text-editing application (e.g., NotePad).

2. Find the Locale used by your project (default English is “en”).

3. Under the <Search> section, modify the <StopWords> values to reflect the
list of words which should not appear in your project’s search results.

Using Context-Sensitive Help in WebWorks
Help
Context-sensitive help links provide content based on the context of what the user
is doing. In many cases, this help content is based on the window that is open and
active. For example, the Help button on a window in a software product can open a
specific help topic that provides important information about the window and links
to related topics.

WebWorks Help allows you to use a TopicAlias marker to define an internal identifier
for each topic. The benefit of using an internal identifier is that it allows file names
to change without impacting the links from the product. The writer inserts this
marker in a topic and specifies a unique value for that topic. ePublisher creates a
mapping file to identify each topic associated with a unique value. Then, WebWorks
Help uses this internal identifier and the mapping file to display the correct topic.
Before you can reference topics in WebWorks Help using topic aliases, you must
enable TopicAlias markers in your Stationery. For more information, see “Defining
Filename Markers for Context-Sensitive Help Links”.

Mapping Files in WebWorks Help

Mapping Files in WebWorks Help | 1041

WebWorks Help does not generate a mapping file. However, you can see a list of
defined contexts and topics in the wwdata/xml/files.xml file. You can also use the
Topics Report to verify that context-sensitive help topics have been created for each
topic ID specified in your source document. The Topics Report lists the topic ID and
the topic file created for each topic ID.Topic aliases report. For more information
about the topics report, see “Topics Reports”.

Opening Context-Sensitive Help in
WebWorks Help using Standard URLs
You can open WebWorks Help from the application using standard URLs or the
WebWorks Help API. For more information about the API, see “Opening Context-
Sensitive Help with the WebWorks Help API”.

Note: If you have WebWorks Help installed on the local computer, Internet Explorer
7 ignores the query string attached to a URL when it reloads a page. For
example, after displaying a security warning or other message, Internet
Explorer reloads the page. Without the query string, the browser cannot open
the specific topic, since the group name and topic alias are not available. To
avoid this issue with Internet Explorer 7, you can use the WebWorks Help API
to open a topic in locally installed WebWorks Help.

To open the complete WebWorks Help output to the default help topic, open the
index.htm or index.html file in the root of the folder where the WebWorks Help
is stored. This file defines the help frameset and loads the individual components,
such as the table of contents, index, and topic content.

To open a specific topic in WebWorks Help, use the following URL:
helplocation/wwhelp/wwhimpl/api.htm?context=groupname&topic=alias

The variable parts of this URL are defined as follows:

helplocation

Specifies the location where the WebWorks Help is installed. If the help is on
a Web server, specify the location using the http protocol and the Web site
path to the root of the help, such as http://www.webworks.com/help . If
the help is installed on the local computer, specify the location using the file
protocol and the path to the root of the help, such as file:///C:/Program
Files/YourApplication/help .

groupname

Specifies the group context value for the top-level group in which the topic
resides in Document Manager. This group context is specified in merge
settings for each top-level group.

1042 | Opening Context-Sensive Help in WebWorks Help using Standard URLs

alias

Specifies the value of the TopicAlias marker in the topic to open.

Opening Context-Sensitive Help with the
WebWorks Help API
WebWorks Help provides an API that you can use to call context-sensitive topics
in WebWorks Help. Using the API instead of simple URLs gives you increased
flexibility and enhanced control. For example, the following list highlights some of
the benefits of using the API:

The API automatically determines the default browser and opens it to display
the correct help topic.

The API reduces the amount of code developers must write to integrate
context-sensitive help. Without the API, developers must code their own COM
interface to communicate with the browser on the Windows platform. This
code is provided as part of the WebWorks Help API.

Using the API can significantly reduce the time required to load an individual
topic if the help system is already open in the browser. If your application
calls a topic using a URL instead of the API, the entire frameset, including
the WebWorks Help applet, is loaded each time the user opens help. If the
application calls a topic using the API, and the correct help is already loaded
in the browser, neither the frameset nor the applet is reloaded. Instead, the
currently open topic pane displays the correct help topic, which delivers a
significant performance improvement for WebWorks Help users.

The API allows you to avoid the issue that exists with standard URLs in
Internet Explorer 7. In Internet Explorer 7, if you have WebWorks Help
installed on the local computer, Internet Explorer 7 ignores the query string
attached to a URL when it reloads a page. For example, after displaying
a security warning or other message, Internet Explorer reloads the page.
Without the query string, the browser cannot open the specific topic, since the
group name and topic alias are not available.

You can use the C/C++ API, which is available as a .dll or a COM object.
This API supports WebWorks Help 4.0 and 5.0. WebWorks Help 5.0, does
not include the Java navigation. Therefore, do not use the Java navigation
options with WebWorks Help 5.0. For more information about this API and the
software development kit, see http://wiki.webworks.com/DevCenter/Projects/
WebWorksHelp/WebWorksHelpSDK.

Opening Context-Sensitive Help with the
Javascript API

Opening Context-Sensive Help with the Javascript API | 1043

http://wiki.webworks.com/DevCenter/Projects/WebWorksHelp/WebWorksHelpSDK
http://wiki.webworks.com/DevCenter/Projects/WebWorksHelp/WebWorksHelpSDK

Similar to using the WebWorks Help API, you can use the Javascript API when
working with web applications designed to run on websites using standard HTML
and Javascript. For complete details of the WebWorks Help Javascript API, see
http://wiki.webworks.com/DevCenter/Projects/WebWorksHelp/JavascriptAPI.

1044 | Opening Context-Sensive Help with the Javascript API

http://wiki.webworks.com/DevCenter/Projects/WebWorksHelp/WebWorksHelpSDK

Advanced Format and Target
Customizations

Understanding Customized Processing
Format and Target Overrides
Customizing Page Templates (*.asp)

By defining online navigation, setting options and preferences in your project, and
embedding additional information in your source documents, you can define the
behavior and appearance of your online content. The following sections provide
some additional information about techniques you can use to further refine and
customize your design.

Note: These techniques are supported in all formats unless otherwise noted.

Understanding Customized Processing
ePublisher uses file and folder locations to provide a structure where you can create
and store override files. These files customize how ePublisher transforms your
content.

When you generate output for an output format, ePublisher uses the following
process to identify the files to use to process your content and complete the task:

1. ePublisher checks the Targets folder hierarchy in your project for the files
required to complete the task. ePublisher checks the folder hierarchy named
for the target you are generating.

2. If the files are not found in the Targets folder hierarchy in your project,
ePublisher checks the Formats folder hierarchy in your project for the files
required to complete the task. ePublisher checks the folder hierarchy named
for the output format of the target you are generating.

3. If the files are not found in your project folder hierarchy, ePublisher checks
the installation folders.

This process allows you to override any default file in the installation folder
hierarchy for one or more output formats or targets by placing a customized file
with the same name at the correct location in the project folder hierarchy.

By recreating the file path in the Targets folder in your project, and storing a
modified file in the correct location, you can change the processing for that specific
target. This method allows you customize a specific target in a project that has
multiple targets using the same output format.

By recreating the file path in the Formats folder in your project, and storing a
modified file in the correct location, you can change the processing for all targets

Understanding Customized Processing | 1045

that use the same output format. This method is also helpful for projects with one
target.

Note: Do not modify files in the installation folders. Store customized files only in
the project folder hierarchy. You need to create the Targets and Formats
folder hierarchies in your project folder, as needed for the files you want to
override.

For more information, see “Stationery, Projects, and Overrides” and “ePublisher
Pipeline and Transforms”.

Format and Target Overrides
ePublisher gives you complete control over the final output. However, some project
modifications cannot be made through the ePublisher console. In these instances,
you may need to override the default XSL files used by ePublisher to achieve the
results you need.

When ePublisher generates output for the first time for a project, ePublisher
reviews the format.wwfmt file in the folder for the appropriate format. This file
tracks the actions required to generate the desired format. If there are no user
customizations, all the files referenced by the format.wwfmt file are in the Format
or Transforms folders in the installation folder hierarchy. By default, ePublisher
first checks the project folder hierarchy for each required file before getting the
files from the installation folder. With this process, you can override one or more
default files by creating the same folder hierarchy in a project folder and storing
a customized file with the same name at the correct location in the project folder
hierarchy.

Note: You can override default files for all targets of a specific output format type
in the project. You can also override default files for a specific target in a
project without affecting other targets of the same output format type in that
project. Overrides for a target override any customizations you specified in
the override folders for a format.

Creating Format Overrides
This section defines how to override a default file for all targets of a specific
output format type in the project. Do not modify the files in the installation folder
hierarchy. These files are the default files and should remain as is. These files
are also overwritten when you install new ePublisher releases. Instead, store and
incorporate your customized files with your Stationery so your projects based on
the Stationery get those customizations.

Note: Changes to .xsl and Format Trait Info .fti files are considered advanced
customizations and are not supported by the Quadralay Product Support
department. If you are familiar with XSL, you may find that customizations
to .xsl and .fti files are a powerful way to achieve very specific results in

1046 | Creang Format Overrides

your generated output or output deployment. However, you are responsible
for maintaining any .xsl or .fti file overrides that you implement. The
Quadralay Product Support department does not provide support for these
advanced customizations.

File names used in ePublisher are case sensitive. Make sure the file and folder
names you create exactly match the default file and folder names in the installation
folder hierarchy. Do not copy any files into the project folder hierarchy that you are
not overriding.

The following task assumes that ePublisher is installed in the default location and
your ePublisher projects are stored in the My Documents folder. If you installed
ePublisher to a non-default location, or if you store your projects in a folder other
than the My Documents folder, adjust the paths in the following task.

To override a project format

1. In your Stationery design project, on the Advanced menu, click Manage
Format Customizations.

2. In the displayed collection of folders and files, navigate to the file that you
wish to override and highlight it.

3. To create an override for the selected file, right click and select the Create
Customization menu. This will create an exact copy of the original file and
place it into the appropriate location within the project directory. Now you
can safely modify this file as desired as well as viewing the file differences
between your override and the original.

Creang Format Overrides | 1047

4. Use either of the right-click mouse menu items: Explore To... or Edit File ...
to access and modify your file override.

The next time you generate your project, the modified file automatically overrides
the default file and the changes you made are incorporated into the output for all
targets that produce that output format.

Note: When you save the ePublisher project as Stationery, the project format
overrides you have created are saved with your Stationery. This Stationery
can then be used to create future projects in ePublisher Express and
ePublisher AutoMap.

Creating Target Overrides
This section defines how to override default files for a specific target in a project
without affecting other targets of the same output format type in that project. Do
not modify the files in the installation folder hierarchy. These files are the default
files and should remain as is. These files are also overwritten when you install new
ePublisher releases. Instead, store and incorporate your customized files with your
Stationery so your projects based on the Stationery get those customizations.

Note: Changes to .xsl and Format Trait Info .fti files are considered advanced
customizations and are not supported by the Quadralay Product Support
department. If you are familiar with XSL, you may find that customizations

1048 | Creang Target Overrides

to .xsl and .fti files are a powerful way to achieve very specific results in
your generated output or output deployment. However, you are responsible
for maintaining any .xsl or .fti file overrides that you implement. The
Quadralay Product Support department does not provide support for these
advanced customizations.

Make sure the file and folder names you create exactly match the default file and
folder names in the installation folder hierarchy. Do not copy any files into the
project folder hierarchy that you are not overriding.

The following task assumes that ePublisher is installed in the default location and
your ePublisher projects are stored in the My Documents folder. If you installed
ePublisher to a non-default location, or if you store your projects in a folder other
than the My Documents folder, adjust the paths in the following task.

To override a project target

1. In your Stationery design project, on the Advanced menu, click Manage
Target Customizations.

2. In the displayed collection of folders and files, navigate to the file that you
wish to override and highlight it.

3. To create an override for the selected file, right click and select the Create
Customization menu. This will create an exact copy of the original file and
place it into the appropriate location within the project directory. Now you
can safely modify this file as desired as well as viewing the file differences
between your override and the original.

Creang Target Overrides | 1049

4. Use either of the right-click mouse menu items: Explore To... or Edit File ...
to access and modify your file override.

The next time you generate your project, the modified file automatically overrides
the default file and the changes you made are incorporated into the output for
that target. These customizations also override any override files you saved in the
project folder hierarchy for the associated output format.

Note: When you save the ePublisher project as Stationery, the project target
overrides you have created are saved with your Stationery. This Stationery
can then be used to create future projects in ePublisher Express.

Managing Overrides
ePublisher assists you in the management of your project’s overrides by graphically
highlighting files that have been overridden as well as highlighting folders that
contain files that have been overridden. In addition, you can also have ePublisher
launch a 3rd-party Diff (also called a line-comparison) tool that will intuitively
display what modifications have been made in your overridden file.

To View File Differences

1. In your Stationery design project, on the Advanced menu, click Manage
Format Customizations (or Target for target overrides).

1050 | Managing Overrides

2. In the displayed collection of folders and files, navigate to the overridden file
that you wish to compare and highlight it.

3. To compare the differences of the selected override, right click and select the
View File Differences... menu. This will launch your configured Diff program
and automatically display the differences between your file and the original.

4. You can examine how your override is different from the original. In addition,
you can modify your overridden file directly from within the Diff tool.

Managing Overrides | 1051

Customizing Page Templates (*.asp)
You can customize the appearance of your content page to meet your specific
needs. ePublisher provides several customization options, such as where to display
company information, browse buttons, and breadcrumbs. These options allow you
to achieve a professional result in your generated output.

You may want to further customize your content page design. ePublisher provides
this flexibility by allowing you to override the Page.asp file, which defines the
appearance and behavior of your content page. However, if you customize this file,
some customization options in the ePublisher console may no longer affect your
content page design.

For example, you can override the Page.asp file to add a graphic bar across the
top of the page with the product logo and name. You can also add a graphic bar
across the bottom of the page with a copyright and a link to your company Web site
and customer support area. You can also modify the formatting and layout of the
default page design options, such as the company information options.

To override the Page.asp file

1. In your Stationery design project, on the View menu, click Project
Directory. For more information about override files and locations, see
“Stationery, Projects, and Overrides”.

2. If you want to override the processing for an output format, create the
Formats\ formattype\Pages folder in your project folder, where formattype is
the name of the output format you want to override, such as Dynamic HTML .

1052 | Customizing Page Templates (*.asp)

3. If you want to override the processing for a target, create the Targets
\ targetname\Pages folder in your project folder, where targetname is the
name of the target you want to override.

4. Copy the Page.asp file from the following folder to the override folder you
created within your project folder:

Program Files\WebWorks\ePublisher Designer\Formats
\ formattype\Pages

5. Open the Page.asp file you copied to your project override folder in a text
editor.

6. Modify the Page.asp file as needed.

7. Save and close the Page.asp file.

Page Templates Reference
Page templates are files that form the skeleton structure of generated output files.
Often users will create overrides for these files so that they can precisely control
the look and function of generated output files. The most common type of page
templates to customize are the Page.asp and Splash.asp files, which are used in
most all of the output format types.

Namespace and Attributes
ePublisher defines the namespace: wwpage for page templates as follows:
xmlns:wwpage="urn:WebWorks-Page-Template-Schema"

The following shows the page template attributes that can be used along with their
purpose.

Namespace and Aributes | 1053

Attribute Purpose

wwpage:condition Controls when elements should be preserved in the
generated output.

wwpage:content Use this attribute to replace the innerHTML or
innerXML of an element.

wwpage:replace Use this attribute to replace the innerHTML /innerXML
as well as the outerHTML /outerXML .

wwpage:attribute-
<name>

Use this attribute to emit a generated attribute value
with name: name . In addition, you can specify a value
of either: relative-to-output or copy-relative-
to-output or wwsetting:<target-setting-name>.
Specifying the value using relative-to-output is
useful for file type attributes that require a pathname
relative to the parent file. If the copy version is used,
it additionally copies the file into the correct location
within the generated output directory.

wwpage:NoBreak Use this attribute to collapse all white space between
two elements into nothing.

wwpage:Import Use this attribute to indicate an that an import
operation will take place using one of the *-from-*
wwpage attributes.

wwpage:content-from-
file

Use this attribute to import the contents of the
specified file as the innerHTML of an element.

wwpage:replace-from-
file

Use this attribute to import the contents of the
specified file as the innerHTML as well as the
outerHTML of an element.

wwpage:content-from-
lookup

Use this attribute to import the contents of the
specified item name generated by ePublisher as the
innerHTML of an element.

1054 | Namespace and Aributes

Attribute Purpose

wwpage:replace-from-
lookup

Use this attribute to import the contents of the
specified item name generated by ePublisher as the
innerHTML as well as the outerHTML of an element.

Note: If you are using wwpage:attribute-<name> to express attribute that
uses a namespace of its own, you can use a “-” character in place of
the “:” character. For example: wwpage:attribute-xml-lang is used to
generate the xml:lang attribute in the output.

The following shows a typical usage of wwpage attributes within a Page.asp or
Splash.asp page template.

Namespace and Aributes | 1055

Attribute Example usage in Page.asp page template

wwpage:condition <hr wwpage:condition="header-exists"
align="left" />

wwpage:content <title wwpage:content="title">Title</title>

wwpage:replace <div wwpage:replace="content">Page content.</
div>

wwpage:attribute-
<name>

<link rel="StyleSheet" href="css/print.css"
wwpage:attribute-href="copy-relative-to-output"
type="text/css" media="print" />

wwpage:NoBreak
<wwpage:NoBreak />

wwpage:Import <wwpage:Import wwpage:replace-from-
file="scripts/common.js" />

wwpage:content-from-
file

<div wwpage:Import wwpage:content-from-
file="scripts/common.js"></div>

wwpage:replace-from-
file

<wwpage:Import wwpage:replace-from-file="css/
webworks.css" />

wwpage:content-from-
lookup

<div wwpage:Import wwpage:content-from-
lookup="catalog-css"></div>

wwpage:replace-from-
lookup

<wwpage:Import wwpage:replace-from-
lookup="catalog-css" />

Logical AND/OR/NOT in condition attributes

The wwpage:condition attribute supports both logical AND as well as OR to
provide for multiple conditions in a single attribute expression. For a logical

1056 | Namespace and Aributes

AND , use white space as a separator between conditions. For a logical OR , use
a single comma as a separator between conditions. The following shows a few
simple examples of using multiple conditions:

Namespace and Aributes | 1057

Logic Type Example

AND (use space) <hr wwpage:condition=”header-exists company-
email-exists” />

OR (use “,”) <hr wwpage:condition=”header-exists,footer-
exists” />

NOT (use “!”) <hr wwpage:condition=”!header-exists” />

AND with OR and NOT <hr wwpage:condition=”header-exists company-
email-exists,footer-exists !company-email-
exists” />

Working with URL and File Paths in Page Templates

The wwpage:attribute-<name> attribute can be used to specify
several behaviors when working with URL and File paths. The
following shows the list of available modifiers for this
wwpage:attribute.

1058 | Namespace and Aributes

Attribute Modifier Example

relative-to-output <script type="text/javascript" src="scripts/
common.js" wwpage:attribute-src="relative-to-
output"></script>

copy-relative-to-output <script type="text/javascript" src="scripts/
common.js" wwpage:attribute-src="copy-relative-
to-output"></script>

relative-to-output-root <script type="text/javascript" src="scripts/
common.js" wwpage:attribute-src="relative-to-
output-root"></script>

copy-relative-to-output-
root

<script type="text/javascript" src="scripts/
common.js" wwpage:attribute-src="copy-relative-
to-output-root"></script>

absolute-to-output <external-graphic content-height="scale-
to-fit" width="1in" height="1in"
src="url('{wwformat:Pages/images/Logo.png}')"
wwpage:attribute-src="absolute-to-output" />

resolved-uri <external-graphic src="url({wwformat:Pages/
images/rms_doc_logo.png})" wwpage:attribute-
src="resolved-uri" content-width="100px"
content-height="100px" left="0pt" top="0pt" />

resolved-path <external-graphic src="{wwformat:Pages/
images/rms_doc_logo.png}" wwpage:attribute-
src="resolved-path" content-width="100px"
content-height="100px" left="0pt" top="0pt" />

Using Replacement Types ({}) in Page Templates

In page templates, you can use the “{}” characters to indicate a parameter
to use in an attribute replacement. The “{}” characters are used to embed a
path or parameter within an attribute value. For example, the following is a
typical replacement for an HTML img tag, demonstrating how “{}” characters
can be used to improve the result of the replacement.

Namespace and Aributes | 1059

<img src="url('{images/logo.png}')" wwpage:attribute-src="copy-
relative-to-output" />.

Using ePublisher Style Variables in Page
Templates
A powerful feature for capturing text in your source content based on their assigned
style name is available by using the wwvars:<Variable_Name> in your page
template file

To capture text from your source documents, you first need to configure the
Variable style option within your ePublisher Designer project. The Variable style
option is available for Paragraph, Character, and Marker styles.

In the ePublisher Style Designer, select the Variable option and assign it a value
that will be used in your page template.

Once you have assigned a variable name to the style, any time ePublisher
encounters that style it will set the value of that variable to the text of that style in
the source content.

To access the variable in your page template, you would use the
wwvars:<Variable_Name> attribute, similar to the following.

1060 | Using ePublisher Style Variables in Page Templates

<div wwpage:content="wwvars:ChapterTitleText">

Chapter Title Appears Here

</div>

Using Markers in Page Templates
Another powerful feature for capturing text within your source content is through
the use of markers. Within your authoring environment you can insert markers that
have a name and value. Then in your page templates, you can access the value
of these markers by their name. The page template will use the last encountered
maker within the scope of the generated page of your output.

To implement this functionality in your page template file, use the syntax:
wwmarker:<Marker_Name>.

For example, if you used a marker called: Reviewer the following is syntax that
could be used in the page template file to capture the value.
<div wwpage:condition="wwmarker:Reviewer"
 wwpage:content="wwmarker:Reviewer">

Reviewer name appears here, if marker is available.

</div>

Using Markers in Page Templates | 1061

ePublisher Pipeline and Transforms
Terminology
Processing Workflow
Transformation Process
Stationery, Projects, and Overrides

ePublisher provides the complete framework needed to solve an unlimited number
of publishing issues. ePublisher provides a flexible processing model that allows you
and third-party developers to customize the ePublisher workflow as needed. This
workflow uses the open, standards-based XSL transformation approach to give you
the flexibility and extensibility you need without locking your data in a proprietary
format.

Terminology
To understand how ePublisher works, you should first understand some
terminology. The following list defines several important product terms:

source document input formats

The types of source documents ePublisher processes, such as Markdown++,
Adobe FrameMaker, Microsoft Word, and DITA-compliant XML files.

output formats

The types of output ePublisher can generate from your source documents.
Each output format is a set of individual XSL transforms that process source
documents to create the output. Quadralay provides many default output
formats, such as WebWorks Reverb (1 & 2), WebWorks Help, HTML Help,
Eclipse Help, Oracle Help, Sun JavaHelp, XML+XSL, Dynamic HTML, and
many others. You can also create custom output formats. An output format is
broken down into pipelines and stages.

format files

The files that define the output format and transforms. These files are stored
in the Formats folder in the installation folder. You can override files to
customize the transformation process and these override files are stored in a
matching location within the project folder. When you save a Stationery, the
override files are stored with the Stationery.

Stationery

A complete set of processing rules and styles that define all aspects of the
output. The Stationery can define multiple targets, and each target can be the
same or different output format. Writers use the Stationery created by the
Stationery designer when they create projects and generate output. Writers

1062 | Terminology

can also override some default settings in their projects, such as variable
values and conditions.

project

Identifies the Stationery to use, the source documents to process, and the
output format and target settings to override when generating output. A
project can include multiple targets.

target

Defines a deliverable for the project, based on an output format. A project
can have multiple targets and each target can be the same or different
output format. All targets in a project share the Style Designer properties and
options, but each target has its own target settings, such as variable values
and company information.

stage

The smallest discrete action possible in an output format, such as an XSL
transform. ePublisher transforms source documents to a target by breaking
the process into a series of steps, also known as stages. A stage is part of the
transformation process that performs a specific action in the process. Stages
are grouped into pipelines of related stages. In the future, non-XSL actions
may also be possible. All stages define an output file type and zero or more
input file types.

pipeline

A set of stages that are run in sequence. Pipelines can have dependencies on
other pipelines, which can ensure that required input files are created before a
pipeline runs.

Processing Workflow
A Stationery designer creates Stationery that identifies the supported output
formats and defines the appearance and behavior of the output generated with
projects based on that Stationery. A writer creates a project based on the
Stationery and identifies the source documents to include in the project. Then, the
writer uses the project to generate output for each target defined in the project. A
developer can create custom behaviors and formats for Stationery designers to
enable and use in the ePublisher Designer console.

ePublisher uses stages, pipelines, and the format.wwfmt file for each output
format to structure and manage the processing workflow. A stage in a pipeline runs
only once. The stage itself must determine the number of files to process and the
number of files to emit. A stage can pass any message to another stage as long as
it is emitted to a file first, and then the type and path of the file are emitted in the
XML result.

Processing Workflow | 1063

ePublisher processes files as follows:

1. Apply conditions, cross-reference formats, and variables to source documents.

2. Export source documents to WIF.

3. Determine the execution order for format pipelines.

4. Select the next pipeline available for processing and execute all the stages
defined in that pipeline.

To fill gaps left by XSL, ePublisher provides several XSL extension objects to support
specific actions, such as processing image files, modifying the file system, and
writing multiple documents from a single XSL transform.

Transformation Process
The first pipeline in the process prepares the source documents to be transformed
by XSL. ePublisher uses XSL to transform documents to output formats. ePublisher
also provides extensions to XSL to support image processing and other source
document operations that otherwise would require additional technologies, such
as FrameScript or VBA. ePublisher requires native access to source documents,
a standard starting point to start XSL transformation, and a standard method for
coordinating XSL transforms on files. This first pipeline applies conditions and
variables, extracts native drawings and images, and exports the source documents
to the WebWorks Intermediate Format (WIF), a WebWorks XML language that
enables XSL to process the source documents in later stages.

When XSL processing begins, ePublisher processes files based on type rather than
by name. Each stage defines an .xsl file that creates a portion of the output
target. When every stage in every pipeline is finished, the transformation process is
complete.

Using the transformation to WIF gives you the ultimate flexibility with multiple input
and output format support. Each input format, such as Microsoft Word and Adobe
FrameMaker, can be transformed to any and all output formats, such as Microsoft
HTML Help and WebWorks Help. As new output formats become available, all input
formats are automatically supported. In addition, a new input format automatically
supports all output formats.

Adapters Transform Source Documents to
WIF
To extract content from source documents, ePublisher defines an adapter interface.
This adapter interface allows ePublisher to transparently support a variety of source
documents, such as Microsoft Word, Adobe FrameMaker, and DITA.

1064 | Adapters Transform Source Documents to WIF

When processing content, ePublisher is not aware of the type of adapter in use.
ePublisher simply asks for an adapter that can process a source document, and
then it sends requests to the adapter associated with that document type.

Adapters handle the following tasks:

1. Reporting book files.

2. Scanning for styles, conditions, cross-references, and variables.

3. Applying specified conditions, cross-reference formats, and variables to source
documents.

4. Extracting native drawings and images.

5. Exporting source documents to WIF.

This final step is where the source document is effectively brought into the world of
XML/XSL processing.

WebWorks Intermediate Format (WIF)
WIF is a Quadralay Corporation standard used as an intermediate format.
Quadralay chose to establish WIF rather than use another XML format because
other XML formats do not provide all the functionality needed to solve conversion-
related issues. Other XML standards are great for authoring structured content,
but they deliberately exclude formatting information and they are not designed to
define source that lacks structure. To address many conversion-related issues, such
as unstructured Microsoft Word source documents with one style (Normal) used
throughout the documents and customized as needed, Quadralay needed a more
flexible and powerful intermediate format.

The most flexible way to resolve these issues was to create WIF, which provides a
stable XML schema that can grow and change as needed for future input and output
format requirements. WIF is designed to address the following goals:

Represent source documents in a standard schema for XSL processing.

Preserve individual word processor features with high fidelity.

Strongly favor XSL processing over ease of authoring.

Processing Files by Type
Once source documents are transformed into WIF, XSL processing can begin. The
next question is about how to organize the XSL processing. ePublisher gives you
the flexibility you need to define a workflow without the drudgery. While some
processes and standards require intimate knowledge of an XSL transform’s input

Processing Files by Type | 1065

and output file names, ePublisher uses knowledge of an XSL transform’s input and
output file types. This distinction is subtle but powerful.

Consider processing XSL with exact file names:

xslt doctoc.xsl alpha.xml > alpha_toc.xml

xslt doctoc.xsl delta.xml > delta_toc.xml

xslt grouptoc.xsl alpha_toc.xml delta_toc.xml > group_toc.xml

Now consider using file types in place of file names:

xslt doctoc.xsl Source > Doc_TOC

xslt grouptoc.xsl Doc_TOC > Group_TOC

Using file types in place of file names simplifies the specification, where the file
types are defined as follows:

1066 | Processing Files by Type

File Type File Names

Source alpha.xml

delta.xml

Doc_TOC alpha_toc.xml

delta_toc.xml

Group_TOC group_toc.xml

With the file type approach, you need to specify xslt doctoc.xsl Source >
Doc_TOC only once. This specification runs for every Source type document found
and generates the corresponding Doc_TOC output files.

Identifying Files to Process
Processing files based on type rather than individual file names allows developers to
define workflows for any number of input and output files. To identify the files each
XSL transform should process or create, ePublisher defines an XML schema to store
file information. A simplified form of this schema looks like the following example:
<Files>
 <File name="alpha.xml" type="Source" />
 <File name="delta.xml" type="Source" />
</Files>

This XML document is fed as input to each XSL transform, and every XSL transform
emits the list of generated files using this same schema. Therefore, running
doctoc.xsl with the previous example input file list returns the following output:
<Files>
 <File name="alpha_toc.xml" type="Doc_TOC" />
 <File name="delta_toc.xml" type="Doc_TOC" />
</Files>

In this example, the final transform, grouptoc.xsl , runs with the following input
file list:
<Files>
 <File name="alpha.xml" type="Source" />
 <File name="delta.xml" type="Source" />
 <File name="alpha_toc.xml" type="Doc_TOC" />
 <File name="delta_toc.xml" type="Doc_TOC" />

Idenfying Files to Process | 1067

</Files>

This final transform returns the following output:
<Files>
 <File name="group_toc.xml" type="Group_TOC" />
</Files>

The Source documents were fed into the grouptoc.xsl transform because all
previous output files are available to all downstream XSL transforms. ePublisher
allows developers to define as many XSL stages as needed, and each stage can
process, reprocess, examine, and manage, any preceding file generated.

TOC Processing Example
The previous sections describe a TOC processing example to illustrate how
ePublisher processes files. The following example shows the corresponding
format.wwfmt file for this TOC processing example:
<Format>
<Pipeline name="TOC">
 <Depends pipeline="Locale" />
 <Stage type="xsl" action="doc_toc.xsl">
 <Parameter name="ParameterDependsType" value="Source" />
 <Parameter name="ParameterType" value="Doc_TOC" />
 </Stage>
 <Stage type="xsl" action="group_toc.xsl">
 <Parameter name="ParameterDependsType" value="Doc_TOC" />
 <Parameter name="ParameterType" value="Group_TOC" />
 </Stage>
</Pipeline>
</Format>

This representation defines the XSL transforms and file types to process.

Stationery, Projects, and Overrides
The following sections provide an overview of the ePublisher files used in the
transform process. You can customize these files and store them in an override
location to customize how ePublisher transforms your content. For more information
about terms used in the following sections, see “Terminology”.

File Locations
ePublisher Designer allows you to create Stationery that writers can base their
projects on. The Stationery stores the style settings and customized files used
to define how ePublisher transforms your content. When writers create projects
based on Stationery, their projects copy the customized files and settings from the
Stationery and use those customized files when processing the content included

1068 | File Locaons

in their projects. In this way, customized files in the projects override the default
ePublisher files. The Stationery also allows you to quickly roll out changes to your
customized processes and settings. Once you update your Stationery, writers are
notified when they open a project based on the Stationery to synchronize with the
Stationery, which incorporates your latest changes.

ePublisher uses file and folder locations to provide a structure where you can create
and store override files. An override file is a customized file stored in a parallel
location in a project or Stationery that is used to process the source documents
instead of the default ePublisher file stored in the installation folders. These files
customize how ePublisher transforms your content. ePublisher uses the following
locations to store its files:

Your project folders

By default, each project is saved in the My Documents \componentname
Projects\projectname folder, where componentname is the name of the
ePublisher component used to create the project, such as ePublisher
Designer or ePublisher Express , and projectname is the name of the
project itself.

ePublisher installation folder

By default, ePublisher components are installed in the Program Files
\WebWorks folder. The default transformation files are stored with ePublisher
Designer in the Program Files\WebWorks\ePublisher\ePublisher Designer
folder.

When you generate output for an output format, ePublisher first checks the project
folders for the files required to complete the task. If the files are not found in the
project folders, ePublisher checks the installation folders. This process allows you to
override any default file in the installation folder hierarchy for one or more output
formats by placing a customized file with the same name at the correct location in
the project folder hierarchy.

Note: Do not modify files in the installation folders. Store customized files only in
the project folder hierarchy.

The files used to transform a source document are located in several main folders in
the ePublisher installation folder hierarchy:

Formats

Contains format-specific XSL files. The default files that you can customize
and store in your project folder hierarchy are stored in this folder. The
Formats\Shared folder contains XSL files used by multiple formats.

Helpers

File Locaons | 1069

Contains command-line programs to perform specific actions, such as
compiling HTML Help .chm files or generating WebWorks Help search indices.

File Processing
ePublisher divides the transform process into a series of pipelines, or groups of
similar stages. Each stage defines an .xsl file to run that creates a portion of the
target. ePublisher uses a combination of the format pipelines, the files.info
GlobalFiles record file, XSLT parameters, and the root match template in a given
XSL file to perform the action identified in a stage. These stages are defined in the
format.wwfmt file located in each format folder. The format.wwfmt file defines
all the pipelines and stages necessary to create a specific output format, and the
relationships that each of these pipelines and stages have to one another. There is
no preconceived order in which pipelines run. ePublisher calculates at run time the
order in which each pipeline runs, based on pipeline dependencies.

ePublisher processes files based on type rather than by name. Each stage defines
an .xsl file to run that creates a portion of the target. All ePublisher XSL style
sheets define the following global parameters by default:

1070 | File Processing

Parameter Description

GlobalFiles Provides the files.info file for the project, which
includes all previously generated files in the files XML
schema.

GlobalProject Provides the .wep project file, which defines the project
as XML.

GlobalPipelineName Specifies the name of the pipeline in which the current
stage is defined.

GlobalInput Identifies the files selected in Document Manager.
This parameter provides all previously generated files
derived from the Generate Selected command in the
files XML schema.

In addition, ePublisher passes the XSL style sheets all parameters defined for the
current stage in the format.wwfmt file. Parameters passed to each XSLT file are
usually used to load the various XML node sets needed for the current stage. For
example, a stage may need to take information recorded in the Behaviors pipeline
and merge it with information in the Links pipeline. The location of information
generated in each stage is stored in the files.info file. Future stages can use the
files.info file to learn the location of previously generated information needed to
complete that particular stage. When that stage finishes, it notifies the files.info
file that the information it created is available for future stages to use, if necessary.

Processing files based on type rather than by individual names allows you to define
workflows for any number of input and output files. This flexibility allows you to
define as many XSL stages as you need, and each stage can use any preceding
files generated. You can create or delete pipelines, add or delete stages, or insert
elements that dictate when to run a stage or pipeline.

ePublisher File Types
This section provides specific information about the files most commonly used to
customize ePublisher and its transformation processes.

Format Trait Info (*.fti) Files

Format Trait Info (*.i) Files | 1071

Format Trait Info files have the .fti file extension. Format Trait Info files are
located in both the ePublisher Formats\Shared folders, and the Format folders of
each target.

In every project, the user has a series of format and style options to customize the
appearance of his output. In the ePublisher consoles, these options are accessed
and manipulated through target settings and Style Designer. For ePublisher, these
customization options are defined in the Format Trait Info files. Manipulating these
files allows you to customize the location of options, create or delete options and
parameters, adjust their valid values, or choose new default values.

For ePublisher to process a Format Trait Info file, the .fti file must have the same
file name, not including the .fti file extension, as an XSL file in the current format
folder hierarchy. For example, ePublisher processes the table of contents using the
toc.fti and toc.xsl files in the same folder. The information displayed in ePublisher
represents all Format Trait Info files associated with a specific format. Two or more
Format Trait Info files may define the same <Setting /> element, but the ePublisher
console displays that setting only once.

When you generate output, ePublisher reviews the settings specified in target
settings and Style Designer, stores the settings in the .wep project file, and
incorporates the settings in the generated output.

format.wwfmt Files
A format.wwfmt file is stored in each of the specific format folders. The
format.wwfmt file defines all the stages required to create output, and the
relationships between each of these stages. These stages are grouped in pipelines
of related stages. When every stage of every pipeline has finished, ePublisher is
done generating the output. There is no preconceived order in which pipelines run.
ePublisher calculates at run time the order in which each pipeline runs. You can
create or delete pipelines, add or delete stages, or insert a <Depends /> element
that dictates when a stage or pipeline runs.

files.info Files
ePublisher creates and stores the files.info file for each target with the project
files. Each stage completes a small portion of the transformation. A completed
stage creates new information that contributes to the appearance or functionality
of the transformed content. When a stage finishes, ePublisher writes the location
of the processed information in the files.info file for use by other stages. Each
stage can use information in the files.info file and record information in the
files.info file for use by another stage.

Stationery Design Project .wep File
The Stationery design project .wep file contains all the configuration information
required to define the Stationery and generate output. This file includes the

1072 | Staonery Design Project .wep File

sample source document names, settings, options, and customizations. You can
use ePublisher Designer to modify a Stationery design project, and to save it as
Stationery.

Project .wrp File
The project .wrp file contains all the information required to generate output. This
file includes all the source document names, settings, options, and customizations.

Stationery .wxsp File
A Stationery .wxsp file is based on settings and options defined in a Stationery
design project and saved as Stationery. By saving a project as Stationery, all the
settings and customizations that you captured in your project, including project
format overrides, are automatically implemented in any new projects based on the
Stationery.

XSL Match Templates
Style sheets are made of a number of templates, each of which defines what the
XSLT processor should do when it matches a particular node in the XML source
document. The XSLT processor populates the result document by instantiating a
sequence of templates. Instantiation of a template means that the XSLT processor
performs the following tasks:

Copies any literal data from the template to the target

Executes the XSLT instructions in the template

Templates are defined using the <xsl: template> element. The match attribute in
the <xsl:template> element indicates which parts of the source document should
be processed with the particular template.

Root Match Templates
Each XML document has a single root element. This element encloses all the
following elements and is therefore the parent element to all the other elements.
When the XSLT processor applies a style sheet to an XML document, it begins
processing with the root element of the XML source document. To process the
root element, the XSLT processor searches the style sheet for a template rule that
matches the root element. A template rule matches the root element when the
value of the template match attribute is / (slash).

If the user explicitly defines a template rule that matches the root element, the
XSLT processor finds it and applies that template to the entire XML document. If the
XSLT processor does not find an explicitly defined template rule that matches the
root element, the processor implements the default template that matches the root
element. Every style sheet includes this default template.

Root Match Templates | 1073

Root Match Templates in ePublisher
The root match template has a number of responsibilities in ePublisher:

Recording files and dependencies

Loading node sets

Progress recording for the extension object that lives in the wwprogress
namespace.

Up-to-date checking on the projects output files.

Writing output

Extension Objects
While extremely powerful, XSL has shortcomings when used to perform system-
level scripting tasks. Some operations, such as working with files and advanced
string operations, are not included in the standard XSL language.

XSL provides a generic extension mechanism to add new features to the base
language. ePublisher provides a standard set of extension objects that enable XSL
to generate all the required formats.

XSL extensions live in a specific namespace. You can define your own prefix to
associate with a given namespace, but using a consistent naming convention makes
life easier.

Creating Super Overrides
An XSL super override is simply a way for the stationery designer to add an XSL
override to a file in the Transforms directory without having to copy the entire
template structure of the file.

Note: Support XSL overrides is only available through Study Hall and not
Standard Support. For more information regarding Study Hall, please go
to http://www.webworks.com/eschool/study_hall/.

Here is an example from the WebWorks wiki of XSL that you can use as a starting
point for learning about this feature:
<!-- Override the mode wwdoc:Table from the base content.xsl -->
 <!-- -->
 <xsl:template match="wwdoc:Table" mode="wwmode:content">
 <xsl:param name="ParamTable" select="." />
 <!-- Parameters passed in to this processing context. We need to
 pass them along. -->

1074 | Extension Objects

 <!--
 -->
 <xsl:param name="ParamSplits" />
 <xsl:param name="ParamCargo" />
 <xsl:param name="ParamLinks" />
 <xsl:param name="ParamTOCData" />
 <xsl:param name="ParamSplit" />

 <!-- Manually set all table formatting in this template. -->
 <!-- -->
 <html:table cellspacing="0" cellpadding="5" border="1"
 style="margin-top: 0.6em; margin-bottom: 0.6em;">
 <xsl:for-each select="$ParamTable/wwdoc:Caption/wwdoc:Paragraph[1]
 | $ParamTable/preceding-sibling::wwdoc:Paragraph[@stylename =
 'Caption'][1]">
 <html:caption>
 <html:p>
 <html:b>
 <xsl:for-each select="./wwdoc:TextRun/wwdoc:Text">
 <xsl:value-of select="@value" />
 </xsl:for-each>
 </html:b>
 </html:p>
 </html:caption>
 </xsl:for-each>

 <xsl:for-each select="$ParamTable/wwdoc:TableHead | $ParamTable/
wwdoc:TableBody | $ParamTable/wwdoc:TableFoot">
 <xsl:variable name="VarSection" select="." />

 <xsl:variable name="VarTagName">
 <xsl:choose>
 <xsl:when test="local-name($VarSection) = 'TableHead'">
 <xsl:text>thead</xsl:text>
 </xsl:when>
 <xsl:when test="local-name($VarSection) = 'TableBody'">
 <xsl:text>tbody</xsl:text>
 </xsl:when>
 <xsl:when test="local-name($VarSection) = 'TableFoot'">
 <xsl:text>tfoot</xsl:text>
 </xsl:when>
 </xsl:choose>
 </xsl:variable>

 <xsl:element name="{$VarTagName}" namespace="'http://
www.w3.org/1999/xhtml'">
 <xsl:for-each select="$VarSection/wwdoc:TableRow">
 <xsl:variable name="VarRow" select="." />

Extension Objects | 1075

 <html:tr>
 <xsl:for-each select="$VarRow/wwdoc:TableCell">
 <xsl:variable name="VarCell" select="." />

 <html:td>
 <!-- Pass control back to the base processing flow. -->
 <!-- -->
 <xsl:apply-templates select="$VarCell/wwdoc:Paragraph"
 mode="wwmode:content">
 <xsl:with-param name="ParamSplits" select="$ParamSplits" />
 <xsl:with-param name="ParamCargo" select="$ParamCargo" />
 <xsl:with-param name="ParamLinks" select="$ParamLinks" />
 <xsl:with-param name="ParamTOCData" select="$ParamTOCData" /
>
 <xsl:with-param name="ParamSplit" select="$ParamSplit" />
 </xsl:apply-templates>
 </html:td>
 </xsl:for-each>
 </html:tr>
 </xsl:for-each>
 </xsl:element>
 </xsl:for-each>
 </html:table>
 </xsl:template>

To use the super override

1. In your Stationery design project, on the Advanced menu, click Manage
Format Customizations (or Target for target overrides)

2. In the displayed collection of folders and files navigate to the Transforms
directory, and click on the XSL file you wish to modify

3. Right click the XSL file, and click Create Super Customization

4. In the text editor, you will see the XSL that indicates:

<!-- Write templates here -->
<!-- -->

5. Add the custom XSL, please note that the code will have to reference the
original XSL file in order for ePublisher to process it correctly. For more
information, please refer to this wiki page.

6. Save XSL override, save ePublisher project, reopen and generate output for
ePublisher to process this override

1076 | Extension Objects

http://wiki.webworks.com/Permalinks/Solutions/Overrides/SuperTransform

Introduction
Audience
Help
Conventions
Organization
About XML and XSL

Welcome to the Quadralay’s Developer’s Guide for WebWorks ePublisher Designer.
This document serves as an overview of how ePublisher Designer works and
provides details on how the user can make changes to files to customize both the
process of converting a document, and the document’s final appearance.

Audience
This document is aimed at users of ePublisher Designer who want to make specific
customizations to their projects. Users should have at least basic knowledge of
XML, XSLT, and how the two interact. This guide presents a brief overview of XML
and XSL. If the concepts there present confusion to the user, the references section
provides resources for learning critical features of the languages.

Help
User changes to ePublisher Designer files are not supported through Quadralay’s
Product Support department. Modification of files is only supported through
Quadralay’s Services department. Modifying files in the installation directories is not
recommended. Files should be modified in a project itself or in user-created formats
only.

Conventions
This Reference Guide uses the following conventions.

Formatting
Bold:

File names are listed in bold

Code:

Formang | 1077

<Classes>

 <Class name="boolean">

 <Item value="true" stringid="boolean-true" />

 <Item value="false" stringid="boolean-false" />

 </Class>

 <Class name="color-name">

 <Item value="transparent" />

 <Item value="aqua" />

 <Item value="black" />

 <Item value="white" />

 <Item value="yellow" />

 </Class>

</Classes>

Highlights markup text used in XML.

Terminology
GUI:

A graphical user interface is a method for issuing commands to a computer through
direct manipulation of graphical images and widgets in addition to text. The buttons
and menus used in Microsoft Word are an example of a GUI.

Output Target:

The chosen format to which a source document will be transformed. There may be
more than one output target.

Source Document:

The original document, created in Word or Framemaker, that will be transformed by
ePublisher Designer to an output target.

Transform:

1078 | Terminology

The process of converting a source document into a new chosen format.

Organization
This book is separated into seven parts:

Introduction

Architecture Overview:

Details regarding how ePublisher Designer works

XSL Match Templates:

ePublisher Designer’s unique approach to template rule matching

Extension Objects:

Details on extending the functionality of XSL with Microsoft and ePublisher Designer
extension objects

File Reference:

Details on files the user may modify

Project Format Overrides:

How to get started

Appendix:

Extension Objects: General, Microsoft, and ePublisher Designer extensions

About XML and XSL
XML is a meta-language. That is, it is a language used to create other markup
languages. XML provides a basic structure and a set of rules to which any markup
language must adhere. XML is based on three basic building blocks:

• elements

• attributes

• values

Elements describe or contain a piece of information and form the basis of all XML
documents. Elements take the form of tags, as in HTML. Attributes are pieces of
descriptive information that appear within an elements opening tag. An attribute

About XML and XSL | 1079

consists of an attribute name and a corresponding value, separated by an equal
symbol (=). The values of an attribute appear to the right of the equal symbol and
must appear within quotes.

Together, a group of elements, attributes, and values make up an XML document.

XML allows users to create elements, attributes and values. There are no fixed
elements as in HTML. In HTML <table> means only information grouped together
in rows and columns. In XML, an element with the name <table> could refer to
an HTML type table, or a piece of furniture, or whatever the author would like. In
order to bring order to these seemingly randomly-named elements, XML needs a
document that explains what each of these building blocks mean. The document
that defines these building blocks is called an XSL style sheet. A rough comparison
can be made to Custom Style Sheets, used in HTML.

ePublisher uses two different aspects of XSL to generate an output:

XSLT:

XSLT describes how to transform a source document from one markup language to
another.

XPath:

XPath is used by XSLT to select parts of XML to process and perform calculations.

An XSLT processor executes a stylesheet to give the user a particular result. In the
transformation process, XPath defines parts of the source document for XSLT to
match against one or more predefined templates. When a match is found, XSLT will
transform the matching part of the source document into the result document.

Architectural Overview
Real World Example

ePublisher Designer converts a source document to an output target by breaking
the process into a series of steps, or “stages.” Each stage performs a specific action
in the process. These steps are grouped in “pipelines” of related stages. See Figure
1 for an illustration.

1080 | Architectural Overview

The first pipeline in the process prepares the source document to be converted
by XSL. ePublisher Designer uses XSL to transform documents to target formats.
XSL, however, cannot extract XML from Word or Framemaker documents, nor
can it render images. This first stage applies conditions and variables, extracts
native drawings and images, and exports the source document to WIF (WebWorks
Intermediate Format), a WebWorks proprietary XML language that enables XSL to
process the source document in later stages.

Once source documents are transformed into WIF, XSL processing can begin.
ePublisher Designer processes files based on type rather than by name. Each stage
defines an .xsl file to be executed which creates a portion of the output target.
When every stage in every pipeline has been executed, the transform is complete.

Real World Example
For the sake of demonstrating the ePublisher Designer transform process let
us assume a fictional pizzeria in New York City. Further, we’ll say that a bag of
pizza ingredients in the refrigerator is our source document. While that bag of
ingredients is perfectly nice, it isn’t particularly useful to anyone. The chef needs
to transform the ingredients into something useful to him, a cooked pizza. In
ePublisher Designer, the ingredients are our source document, the pizza oven is
XSL, and the cooked pizza is our output target.

Unfortunately, it isn’t possible simply to throw the ingredients into the oven
and then remove a pizza ten minutes later. The bag of ingredients must first be
prepared so the oven can deal with the ingredients in a way that is useful to us. In
ePublisher Designer, the process of rolling out the dough, and spreading the sauce
and cheese is the first stage where a source document is prepared for XSL (the
oven) to do it’s job.

Real World Example | 1081

Experienced chefs understand that the cooking process is a series of chemical
reactions of food to heat. The dough becomes crisp, the cheese melts, etc. The
process creates what any reasonable person would define as a pizza. In ePublisher
Designer, XSL (the oven) is applying a series of steps (cooking) that are changing
our source document (uncooked pizza) into the output target (something the
customer is willing to consume).

Just as the pizza chef can customize the pizza ingredients any number of ways,
such as cooking the pizza longer or at a different temperature to get different
results, the ePublisher Designer user may customize the XSL process to affect his
source document.

File Reference
File Locations
File Processing
What This Means For The User

This section provides basic information on the ePublisher Designer files used in
the transform process. This is where the user can make changes to the process to
customize his output. In our real life example, this is where the chef can make his
crust extra crisp, or add pepperoni or anchovies.

File Locations
There are two locations to keep in mind when planning to modify a file:

ePublisher Designer installation directory:

By default, ePublisher Designer is installed in C:\Program Files\WebWorks
\ePublisher Designer.

Project directory:

By default, a project is saved in “My Documents > ePublisher Designer Projects” in
a directory with the same name as the project itself. See Figure 2.

1082 | File Locaons

When output is generated for a given output format, the ePublisher Designer engine
first looks in the Project directory for the files required to complete its task. If the
necessary files are not found in the Project directory, the engine will look in the
installation directory. This means that any file contained in the installation directory
hierarchy may be overridden in a given format by placing a file with the same
name at the correct location in the Project directory. See the procedure detailed in
“Creating Project Format Overrides” for more information.

Note: Modifying files in the installation directories is not recommended. Files should
be modified in the project itself only.

The files used to transform a source document are located in three main folders in
the ePublisher Designer installation directory:

Transforms:

This folder contains XSL documents which are used by all formats

Formats:

This folder contains format-specific XSL documents. Files to be modified by the user
are located here.

Helpers:

File Locaons | 1083

This folder contains command line programs to perform some action (i.e.,
compiling .CHMs or generating WWHelp search indices)

Real World Example

Let us revisit our pizzeria in New York City. For the sake of this example, let’s
pretend that once the chef makes a pizza, he completely forgets the process of how
to do it. Luckily, the owner has placed the directions on the wall where the chef rolls
out the dough. The chef quickly learns to check the wall to see what he is supposed
to do next.

Now, sometimes, the customer wants thin crust. Or extra cheese. The instructions
on the wall only tell the chef how to make one kind of crust, and only a certain
amount of cheese. In order to make sure the chef makes the pizza the way the
customer wants it, after receiving the order, the owner places instructions on the
bag of ingredients the chef retrieves from the refrigerator. The owner tells the chef
to always check the bag for instructions first. If there are no instructions on the
bag, the chef should simply follow the directions posted on the wall.

In ePublisher Designer, the Project directory is the instructions posted on each bag.
The pizza chef knows to check the bag (the project folder) first for instructions,
then to check the instructions on the wall (the installation directory) if there are no
instructions on the bag.

File Processing
As mentioned previously, ePublisher Designer breaks up the transform process into
a series of pipelines, or groups of similar stages. Each stage defines an .xsl file to
be executed which creates a portion of the output target. ePublisher Designer uses
a combination of the Format's Pipelines, the GlobalFiles record (files.info), XSLT
parameters and the root match template in a given XSL file to perform the action to
be executed in a stage. These stages are defined in the format.wwfmt file located
in each Format directory. The format.wwfmt file defines all of the pipelines and
steps necessary to create a given output, and the relationships that each of these
have to one another. There is no preconceived order in which pipelines fire; the
ePublisher Designer engine calculates at run time the order in which each pipeline
will fire, based on pipeline dependencies.

ePublisher Designer processes files based on type rather than by name. Each stage
defines an .xsl file to be executed which creates a portion of the output target. All
ePublisher Designer XSL stylesheets define four parameters by default. These are
as follows:

GlobalFiles –

A project's files.info

GlobalProject -

1084 | File Processing

The project file (*.wep)

GlobalPipelineName -

The pipeline of the current stage.

GlobalInput -

The files selected in the Document Manager.

In addition, XSL stylesheets are passed all parameters defined for the current stage
in format.wwfmt. Parameters passed to each XSLT file are usually used to load
the various XML node sets needed for the current stage. For example, a stage
may need to take information recorded in the Behaviors pipeline and merge it with
information in the Links pipeline. The location of information generated in each
stage is stored in the files.info file. Future stages may consult files.info to learn
the location of previously generated information needed to complete that particular
stage. Similarly, when that stage is complete, it will send notice to the files.info file
that the information it has created is available for future stages to use if necessary.

What This Means For The User
Processing files based on type rather than by individual names allows developers to
define workflows for any number of input-output files. This allows users to define
as many XSL stages as they like and each stage may make use of any preceding
file generated. Users may create or delete pipelines, add or delete stages, or insert
elements that will dictate when a stage or pipeline is executed.

File Types
Format Trait Info (*.fti)
format.wwfmt
files.info
Designer Project File (.wep)
Stationery File (.wsxp)
Express Project File (.wrp)

The section provides specific information about the files most commonly used in
customization of ePublisher Designer.

Format Trait Info (*.fti)
Format Trait Info files end in the .fti extension. Format Trait Info files are located
in both the ePublisher Designer Transforms directory, and the format directories of
each output target.

Explanation

Explanaon | 1085

In every project, the user has a series of format and style options to customize
the appearance of his output. In the GUI, these options can be accessed and
manipulated through Target Settings and Style Designer on the ePublisher Designer
toolbar. For the ePublisher Designer engine, these customization options reside in
the Format Trait Info (*.fti) files. Manipulating these files allows for customizing the
location of options, creating or deleting options and parameters, or adjusting their
values, or choosing a new default value.

Format Trait Info files must have the same base file name (that is, the file name
without the file extension) as an XSL file in the current format in order to be
processed by ePublisher Designer. The information displayed in the ePublisher GUI
represents all Format Trait Info files associated with a given format. So, two or
more Format Trait Info files may define a <Setting /> but would only be displayed
once in the GUI.

When ePublisher Designer is generating output, the settings specified in Target
Settings and Style Designer are consulted, stored in the project file (.wep) and
incorporated in the final generation of output.

Components
There are four elements in an Format Trait Info (.fti) file.

<Classes>

The only child element in <Classes> is <Class>. <Class> has a child element of
<Item>. See Example 1 for sample code.

To facilitate organization, values for a given option may be grouped together as
<Items> in a <Class>. The <Class> element can then be applied in the <Settings>
and <RuleTraitsSet> elements to declare the options available for that specific
option.

1086 | Components

<Classes>

 <Class name="boolean">

 <Item value="true" stringid="boolean-true" />

 <Item value="false" stringid="boolean-false" />

 </Class>

 <Class name="color-name">

 <Item value="transparent" />

 <Item value="aqua" />

 <Item value="black" />

 <Item value="white" />

 <Item value="yellow" />

 </Class>

</Classes>

Example 1: Sample Code Illustrating Child Elements,
Attributes, and Values in the <Classes> Element

<Groups>

The only child element to <Groups> is <Group>. The <Groups> element defines
items that can be used to group properties available in the Style Designer. Users
can create groups and apply the group element tag in the appropriate location in
the <Settings> and <RuleTraitsSet> elements of the Format Trait Info (.fti) file.
This will assemble all <Settings> with a similar group together in the appropriate
section of the GUI.

<Settings>

The only child element of the <Settings> element is <Setting>. The <Setting>
element defines the parameters for the GUI’s Target Settings dialog. A user may
customize the target settings by making changes in this portion of the Format Trait
Info (.fti) file.

<RuleTraitsSet>

Components | 1087

The only child element of the <RuleTraitsSet> element is <Options>. <Options>
contains the child element <option>. See Example 2 for sample code.

The <option> element defines the parameters for the GUI’s Properties and Options
Tabs in the Style Designer. A user may customize the Style Designer by making
changes in this portion of the Format Trait Info (.fti) file.

<RuleTraitsSet>

 <RuleTraits category="Graphic">

 <Options>

 <Option name="file-extension" group="options" default=".jpg">

 <OptionClass name="file-extension" />

 </Option>

 <Option name="format" group="options" default="jpeg">

 <OptionClass name="image-format" />

 </Option>

 <Option name="color-depth" group="options" default="24">

 <OptionClass name="color-depth" />

 </Option>

 </Options>

 </RuleTraits>

</RuleTraitsSet>

Example 2: Sample Code Illustrating Child Elements,
Attributes, and Values in the <RuleTraitsSet> Element

Relationships
Format Trait Info appears in the ePublisher Designer user interface. When a user
effects changes to these setting through the user interface, those changes are
written to the project file (*.wep). A format’s XSL transformations then have
access to these values by reading the project file.

1088 | Relaonships

format.wwfmt
format.wwfmt files are located in the specific format directories.

Explanation
The format.wwfmt file defines all of the steps necessary to create output, and
the relationships that each of these steps has to one another. These steps, called
“stages” are grouped in “pipelines” of related stages. When every stage of every
pipeline has been executed, the ePublisher Designer engine output is complete.
There is no preconceived order in which pipelines fire; the ePublisher Designer
engine calculates at run time the order in which each pipeline will fire. Users may
create or delete pipelines, add or delete stages, or insert a <Depends /> element
that will dictates when a stage or pipeline is executed.

Components
The root element of format.wwfmt is <Format />. The child elements are
<Pipelines> and <Capabilities>. See example 3 for sample code.

<Pipelines>

The <Pipelines> element is a container element for the <Pipeline> elements
that define the steps needed to generate the format. The only child element of the
<Pipelines> element is <Pipeline>.

<Pipeline>:

The <Pipeline> element is a container element for the <Depends> and <Stage>
elements which comprise a given segment of output files needed to generate
a format. This element requires a name attribute so that it can be identified by
<Depends> elements within other <Pipeline> elements. The <Pipeline> element
contains the following child elements:

<Depends>:

This element specifies which other <Pipeline> elements the current <Pipeline>
requires to complete its task. Including a <Depends> elemen t in a pipeline is the
only way to ensure a Pipeline does not execute before another Pipeline on which it
depends. The ePublisher Designer engine calculates at run time the order in which
each Pipeline will run.

<Stage>:

This element identifies an action to perform and specifies a configuration for the
action. The action is identified via the type and action attributes, usually an XSL
stylesheet, and the configuration is defined with <Parameter> elements. These

Components | 1089

<parameter> elements define what is to be worked on, what will be created, and
what else should be done with the result.

Note:
With the exception of Global Files and GlobalProject, all parameters passed to XSL
transforms are strings. Global Files and Global Project are node-sets which have
already been loaded.

<Capabilities>

The <Capabilities> element contains only the child element <Capability> which
defines information regarding what types of technologies or features a format
supports.

1090 | Components

<Capabilities>

 <Capability name="merge-context" value="false" />

 ...

 </Capabilities>

<Pipelines>

 <Pipeline name="CompanyInfo">

 <Stage type="xsl" action="wwtransform:common/companyinfo/
companyinfo.xsl">

 <!-- Pull in Company Info .fti file -->

 <!-- -->

 </Stage>

 </Pipeline>

 <Pipeline name="DocumentBehaviors">

 <Stage type="xsl" action="wwtransform:common/behaviors/document.xsl">

 <Parameter name="ParameterDropDowns" value="false" />

 <Parameter name="ParameterPopups" value="false" />

 ...

 </Stage>

 <Stage type="xsl" action="wwtransform:common/behaviors/pullup.xsl">

 <Parameter name="ParameterDropDowns" value="false" />

 <Parameter name="ParameterPopups" value="false" />

 ...

 </Stage>

 </Pipeline>

</Pipelines>

Components | 1091

Example 3: Sample Code Illustrating Child Elements,
Attributes, and Values in the format.wwfmt file

Relationships
The locations of files generated by the action elements in the stages of the
format.wwfmt file are stored in files.info. The format.wwfmt draws the same
information from files.info as needed.

files.info
This file is created and stored with the project files.

Explanation
Each stage completes a small portion of the conversion. A completed stage creates
new information that will contribute to the appearance or functionality of the new
transform. Upon completion of the stage, the ePublisher Designer engine will write
the location of the processed information in the files.info file for use by other
stages attempting to complete their pipeline. Each stage may draw information
from files.info and deposit information for use by another stage.

Components
The root element of files.info is <Files />. The child elements are <File> and
<Depends>.

The <File> element holds the location of the data created by a stage.

The <Depends> element notes the location of data on which that file is dependent.

Relationships
This file stores the dependencies and locations of files created by the stages defined
in format.wwfmt. The ePublisher Designer engine will provide this list of locations
in order to process other stages in other pipelines.

Designer Project File (.wep)
The project file (.wep) file is a collection of all the necessary information required
to create output. This includes all the source document, settings, options and
customizations created by the user or through the GUI.

Stationery File (.wsxp)

1092 | Staonery File (.wsxp)

.wsxp is the extension used for stationery files. Stationery is a file based upon
configurations that have been made to a previous ePublisher Designer project.
By saving a project as stationery, all of the settings and customizations that you
captured in your project, including project format overrides, are automatically
implemented in any new projects based on the stationery.

Express Project File (.wrp)
The project file (.wrp) file is a collection of all the necessary information required
to create output and is ideally suited for repeated publishing tasks. Unlike the
Designer Project (.wep), the Express project uses a Stationery to update (import)
all of its settings, options, and other customizations.

XSL Match Templates
Root Match Templates

Stylesheets are made up of a number of templates, each of which defines what
the XSLT processor should do when it matches a particular node in the XML source
document. The XSLT processor populates the result document by instantiating a
sequence of templates. Instantiation of a template means that the XSLT processor

• Copies any literal data from the template to the target

• Executes the XSLT instructions in the template

Templates are defined using the <xsl:template> element. The match attribute in
the <xsl:template> element indicates which parts of the source document should
be processed with the particular template.

Root Match Templates
Each XML document has a single root element. This element encloses all following
elements and is therefore the parent element to all the other elements.

When the XSLT processor applies a stylesheet to an XML document, it begins
processing with the root element of the XML source document. To process the
root element, the XSLT processor searches the stylesheet for a template rule that
matches the root element. A template rule matches the root element when the
value of the template's match attribute is "/".

If the user explicitly defined a template rule that matches the root element, the
XSLT processor finds it and implements that template to the entire XML document.
If the XSLT processor does not find an explicitly defined template rule that matches
the root element, the processor implements the default template that matches the
root element. Every stylesheet includes this default template.

Root Match Templates | 1093

Root Match Templates in ePublisher
Designer
The root match template has a number of responsibilities in ePublisher Designer.
They are listed here:

• Recording Files and Dependencies

• Loading Node Sets

• Progress recording for the extension object that lives in the wwprogress namespace

• Up-to-Date checking on the projects output files

• Writing output

Recording Files and Dependencies
All root match templates in ePublisher Designer XSL files begin and end with the
<wwfiles:Files></wwfiles:Files> elements. Within each root match template,
usually near the bottom are one or more <wwfiles:Files> elements which include
one or more <wwfiles:Depends /> elements. The attributes in these elements
provide information about the file such as the path, and type. Upon completion
of a stage, the ePublisher Designer engine will write the location of the processed
information in the files.info file for use by other stages attempting to complete
their pipeline. Each stage may draw information from files.info and deposit
information for use by another stage.

Loading Node Sets
Another responsibility of the ePublisher Designer XSL root match template is to
load the node sets needed for the transformation. This is usually done by accessing
one or more <wwfiles:Files /> elements from files.info, and using the path
attribute on each <wwfiles:Files /> element together with the document() or
wwexsldoc:LoadXMLWithoutResolver extension object, to load the node set for the
transform. In most cases, the <wwfiles:Files /> elements are selected using an
XSL parameter from the format.wwfmt file, or Stage in the current Pipeline.

wwprogress
The wwprogress extension object sends messages to the ePublisher Designer
progress indicator. If a root match template is being applied over several documents
in several groups, then the number of documents or groups to be processed is
recorded using the Start method in the wwprogress namespace.

Notice that an operation registered with the wwprogress extension object has
concluded is initiated by using the End method.

1094 | Root Match Templates in ePublisher Designer

Up-to-Date
The ePublisher Designer’s XSL file’s root match template also ensures whether files
to be processed are up to date. This is accomplished by passing attributes accepted
by the wwfilesext:UpToDate extension method.

Writing Output
If a file is determined to be not up to date, then a XSL template is called, with the
result then passed along with information regarding what type of output file is to be
written, to the wwexsldoc:Document() method for processing. If the output is to
contain XML or HTML elements, then it is necessary to use the msxsl:node-set()
method to make the contents of the variable behave as a new XML fragment.

Real Life Example
Let’s return to our pizzeria. Our pizza chef, who forgets how to make a pizza
whenever he sets out to do so, has a set of rules he follows posted on the wall.
Sometimes, the owner pastes special instructions on the bag of ingredients. But
there are some rules that are never altered. The chef may be instructed every
time to wash his hands. Or not to smoke a cigarette while making a pizza. These
rules that he must make sure to follow every single time during the entire pizza
production process, are the equivalent of the root match template.

Extension Objects
While extremely powerful, XSL has many shortcomings when used to perform
system level scripting tasks. Operations such as working with files and advanced
string operations are not included in the standard XSL language.

XSL does provide a generic extension mechanism to add new features to the base
language. ePublisher Designer provides a standard set of extension objects which
enable XSL to generate all required formats.

XSL extensions live in a specific namespace. Users can define their own prefix to
associate with a given namespace, but in general sticking with a consistent naming
convention makes life easier.

Output Customizations
Presenting information in print form can involve very different presentation
decisions than displaying information in a web-friendly form. Display can vary from
one platform to another, or one format may have features unavailable in another.
In a transform performed by ePublisher Designer, the user can make several
customization choices through various GUI options. For example, Target Settings
may allow a user to specify whether a certain piece of information is displayed,

Output Customizaons | 1095

or how or where it is located on a page. The Style Designer allows the user to
customize any style in the document to appear a certain way. By creating specific
rules and conditions for how the document should appear when the transform is
complete the user can add functionality or information for specific audiences, or
make use of specific features of a given format.

By using XSL, ePublisher Designer allows the user to customize the process even
further. The user may make additions, deletions, or modifications to the XSL files
in ePublisher Designer to further customize the output. The user may even add,
remove, or modify options available in Target Settings and Style Designer.

Transform Overrides
Creating Transform Overrides

Users make decisions on a Project’s final output through the ePublisher Designer
GUI. Some project modifications, however, cannot be made through the GUI. In
these instances, the user may access the XSL files used by the ePublisher Designer
engine, make changes, and thereby generate the desired output. Users may even
add, modify or delete options in the GUI via Format Trait Info (.fti) overrides.

When output is generated for the first time, ePublisher Designer consults the
format.wwfmt file in the format directory that tracks which actions are to be
executed to generate the desired format. If there are no user customizations, all
the files consulted by format.wwfmt are in the Format or Applications Transforms
directories. By default, WebWorks ePublisher Designer will check a project’s local
directory for files before seeking the files from the installation directory. Users can
override files in the default format files by creating a mirror directory structure
within a given Project’s Format or Target Override directory. By placing a file of the
same name at the correct location in the Project Format/Target Override directory,
any file in a given format within the installation directory may be overridden.

Creating Transform Overrides
This procedure details the steps necessary to override a specific file and ensure that
all previous functionality remains intact.

Note: Changes to .xsl and Format Trait Info (.fti) files are not supported through
Quadralay's Product Support department. Assistance with modifying these
files may be purchased through WebWorks Services.

Information about Overriding files
Modifying files in the installation directories is not recommended. Files should
be modified in the project itself only. See the following procedure for the steps
required to do this.

1096 | Informaon about Overriding files

The file name nomenclature used in ePublisher Designer is case sensitive. Care
should be taken to ensure directories and files created by the user match the
original installation directory or file name exactly.

It is not necessary to copy any files into the project Formats directory that you are
not explicitly overriding.

Procedure
These steps may be taken with any of the files you need to modify inside the
Formats directory. This procedure assumes that ePublisher Designer has been
installed in the default directory, and that your ePublisher Designer projects are
located in the “Documents” folder. If the user has installed ePublisher Designer
somewhere else, or stores projects somewhere else, remember to substitute those
locations when following the procedure.

Note: This is the manual way of doing an override, but you can always use the
ePublisher Designer Advanced Menu (specially if you are overriding the
Shared folder).

1. In Windows, open your project folder. Create a new folder named
"Formats".

2. Open this new Formats directory.

3. Duplicate the folder hierarchy of the file you wish to modify.

See Figure 2 for the folder hierarchy necessary to modify the pages.xsl file
in WebWorks Reverb.

Substitute the correct folder and file name inside the Formats
directory.

Informaon about Overriding files | 1097

Figure 2: Folder Hierarchy Required To Modify pages.xsl in WebWorks
Reverb

4. Navigate to the file you wish to modify in the ePublisher Designer
installation directory.

5. Select and copy the file(s) you wish to override.

6. Navigate back to the Formats folder in the Projects directory created
in steps 1-3.

7. Paste the file you copied from the installation directory into the
folder created in step 3.

8. Modify files as needed.

After you have made the modifications you wish to make to the file in your project
directory, save it, and the next time you click Generate in your ePublisher Designer
project, this file will automatically override the default file and the changes you
made will be incorporated into the output.

Note: When you save the ePublisher Designer project as Stationery, the project
format overrides you have created will be saved with your Stationery. This
stationery can then be used to create future projects.

1098 | Informaon about Overriding files

XSLT Reference
XSLT Documentation
Good to Know
Using Extension Objects

XSLT is the primary language used in transforming source XML into the various
types of generated output. This section is an XSLT Reference for use with
ePublisher.

XSLT Documentation
Below is a collection of useful resources for better understanding XSLT:

Useful Videos from WebWorks:

• Basics of XML, XSL, and ePublisher Conversions

• ePublisher Introduction to XSL and Extension Methods

• ePublisher XSLT, .Net, and Custom Formats

• ePublisher Document and WIF Processing

• Creating ePublisher Transform Overrides

From the WebWorks Wiki:

• Debugging the XSL of an ePublisher Designer project

• XSL-FO Page template

• XML Transform Changes

• Locales

• Developer Documentation Topics

Microsoft XSLT and XPath Reference

• XSLT Elements

• XSLT Syntax Patterns

• XSLT Functions

• XPath Handling and Special Characters

• XPath Node Collection Indexing, Finding, and Grouping

XSLT Documentaon | 1099

https://youtu.be/mhTlh9NrMyY
https://youtu.be/BIEahcVVZ10
https://youtu.be/7kHyHdN0sgs
https://youtu.be/-6CQMPrttKM
https://youtu.be/lGAK3iU8jh8
http://wiki.webworks.com/DevCenter/Tips/DebuggingXSL
http://wiki.webworks.com/HelpCenter/Reference/PDF%20XSL-FO%20Page%20Template
http://wiki.webworks.com/HelpCenter/Reference/XMLTransformChanges
http://wiki.webworks.com/DevCenter/Documentation/Locales
http://wiki.webworks.com/DevCenter/Documentation
https://msdn.microsoft.com/en-us/library/ms256058(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms256113(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms256046(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms256122(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms256090(v=vs.110).aspx

• XPath Logical Operators

• XPath Comparisons

Microsoft XPath Functions Reference

• XPath Node-Set Functions

• XPath String Functions

• XPath Boolean Functions

• XPath Number Functions

XSLT Quick External Reference

• Character Set used for HTML, XSLT, XML

Good to Know
The below tools are useful for debugging and testing custom code in a controlled
environment:

• For XSLT: XSLT fiddle

• For C#: .NET Fiddle

• For JavaScript/HTML/CSS: JSFiddle

Tool ePublisher uses to clean HTML documents: Tidy. If you need to customize Tidy,
refer to the Tidy Quick Reference

Using Extension Objects
The WebWorks ePublisher engine uses XML, XSL, and XPath as the foundation for
all processing. While extremely powerful, XSL has many shortcomings when used
to perform system level scripting tasks. Operations such as working with files and
advanced string operations are not included in the standard XSL language.

XSL does provide a generic extension mechanism to add new features to the base
language. WebWorks ePublisher provides a standard set of extension objects which
enable XSL to generate all required formats.

General XSL Extensions

1100 | General XSL Extensions

https://msdn.microsoft.com/en-us/library/ms256081(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms256135(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms256482(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms256180(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms256218(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms256035(v=vs.110).aspx
http://www.dotnetfunda.com/articles/show/54/character-set-used-for-html-xslt-xml
http://fiddle.frameless.io/
https://dotnetfiddle.net/
https://jsfiddle.net/
https://www.w3.org/People/Raggett/tidy/
http://tidy.sourceforge.net/docs/quickref.html

XSL extensions live in a specific namespace. Users can define their own prefix to
associate with a given namespace, but in general sticking with a consistent naming
convention makes life easier.

For example, the XSL namespace is:

To define a prefix for it, one adds an XSL namespace declaration to your XSL
stylesheet:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 ..

</xsl:stylesheet>

Now the desired namespace can be referenced just using a prefix rather than the
actual namespace. Therefore, the following two lines are equivalent:

<xsl:variable name="VarNew" select="'Hello'" />

<variable xmlns="http://www.w3.org/1999/XSL/Transform" name="VarNew"
 select="'Hello'" />

Microsoft's XSL transform implementation does not support extension elements at
this time. Therefore, methods must be called from within "select" contexts.

<xsl:value-of select="wwexsldoc:Document($VarResult, $VarPath)" />

<xsl:variable name="VarDocumentWrite"
 select="wwexsldoc:Document($VarResult, $VarPath)" />

Microsoft Extensions
Extension objects that are defined and implemented by Microsoft as part of
the .NET XSL transform runtime.

Purpose

Microsoft implemented additional methods not part of the XSLT 1.1 standard. This
work was done prior to the XSLT 2.0 and EXSLT specifications being finalized.

Namespace

urn:schemas-microsoft-com:xslt

Prefix

Microso Extensions | 1101

msxsl

Method

msxsl:node-set(string textualXML):

Description

Converts textual XML into a node set in a new XML document. Most often used to
convert intermediate XML back into a working node set for additional processing.

Returns

A node set equivalent to the provided textual XML.

Note: The Microsoft XSL transform engine also supports custom extensions defined
with script blocks.

Using ePublisher XSLT Extensions
ePublisher implements a variety of extension objects to enable full processing of
desired output within the language of XSL. In order to use them in XSL transforms
they must be declared.

Here is an example of how to define namespace in you XSL file:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns="urn:WebWorks-Images-Schema"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:wwlog="urn:WebWorks-XSLT-Extension-Log"

 exclude-result-prefixes="xsl wwlog"

>

</xsl:stylesheet>

1102 | Using ePublisher XSLT Extensions

ePublisher Platform XSLT
Extensions

Class Documentation
Adapter
AdapterConfiguration
DateTimeUtilities
Environment
Exec
ExecPython
Sass
ExslDocument
Files
FileSystem
Fonts
Imaging
Log
MultiSearchReplaceExtension
NodeSet
Progress
Project
StageInfo
StringUtilities
Units
URI
ZipExtension

ePublisher implements a variety of extension objects to enable full processing of
desired output within the language of XSL.

ePublisher Plaorm XSLT Extensions | 1103

Namespace Prefix Class Name Description

urn:WebWorks-
XSLT-Extension-
Adapter

wwadapter Adapter XSLT extension
functions for use in
ePublisher Adapter
stylesheets.

urn:WebWorks-
Adapter-
Configuration-
Extension

wwadapterconf AdapterConfiguration Provides access to the
adapter configuration.

urn:WebWorks-
XSLT-Extension-
DateTimeUtilities

wwdatetime DateTime Allows XSL pages
access to various
datetime methods

urn:WebWorks-
XSLT-Extension-
Environment

wwenv Environment Enable XSL transforms
to query the current
system environment
for the location and
state of programs and
variables.

urn:WebWorks-
XSLT-Extension-
Execute

wwexec Exec Allows XSL stylesheets
to execute external
programs and process
results. Provides the
return code, stdout,
and stderr results
from the running
process.

urn:WebWorks-
XSLT-Extension-
ExecPython

wwpython ExecPython Allows XSL stylesheets
to execute python
programs and process
results.

urn:WebWorks-
XSLT-Extension-
Sass

wwsass Sass Allows XSL stylesheets
to manage SASS files.

urn:WebWorks-
XSLT-Extension-
Document

wwexsldoc ExslDocument Allow multiple output
files from a single
XSL transform. Also
provides routines to
quickly load XML files

1104 | ePublisher Plaorm XSLT Extensions

Namespace Prefix Class Name Description
without invoking XML
validators as well as
utility methods to
enable correct output
formatting.

urn:WebWorks-
XSLT-Extension-
Files

wwfilesext Files Enables incremental
build support.

urn:WebWorks-
XSLT-Extension-
FileSystem

wwfilesystem FileSystem Allow XSL transforms
to query and
manipulate files and
directories. Also
handles system
path parsing and
processing.

urn:WebWorks-
XSLT-Extension-
Fonts

wwfonts Fonts Answer questions
about fonts that might
affect format output.

urn:WebWorks-
Imaging-Info

wwimageinfo Imaging Enable processing of
images within XSL
transforms. Returns
information about a
particular image file,
including width and
height, image format,
bit-depth, path on
system, etc.

urn:WebWorks-
XSLT-Extension-Log

wwlog Log Enables XSL
transforms to report
messages, warnings,
and errors to the
generation log.

urn:WebWorks-
XSLT-Extension-
MultiSearchReplace

wwmultisere MultiSearchReplaceExtensionReplaces multiple
strings in a single
operation.

urn:WebWorks-
XSLT-Extension-
NodeSet

wwnodeset NodeSet Miscellaneous node set
functions.

ePublisher Plaorm XSLT Extensions | 1105

Namespace Prefix Class Name Description

urn:WebWorks-
XSLT-Extension-
Progress

wwprogress Progress Reports progress
during long lived XSL
transforms.

urn:WebWorks-
XSLT-Extension-
Project

wwprojext Project Query for information
about the currently
running project.

urn:WebWorks-
XSLT-Extension-
StageInfo

wwstageinfo StageInfo Allows XLST
processing to store
and retrieve key/value
pairs as needed to
track state.

urn:WebWorks-
XSLT-Extension-
StringUtilities

wwstring StringUtilities Extend the available
string processing
methods to XSL to
include message
formatting, specialized
text escaping, regular
expression operations,
etc.

urn:WebWorks-
XSLT-Extension-
Units

wwunits Units Utility methods for
extracting units and
value from raw strings
along with unit-to-unit
conversion routines.

urn:WebWorks-
XSLT-Extension-URI

wwuri URI Utility methods which
convert to and from
file paths and create
absolute or relative
URIs.

urn:WebWorks-
XSLT-Extension-Zip

wwzip ZipExtension Allow XSL transforms
to handle zip archives.

Class Documentation
Adapter

urn:WebWorks-XSLT-Extension-Adapter

1106 | Adapter

Functions

void AddToPDFPageNumberOffset (int addToPageNumberOffset)

Adds to the PDF page number offset.

bool GeneratePDF (string originalDocumentPath, string
conversionPDFDocumentPath, bool singleFile, XPathNodeIterator
tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator,
string pdfJobSettings, string pdfFilePath)

Generates a PDF.

bool GeneratePDFWithSaveAs (string originalDocumentPath, string
conversionPDFDocumentPath, bool singleFile, XPathNodeIterator
tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator,
string pdfJobSettings, string pdfFilePath)

Generates a PDF using FrameMaker save as.

bool GeneratePostScriptForImage (object input, string postScriptPath)

Generates postscript for image.

long GeneratePostScriptForPDF (string originalDocumentPath, string
conversionPDFDocumentPath, bool singleFile, XPathNodeIterator
tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator,
string postScriptFilePath)

Generates a postscript for PDF.

void SetPDFPageNumberOffset (int pageNumberOffset)

Sets PDF page number offset.

bool TemporaryLicense (string toolAdapterName)

Checks if user is running a temporary license for specified 'toolAdapterName'.

Detailed Description

urn:WebWorks-XSLT-Extension-Adapter

XSL extension functions for use in ePublisher Adapter stylesheets.

void AddToPDFPageNumberOffset (int addToPageNumberOffset)

void AddToPDFPageNumberOffset (int addToPageNumberOffset) | 1107

Adds to the PDF page number offset.

Parameters:

1108 | void AddToPDFPageNumberOffset (int addToPageNumberOffset)

addToPageNumberOffset The add to page number offset.

bool GeneratePDF (string originalDocumentPath, string
conversionPDFDocumentPath, bool singleFile, XPathNodeIterator
tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string
pdfJobSettings, string pdfFilePath)

Generates a PDF.

Exceptions:

bool GeneratePDF (string originalDocumentPath, string conversionPDFDocumentPath, bool singleFile, XPathNodeIterator
tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string pdfJobSengs, string pdfFilePath) | 1109

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1110 | bool GeneratePDF (string originalDocumentPath, string conversionPDFDocumentPath, bool singleFile,
XPathNodeIterator tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string pdfJobSengs, string
pdfFilePath)

originalDocumentPath Full pathname of the original
document file.

conversionPDFDocumentPath Full pathname of the conversion PDF
document file.

singleFile True for single file.

tocStyleNodesIterator The TOC style node set.

groupFileNodesIterator The group file node set.

pdfJobSettings The PDF job settings.

pdfFilePath Full pathname of the PDF file.

Returns:

True if it succeeds, false if it fails.

bool GeneratePDFWithSaveAs (string originalDocumentPath, string
conversionPDFDocumentPath, bool singleFile, XPathNodeIterator
tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string
pdfJobSettings, string pdfFilePath)

Generates a PDF using FrameMaker save as.

Exceptions:

bool GeneratePDFWithSaveAs (string originalDocumentPath, string conversionPDFDocumentPath, bool singleFile, XPathNodeIterator
tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string pdfJobSengs, string pdfFilePath) | 1111

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1112 | bool GeneratePDFWithSaveAs (string originalDocumentPath, string conversionPDFDocumentPath, bool singleFile,
XPathNodeIterator tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string pdfJobSengs, string
pdfFilePath)

originalDocumentPath Full pathname of the original
document file.

conversionPDFDocumentPath Full pathname of the conversion PDF
document file.

singleFile True for single file.

tocStyleNodesIterator The TOC style node set.

groupFileNodesIterator The group file node set.

pdfJobSettings The PDF job settings.

pdfFilePath Full pathname of the PDF file.

Returns:

True if it succeeds, false if it fails.

bool GeneratePostScriptForImage (object input, string postScriptPath)

Generates postscript for image.

Parameters:

bool GeneratePostScriptForImage (object input, string postScriptPath) | 1113

input Node set containing content to be
converted to postscript.

postScriptPath Full pathname of the postscript file
to create.

Returns:

True if it succeeds, false if it fails.

long GeneratePostScriptForPDF (string originalDocumentPath, string
conversionPDFDocumentPath, bool singleFile, XPathNodeIterator
tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string
postScriptFilePath)

Generates a postscript for PDF.

Exceptions:

1114 | long GeneratePostScriptForPDF (string originalDocumentPath, string conversionPDFDocumentPath, bool singleFile,
XPathNodeIterator tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string postScriptFilePath)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

long GeneratePostScriptForPDF (string originalDocumentPath, string conversionPDFDocumentPath, bool singleFile, XPathNodeIterator
tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string postScriptFilePath) | 1115

originalDocumentPath Full pathname of the original
document file.

conversionPDFDocumentPath Full pathname of the conversion PDF
document file.

singleFile True for single file.

tocStyleNodesIterator The TOC style node set.

groupFileNodesIterator The group file node set.

postScriptFilePath Full pathname of the postscript file.

Returns:

Number of pages in the PDF.

void SetPDFPageNumberOffset (int pageNumberOffset)

Sets PDF page number offset.

Parameters:

1116 | void SetPDFPageNumberOffset (int pageNumberOffset)

pageNumberOffset The page number offset.

bool TemporaryLicense (string toolAdapterName)

Checks if user is running a temporary license for specified 'toolAdapterName'.

Parameters:

bool TemporaryLicense (string toolAdapterName) | 1117

toolAdapterName Name of the tool adapter.

Returns:

True if is temporary, false otherwise.

AdapterConfiguration

urn:WebWorks-Adapter-Configuration-Extension

Functions

string GetValue (string name)

Gets a value.

string GetValue (string name, string defaultValue)

Gets a value and uses 'defaultValue' when no value set.

Detailed Description

urn:WebWorks-Adapter-Configuration-Extension

XSL transform functions for getting information about the input configuration for
adapters.

string GetValue (string name)

Gets a value.

Parameters:

1118 | string GetValue (string name)

name The input configuration item name.

Returns:

The value.

string GetValue (string name, string defaultValue)

Gets a value and uses 'defaultValue' when no value set.

Parameters:

string GetValue (string name, string defaultValue) | 1119

name The input configuration item name.

defaultValue The default value.

Returns:

The value.

DateTimeUtilities

urn:WebWorks-XSLT-Extension-DateTimeUtilities

Functions

string GetNow (string format)

Takes a format string and gets DateTime in the given format.

string GetGenerateStart (string format)

Gets mStartDate and converts to given format, returns as string.

string GetFileCreated (string filePath, string format)

Gets created date from filepath and converts to given format.

string GetFileLastModified (string filePath, string Format)

Gets last modified date from filepath and converts to given format.

string GetFromDateTimeString (string dateTime, string inputFormat, string
outputFormat)

Gets a date and a specific format, converts the date to another format.

Detailed Description

urn:WebWorks-XSLT-Extension-DateTimeUtilities

Allows XSL pages access to various datetime methods.

string GetNow (string format)

1120 | string GetNow (string format)

Takes a format string and gets DateTime in the given format.

Parameters:

string GetNow (string format) | 1121

format The datetime format.

Returns:

A datetime string.

string GetGenerateStart (string format)

Gets mStartDate at generation start and converts to given format.

Parameters:

1122 | string GetGenerateStart (string format)

format The datetime format.

Returns:

A datetime string.

string GetFileCreated (string filepath, string format)

Gets created date from filepath and converts to given format.

Parameters:

string GetFileCreated (string filepath, string format) | 1123

filepath Full pathname of the original
document file.

format The datetime format.

Returns:

A datetime string.

string GetFileLastModified (string filepath, string format)

Gets last modified date from filepath and coverts to given format.

Parameters:

1124 | string GetFileLastModified (string filepath, string format)

filepath Full pathname of the original
document file.

format The datetime format input.

Returns:

A datetime string.

string GetFromDateTimeString (string dateTime, string inputFormat, string
outputFormat)

Gets a date and specific format, converts the date to another format.

Parameters:

string GetFromDateTimeString (string dateTime, string inputFormat, string outputFormat) | 1125

dateTime The datetime input.

inputFormat The datetime format input.

outputFormat. The datetime format output.

Returns:

A datetime string.

Environment

urn:WebWorks-XSLT-Extension-Environment

Functions

string ApplicationBaseHelpURI ()

Application base help URI.

string CurrentUILocale ()

Current user interface locale.

long GetTotalMemory ()

Reports the total amount of memory used by the running process. Useful for
optimizing XSL to reduce memory usage.

long GetTotalMemory (bool forceFullCollection)

Reports the total amount of memory used by the running process. Useful for
optimizing XSL to reduce memory usage.

string HTMLHelpWorkshopPath ()

HTML help workshop path.

string JavaBits ()

Gets latest version of either JDK pr JRE bits stored in registry.

string JavaHome ()

1126 | Environment

Gets latest version of either JDK or JRE home directory path.

string JavaVersion ()

Gets latest version of either the JDK or JRE version stored in registry.

string JDKBits ()

Gets Java Development Kit (JDK) bits stored in registry.

string JDKHome ()

Gets Java Development Kit (JDK) home directory path.

string JDKVersion ()

Gets Java Development Kit (JDK) version stored in registry.

string JREBits ()

Gets Java Runtime Environment (JRE) bits stored in registry.

string JREHome ()

Gets Java Runtime Environment (JRE) home directory path.

string JREVersion ()

Gets Java Runtime Environment (JRE) version stored in registry.

bool RequestedPipeline (string pipelineName)

Determine if 'pipelineName' has been scheduled for processing.

Detailed Description

urn:WebWorks-XSLT-Extension-Environment

Enable XSL transforms to query the current system environment for the location
and state of programs and variables.

string ApplicationBaseHelpURI ()

Application base help URI.

Returns:

string ApplicaonBaseHelpURI () | 1127

A string.

string CurrentUILocale ()

Current user interface locale.

Returns:

A string.

long GetTotalMemory ()

Reports the total amount of memory used by the running process. Useful for
optimizing XSL to reduce memory usage.

Returns:

The total memory in bytes.

long GetTotalMemory (bool forceFullCollection)

Reports the total amount of memory used by the running process. Useful for
optimizing XSL to reduce memory usage.

Parameters:

1128 | long GetTotalMemory (bool forceFullCollecon)

forceFullCollection True to force full collection.

Returns:

The total memory in bytes.

string HTMLHelpWorkshopPath ()

HTML help workshop path.

Returns:

A string.

string JavaBits ()

Gets latest version of either JDK pr JRE bits stored in registry.

Returns:

The JDK/JRE bits string stored in registry.

string JavaHome ()

Gets latest version of either JDK or JRE home directory path.

Returns:

JDK/JRE home directory path string.

string JavaVersion ()

Gets latest version of either the JDK or JRE version stored in registry.

Returns:

JDK/JRE version string stored in registry.

string JavaVersion () | 1129

string JDKBits ()

Gets Java Development Kit (JDK) bits stored in registry.

Returns:

JDK bits string stored in registry.

string JDKHome ()

Gets Java Development Kit (JDK) home directory path.

Returns:

JDK home directory path string.

Determine the path to the current JDK and jar some files.
<xsl:variable name="VarJDKHome" select="wwenv:JDKHome()" />

<xsl:variable name = "VarJarPath"
 select="wwfilesystem:Combine($VarJDKHome, 'jar')" />

<xsl:variable name = "VarJarCommand"
 select="wwexec:ExecuteCommand($VarJarPath, 'cvf', 'output.jar',
 '.')" />

string JDKVersion ()

Gets Java Development Kit (JDK) version stored in registry.

Returns:

JDK version string stored in registry.

string JREBits ()

Gets Java Runtime Environment (JRE) bits stored in registry.

Returns:

1130 | string JREBits ()

The JRE bits string stored in registry

string JREHome ()

Gets Java Runtime Environment (JRE) home directory path.

Returns:

JRE home directory path string.

string JREVersion ()

Gets Java Runtime Environment (JRE) version stored in registry.

Returns:

JRE version string stored in registry.

bool RequestedPipeline (string pipelineName)

Determine if 'pipelineName' has been scheduled for processing.

Parameters:

bool RequestedPipeline (string pipelineName) | 1131

pipelineName Name of the pipeline.

Returns:

True if scheduled for processing, false otherwise.

Generate a given report only if specifically enabled in a project or a user has
specifically requested that report.
<xsl:variable name="VarGenerateReportSetting"
 select="wwprojext:GetFormatSetting('report-filenames-generate',
 'true') = 'true'" /> <xsl:variable name = "VarRequestedPipeline"
 select="wwenv:RequestedPipeline($GlobalPipelineName)" />

<xsl:variable name = "VarGenerateReport"
 select="($VarGenerateReportSetting) or ($VarRequestedPipeline)" />

Exec

urn:WebWorks-XSLT-Extension-Execute

Functions

XPathNodeIterator Execute (string commandLine)

Runs the command line.

XPathNodeIterator ExecuteCommand (string command [, string
argument1, string argument2, string argument3, string argument4,
string argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string argument11,
string argument12, string argument13, string argument14,
string argument15, string argument16, string argument17, string
argument18, string argument19, string argument20])

Runs the specified command formatted as a string with optional argument(s) using
the current target's output directory as the working directory.

XPathNodeIterator ExecuteCommandNoReturn (string command)

Runs identical to ExecuteCommand (string command) with the exception that the
stdout and stderr streams are not returned in the node set. Instead these are written
to the Log directory in a file with the same base filename as the command.

XPathNodeIterator ExecuteCommandInDirectory (string directoryPath,
string command [, string argument1, string argument2, string
argument3, string argument4, string argument5, string argument6,

1132 | Exec

string argument7, string argument8, string argument9, string
argument10, string argument11, string argument12, string
argument13, string argument14, string argument15, string
argument16, string argument17, string argument18, string
argument19, string argument20])

Runs the specified command formatted as a string with optional argument(s) using
the specified directory as the working directory.

XPathNodeIterator ExecuteCommandInDirectoryWithTimeout (long
timeoutInSeconds, string directoryPath, string command [, string
argument1, string argument2, string argument3, string argument4,
string argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string argument11,
string argument12, string argument13, string argument14, string
argument15, string argument16, string argument17, string
argument18, string argument19, string argument20])

Runs the specified command formatted as a string with optional argument(s) using
the specified directory as the working directory.

XPathNodeIterator ExecuteCommandWithTimeout (long
timeoutInSeconds, string command [, string argument1, string
argument2, string argument3, string argument4, string argument5,
string argument6, string argument7, string argument8, string
argument9, string argument10, string argument11, string argument12,
string argument13, string argument14, string argument15,
string argument16, string argument17, string argument18, string
argument19, string argument20])

Runs the specified command formatted as a string with optional argument(s) using
the current target's output directory as the working directory.

XPathNodeIterator ExecuteInDirectory (string directoryPath, string
commandLine)

Runs the command line in the specified working directory.

XPathNodeIterator ExecuteInDirectoryWithTimeout (long
timeoutInSeconds, string directoryPath, string commandLine)

Runs the command line in the specified working directory.

XPathNodeIterator ExecuteProgramWithArguments (string program, string
arguments)

Runs the specified program with arguments formatted as a string using the current
target's output directory as the working directory.

Exec | 1133

XPathNodeIterator ExecuteProgramWithArgumentsInDirectory (string
directoryPath, string program, string arguments)

Runs the specified program with arguments formatted as a string in the specified
working directory.

XPathNodeIterator
ExecuteProgramWithArgumentsInDirectoryWithTimeout (long
timeoutInSeconds, string directoryPath, string program, string
arguments)

Runs the specified program with arguments formatted as a string in the specified
working directory.

XPathNodeIterator ExecuteProgramWithArgumentsWithTimeout (long
timeoutInSeconds, string program, string arguments)

Runs the specified program with arguments formatted as a string using the current
target's output directory as the working directory.

XPathNodeIterator ExecuteWithTimeout (long timeoutInSeconds, string
commandLine)

Runs the command line.

Detailed Description

urn:WebWorks-XSLT-Extension-Execute

Allows XSL stylesheets to execute external programs and process results. Provides
the return code, stdout, and stderr results from the running process.
<wwexec:Result version="1.0" retcode="-1">

 <wwexec:Stream name = "Output" >

 Standard output will show up here, aka stdout.

 </wwexec:Stream>

 <wwexec:Stream name = "Error" >

 Standard error will show up here, aka stderr.

 </wwexec:Stream>

</wwexec:Result>

1134 | Exec

XPathNodeIterator Execute (string commandLine)

Runs the command line.

Parameters:

XPathNodeIterator Execute (string commandLine) | 1135

commandLine The command line to be executed.

Returns:

A node set.

Execute prettycool.exe –stdout "Isn't this grand?" –stderr nothing.
<xsl:variable name="VarExecResult"
 select="wwexec:Execute('prettycool.exe –stdout "Isn\'t this
 grand?" --stderr nothing')" />

XPathNodeIterator ExecuteCommand (string command [, string argument1,
string argument2, string argument3, string argument4, string argument5,
string argument6, string argument7, string argument8, string argument9, string
argument10, string argument11, string argument12, string argument13, string
argument14, string argument15, string argument16, string argument17, string
argument18, string argument19, string argument20])

Runs the specified command formatted as a string with optional argument(s) using
the current target's output directory as the working directory.

Parameters:

1136 | XPathNodeIterator ExecuteCommand (string command [, string argument1, string argument2, string argument3,
string argument4, string argument5, string argument6, string argument7, string argument8, string argument9, string
argument10, string argument11, string argument12, string argument13, string argument14, string argument15, string
argument16, string argument17, string argument18, string argument19, string argument20])

command The command.

argument1 – argument20 Optional arguments.

Returns:

A node set.

XPathNodeIterator ExecuteCommandNoReturn (string command)

Runs identical to ExecuteCommand (string command) with the exception that the
stdout and stderr streams are not returned in the node set. Instead these are written
to the Log directory in a file with the same base filename as the command parameter.

Parameters:

XPathNodeIterator ExecuteCommandNoReturn (string command) | 1137

command The command.

Returns:

A node set.

XPathNodeIterator ExecuteCommandInDirectory (string directoryPath, string
command [, string argument1, string argument2, string argument3, string
argument4, string argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string argument11, string
argument12, string argument13, string argument14, string argument15, string
argument16, string argument17, string argument18, string argument19, string
argument20])

Runs the specified command formatted as a string with optional argument(s) using
the specified directory as the working directory.

Parameters:

1138 | XPathNodeIterator ExecuteCommandInDirectory (string directoryPath, string command [, string argument1,
string argument2, string argument3, string argument4, string argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string argument11, string argument12, string argument13, string
argument14, string argument15, string argument16, string argument17, string argument18, string argument19, string
argument20])

directoryPath Full pathname of the directory file.

command The command.

argument1 – argument20 Optional arguments.

Returns:

A node set.

XPathNodeIterator ExecuteCommandInDirectoryWithTimeout (long
timeoutInSeconds, string directoryPath, string command [, string argument1,
string argument2, string argument3, string argument4, string argument5,
string argument6, string argument7, string argument8, string argument9, string
argument10, string argument11, string argument12, string argument13, string
argument14, string argument15, string argument16, string argument17, string
argument18, string argument19, string argument20])

Runs the specified command formatted as a string with optional argument(s) using
the specified directory as the working directory.

Will stop operation if timeout in seconds elapses.

Parameters:

XPathNodeIterator ExecuteCommandInDirectoryWithTimeout (long meoutInSeconds, string directoryPath, string command [, string
argument1, string argument2, string argument3, string argument4, string argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string argument11, string argument12, string argument13, string argument14,

string argument15, string argument16, string argument17, string argument18, string argument19, string argument20]) | 1139

timeoutInSeconds The timeout in seconds.

directoryPath Full pathname of the directory file.

command The command.

argument1 – argument20 Optional arguments.

Returns:

A node set.

XPathNodeIterator ExecuteCommandWithTimeout (long timeoutInSeconds,
string command [, string argument1, string argument2, string argument3,
string argument4, string argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string argument11, string
argument12, string argument13, string argument14, string argument15, string
argument16, string argument17, string argument18, string argument19, string
argument20])

Runs the specified command formatted as a string with optional argument(s) using
the current target's output directory as the working directory.

Will stop operation if timeout in seconds elapses.

Parameters:

1140 | XPathNodeIterator ExecuteCommandWithTimeout (long meoutInSeconds, string command [, string argument1,
string argument2, string argument3, string argument4, string argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string argument11, string argument12, string argument13, string
argument14, string argument15, string argument16, string argument17, string argument18, string argument19, string
argument20])

timeoutInSeconds The timeout in seconds.

command The command.

argument1 – argument20 Optional arguments.

Returns:

A node set.

XPathNodeIterator ExecuteInDirectory (string directoryPath, string commandLine)

Runs the command line in the specified working directory.

Parameters:

XPathNodeIterator ExecuteInDirectory (string directoryPath, string commandLine) | 1141

directoryPath Full pathname of the directory.

commandLine The command line to be executed.

Returns:

A node set.

Execute prettycool.exe –stdout "Isn't this grand?" –stderr nothing in the directory
C:\ workingdir.
<xsl:variable name="VarExecResult"
 select="wwexec:ExecuteInDirectory('C:\\workingdir', 'prettycool.exe
 --stdout "Isn\'t this grand?" --stderr nothing')" />

XPathNodeIterator ExecuteInDirectoryWithTimeout (long timeoutInSeconds,
string directoryPath, string commandLine)

Runs the command line in the specified working directory.

Will stop operation after specified elapsed time is exceeded.

Parameters:

1142 | XPathNodeIterator ExecuteInDirectoryWithTimeout (long meoutInSeconds, string directoryPath, string
commandLine)

timeoutInSeconds The timeout in seconds.

directoryPath Full pathname of the directory.

commandLine The command line to be executed.

Returns:

A node set.

XPathNodeIterator ExecuteProgramWithArguments (string program, string
arguments)

Runs the specified program with arguments formatted as a string using the current
target's output directory as the working directory.

Parameters:

XPathNodeIterator ExecuteProgramWithArguments (string program, string arguments) | 1143

program The program.

arguments The arguments.

Returns:

A node set.

Runs the specified program with arguments formatted as a string using the current
target's output directory as the working directory.
<xsl:variable name="VarExecResult"
 select="wwexec:ExecuteProgramWithArguments('prettycool.exe', '--
stdout "Isn\'t this grand?" --stderr nothing')" />

XPathNodeIterator ExecuteProgramWithArgumentsInDirectory (string
directoryPath, string program, string arguments)

Runs the specified program with arguments formatted as a string in the specified
working directory.

Parameters:

1144 | XPathNodeIterator ExecuteProgramWithArgumentsInDirectory (string directoryPath, string program, string
arguments)

directoryPath Full pathname of the directory.

program The program.

arguments The arguments.

Returns:

A node set.

Execute prettycool.exe –stdout "Isn't this grand?" –stderr nothing in the directory
C:\ workingdir.
<xsl:variable name="VarExecResult"
 select="wwexec:ExecuteProgramWithArgumentsInDirectory('C:\
\workingdir', 'prettycool.exe', '--stdout "Isn\'t this grand?
" --stderr nothing')" />

XPathNodeIterator ExecuteProgramWithArgumentsInDirectoryWithTimeout (long
timeoutInSeconds, string directoryPath, string program, string arguments)

Runs the specified program with arguments formatted as a string in the specified
working directory.

Will stop operation after specified elapsed time is exceeded.

Parameters:

XPathNodeIterator ExecuteProgramWithArgumentsInDirectoryWithTimeout (long meoutInSeconds, string directoryPath, string
program, string arguments) | 1145

timeoutInSeconds The timeout in seconds.

directoryPath Full pathname of the directory.

program The program.

arguments The arguments.

Returns:

A node set.

XPathNodeIterator ExecuteProgramWithArgumentsWithTimeout (long
timeoutInSeconds, string program, string arguments)

Runs the specified program with arguments formatted as a string using the current
target's output directory as the working directory.

Will stop operation after specified elapsed time is exceeded.

Parameters:

1146 | XPathNodeIterator ExecuteProgramWithArgumentsWithTimeout (long meoutInSeconds, string program, string
arguments)

timeoutInSeconds The timeout in seconds.

program The program.

arguments The arguments.

Returns:

A node set.

XPathNodeIterator ExecuteWithTimeout (long timeoutInSeconds, string
commandLine)

Runs the command line.

Will stop operation after specified elapsed time is exceeded.

Parameters:

XPathNodeIterator ExecuteWithTimeout (long meoutInSeconds, string commandLine) | 1147

timeoutInSeconds The timeout in seconds.

commandLine The command line to be executed.

Returns:

A node set.

ExecPython

urn:WebWorks-XSLT-Extension-ExecPython

Functions

XPathNodeIterator ExecutePyScriptInCommandLine (string commandLine)

Runs python with the specified commandLine.

XPathNodeIterator ExecPyScript (string pyScriptPath [, string argument1,
string argument2, string argument3, string argument4, string
argument5, string argument6, string argument7, string argument8,
string argument9, string argument10, string argument11, string
argument12, string argument13, string argument14, string
argument15, string argument16, string argument17, string
argument18, string argument19])

Runs python with the specified script with zero or more arguments using the current
target's output directory as the working directory.

XPathNodeIterator ExecutePyScriptInDirectoryInCommandLine (string
directoryPath, string commandLine)

Runs python with the specified script with zero or more arguments using the specified
directory as the working directory.

XPathNodeIterator ExecPyScriptInDirectory (string directoryPath, string
pyScriptPath [, string argument1, string argument2, string argument3,
string argument4, string argument5, string argument6, string
argument7, string argument8, string argument9, string argument10,
string argument11, string argument12, string argument13,
string argument14, string argument15, string argument16, string
argument17, string argument18, string argument19])

1148 | ExecPython

Runs python with the specified script with zero or more arguments using the specified
directory as the working directory.

Detailed Description

urn:WebWorks-XSLT-Extension-ExecPython

Allows XSL stylesheets to execute python programs and process results. Provides
the return code, stdout, and stderr results from the running process.
<wwexec:Result version="1.0" retcode="-1">

 <wwexec:Stream name = "Output" >

 Standard output will show up here, aka stdout.

 </wwexec:Stream>

 <wwexec:Stream name = "Error" >

 Standard error will show up here, aka stderr.

 </wwexec:Stream>

</wwexec:Result>

XPathNodeIterator ExecutePyScriptInCommandLine (string commandLine)

Runs python with the specified command line.

Parameters:

XPathNodeIterator ExecutePyScriptInCommandLine (string commandLine) | 1149

commandLine The command line in python to be
executed.

Returns:

A node set.
<xsl:variable name="VarExecResult"
 select="wwpython:ExecutePyScriptInCommandLine('script.py
 some_arg')" />

XPathNodeIterator ExecPyScript (string pyScriptPath [, string argument1,
string argument2, string argument3, string argument4, string argument5,
string argument6, string argument7, string argument8, string argument9, string
argument10, string argument11, string argument12, string argument13, string
argument14, string argument15, string argument16, string argument17, string
argument18, string argument19])

Runs python with the specified script with zero or more arguments using the current
target's output directory as the working directory.

Parameters:

1150 | XPathNodeIterator ExecPyScript (string pyScriptPath [, string argument1, string argument2, string argument3,
string argument4, string argument5, string argument6, string argument7, string argument8, string argument9, string
argument10, string argument11, string argument12, string argument13, string argument14, string argument15, string
argument16, string argument17, string argument18, string argument19])

pyScriptPath Path to the script file.

argument1 – argument19 Optional arguments.

Returns:

A node set.
<xsl:variable name="VarExecResult" select="
 wwpython:ExecPyScript('script.py', 'some_arg')" />

XPathNodeIterator ExecutePyScriptInDirectoryInCommandLine (string
directoryPath, string commandLine)

Runs python with the specified script with zero or more arguments using the specified
directory as the working directory.

Parameters:

XPathNodeIterator ExecutePyScriptInDirectoryInCommandLine (string directoryPath, string commandLine) | 1151

directoryPath The working directory path where
the python command line is going to
be executed.

commandLine The command line in python to be
executed.

Returns:

A node set.

XPathNodeIterator ExecPyScriptInDirectory (string directoryPath, string
pyScriptPath [, string argument1, string argument2, string argument3, string
argument4, string argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string argument11, string
argument12, string argument13, string argument14, string argument15, string
argument16, string argument17, string argument18, string argument19])

Runs python with the specified script with zero or more arguments using the specified
directory as the working directory.

Parameters:

1152 | XPathNodeIterator ExecPyScriptInDirectory (string directoryPath, string pyScriptPath [, string argument1,
string argument2, string argument3, string argument4, string argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string argument11, string argument12, string argument13, string
argument14, string argument15, string argument16, string argument17, string argument18, string argument19])

directoryPath The working directory path where
the python command line is going to
be executed.

pyScriptPath Path to the script file.

argument1 – argument19 Optional arguments.

Returns:

A node set.

Sass

urn:WebWorks-XSLT-Extension-Sass

Functions

XPathNodeIterator SassToCss (string inputSassFilePath, string
outputCssFilePath)

Creates a CSS file out of a SASS file.

void ReplaceAllVariablesInFile (string inputSassFilePath, object
replacements)

Replaces a collection of SASS variables in a file with those specified by the user.

Detailed Description

urn:WebWorks-XSLT-Extension-Sass

Allows XSL stylesheets to manage SASS files.

XPathNodeIterator SassToCss (string inputSassFilePath, string outputCssFilePath)

Creates a CSS file out of a SASS file.

Parameters:

XPathNodeIterator SassToCss (string inputSassFilePath, string outputCssFilePath) | 1153

inputSassFilePath Path to the input SASS file.

outputCssFilePath Path to the output CSS file.

Returns:

A node set.
<xsl:variable name="VarSassToCssResult"
 select="wwsass:SassToCss('input.sass', 'output.css')" />

void ReplaceAllVariablesInFile (string inputSassFilePath, object replacements)

Replaces a collection of SASS variables in a file with those specified by the user.

Parameters:

1154 | void ReplaceAllVariablesInFile (string inputSassFilePath, object replacements)

inputSassFilePath Path to the input SASS file.

replacements Object that represents an XML
collection of SASS variables.

Replaces matching variables in the input file with variables specified inside the
replacements object.
<xsl:variable name="VarSassVariableReplacementsAsXML">
 <wwsass:Variable name="footer_height" value="50px" />
 <wwsass:Variable name="menu_width" value="100px" />
</xsl:variable>
<xsl:variable name = "VarSassVariableReplacements" select="msxsl:node-
set($VarSassVariableReplacementsAsXML)/*" />

<xsl:variable name="VarReplaceVariables"
 select="wwsass:ReplaceAllVariablesInFile('file.scss',
 $VarSassVariableReplacements)"/>

ExslDocument

urn:WebWorks-XSLT-Extension-Document

Functions

void Document (object input, string path [, string encoding, string method,
string version, string indent, string omit_xml_declaration, string
standalone, string doctype_public, string doctype_system, string
cdata_section_elements, string media_type])

Writes the specified node set to a file at the location defined by path. Optionally uses
specified encoding for writing content. Optionally uses specified method (i.e. text,
xhtml, xml...) and version. Optionally specify if file is to be formatted with indentation
with 'yes' or 'no'. Optionally specify if file will have XML declaration with 'yes' or 'no'.
Optionally specify if the file will be standalone with 'yes' or 'no'. Optionally specify
public and system doctype modifiers.

XPathNodeIterator LoadXMLWithoutResolver (string uriAsString [, bool
preserveSpace])

Loads an XML file without resolving internal paths and validation DTDs.

XPathNodeIterator LoadXMLWithResolver (string uriAsString [, bool
preserveSpace])

ExslDocument | 1155

Loads an XML file while also resolving internal paths and validating DTDs.

XPathNodeIterator MakeEmptyElement (object input)

Converts a non-empty XML node to an empty node.

Detailed Description

urn:WebWorks-XSLT-Extension-Document

Allow multiple output files from an single XSL transform. Also provides routines to
quickly load XML files without invoking XML validators as well as utility methods to
enable correct output formatting.

void Document (object input, string path [, string encoding, string method, string
version, string indent, string omit_xml_declaration, string standalone, string
doctype_public, string doctype_system, string cdata_section_elements, string
media_type])

Writes the specified node set to a file at the location defined by path. Optionally uses
specified encoding for writing content. Optionally uses specified method (i.e. text,
xhtml, xml...) and version. Optionally specify if file is to be formatted with indentation
with 'yes' or 'no'. Optionally specify if file will have XML declaration with 'yes' or 'no'.
Optionally specify if the file will be standalone with 'yes' or 'no'. Optionally specify
public and system doctype modifiers.

Parameters:

1156 | void Document (object input, string path [, string encoding, string method, string version, string indent, string
omit_xml_declaraon, string standalone, string doctype_public, string doctype_system, string cdata_secon_elements,
string media_type])

input The input.

path Full pathname of the file.

encoding The encoding (optional).

method The method (optional).

version The version (optional).

indent Indent 'yes' or 'no' (optional).

omit_xml_declaration Omit XML declaration 'yes' or
'no' (optional).

standalone Standalone 'yes' or 'no' (optional).

doctype_public The doctype public (optional).

doctype_system The doctype system (optional).

cdata_section_elements The cdata section elements
(optional).

media_type Type of the media (optional).

Write a node set to a file.
<xsl:variable name="VarResultAsXML">

...

</xsl:variable>

<xsl:variable name = "VarResult" select="msxsl:node-
set($VarResultAsXML)/*" />

<xsl:variable name = "VarWriteDocument"
 select="wwexsldoc:Document($VarResult, 'C:\badplacefor.xml')" />

XPathNodeIterator LoadXMLWithoutResolver (string uriAsString [, bool
preserveSpace])

Loads an XML file without resolving internal paths and validation DTDs.

XPathNodeIterator LoadXMLWithoutResolver (string uriAsString [, bool preserveSpace]) | 1157

Parameters:

1158 | XPathNodeIterator LoadXMLWithoutResolver (string uriAsString [, bool preserveSpace])

uriAsString The URI as string.

preserveSpace True to preserve space (optional).

Returns:

A node set.

Load the page template without resolving attribute paths.
<xsl:variable name="VarPageTemplate"
 select="wwexsldoc:LoadXMLWithoutResolver($VarPathTemplatePath)" />

XPathNodeIterator LoadXMLWithResolver (string uriAsString [, bool
preserveSpace])

Loads an XML file while also resolving internal paths and validating DTDs.

Parameters:

XPathNodeIterator LoadXMLWithResolver (string uriAsString [, bool preserveSpace]) | 1159

uriAsString The URI as string.

preserveSpace True to preserve space (optional).

Returns:

A node set.

XPathNodeIterator MakeEmptyElement (object input)

Converts a non-empty XML node to an empty node.

Parameters:

1160 | XPathNodeIterator MakeEmptyElement (object input)

input The input node set.

Returns:

A node set containing a single empty node.

becomes:

Insure element is emitted as an empty XML node for proper display in HTML
browsers.
<xsl:variable name="VarImageElementAsXML">

<xsl:element name = "img" >

 < xsl:attribute name = "src" >

 < xsl:value-of select = "'blue.jpg'" />

 </ xsl:attribute>

</xsl:element>

</xsl:variable>

<xsl:variable name = "VarImageElement" select="msxsl:node-
set($VarImageElementAsXML)/*" />

<xsl:value-of select =
 "wwexsldoc:MakeEmeptyElement($VarImageElement)" />

Files

urn:WebWorks-XSLT-Extension-Files

Functions

bool UpToDate (string path, string projectChecksum, string groupID, string
documentID, string actionChecksum)

Files | 1161

Compares the provided parameters for a given path against a previously recorded
values. If the values match, the result is true(). Otherwise, the result is false().

Detailed Description

urn:WebWorks-XSLT-Extension-Files

Enables incremental build support.

bool UpToDate (string path, string projectChecksum, string groupID, string
documentID, string actionChecksum)

Compares the provided parameters for a given path against a previously recorded
values. If the values match, the result is true(). Otherwise, the result is false().

Exceptions:

1162 | bool UpToDate (string path, string projectChecksum, string groupID, string documentID, string aconChecksum)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

bool UpToDate (string path, string projectChecksum, string groupID, string documentID, string aconChecksum) | 1163

path Full pathname of the file.

projectChecksum The project checksum.

groupID Identifier for the group.

documentID Identifier for the document.

actionChecksum The action checksum.

Returns:

True if it succeeds, false if it fails.

FileSystem

urn:WebWorks-XSLT-Extension-FileSystem

Functions

bool AppendFileWithFile (string targetPath, string sourcePath)

Appends one file to another file.

bool ChecksumUpToDate (string path, string checksum)

Compares the provided checksum with the current checksum.

string Combine (string path, string component1 [, string component2,
string component3, string component4, string component5,
string component6, string component7, string component8, string
component9, string component10])

Combines the given component(s) to the file path.

XPathNodeIterator CopyDirectoryFiles (string sourceDirectoryPath, string
destinationDirectoryPath)

Copies all files from the source directory to the destination directory. Destination files
are reported as <FILE> elements. Source files are reported as <Depends> elements
for each destination file.

XPathNodeIterator CopyFile (string sourcePath, string destinationPath)

1164 | FileSystem

Copies the source file to the destination path. Destination files are reported as <FILE>
elements. Source files are reported as <Depends> elements for each destination file.

bool CreateDirectory (string path)

Creates a directory with the given path. If the directory already exists, the method
will return false().

void DeleteDirectory (string path)

Recursively deletes the directory with the given path.

void DeleteFile (string path)

Deletes the file described by path.

bool DirectoryExists (string path)

Determines if a directory exists at the given path. If a file exists with the given path,
this method will return false().

bool Exists (string path)

Determine if file or directory 'path' exists.

bool FileExists (string path)

Determines if a file exists at the given path. If directory exists with the given path,
this method will return false().

bool FilesEqual (string alphaPath, string betaPath)

Compares the contents of two files to determine if they are equal.

string GetAbsoluteFrom (string relativePath, string referencePath)

Determines an absolute path given a relative path and a reference path to create the
absolute path from. Returns the relative path argument if it is absolute to begin with.

string GetBaseName (string path)

Gets the base name of any path. It handles as separators: '\' and '/'. If the path ends
with a separator or it's an empty string then it returns an empty string.

string GetChecksum (string path)

Determines the checksum for the specified file.

string GetDirectoryName (string path)

FileSystem | 1165

Determines the directory prefix of the given path.

string GetExtension (string path)

Determines the file extension for the given path.

string GetFileName (string path)

Determines the name of the file with the directory prefix removed.

string GetFileNameWithoutExtension (string path)

Determines the name of the file with the directory prefix and extension removed.

XPathNodeIterator GetFiles (string path)

Returns an XML node set containing absolute file paths to all files in the specified path.
If the path specifies a file, a single file entry will be returned. If the path specifies a
directory, all file paths in the directory and their children are returned.

string GetLongPathName (string path)

Gets long path name of a specified short path filename.

XPathNodeIterator GetRelativeFiles (string path)

Returns an XML node set containing RELATIVE file paths to all files in the specified
path. If the path specifies a file, a single file entry will be returned. If the path specifies
a directory, all file paths in the directory and their children are returned.

string GetRelativeTo (string path, string anchorPath)

Determines the relative path from the absolute anchor path to the absolute destination
path.May return an absolute path if no relative path exists.

string GetShortPathName (string path)

Gets short path filename from a specified filename.

string GetTempFileName ()

Gets temporary unique filename path.

string GetTempPath ()

Gets path to the user's temporary files directory.

string GetWithExtensionReplaced (string path, string extension)

Replaces the current file extension with the provided one.

1166 | FileSystem

string MakeValidFileName (string fileNameSeed)

Makes a valid filename by eliminating the invalid characters from the specified seed
filename.

void TranslateFileToEncoding (string sourceFilePath, string
sourceFileEncodingName, string destinationFilePath, string
destinationFileEncodingName)

Translate file to encoding.

Detailed Description

urn:WebWorks-XSLT-Extension-FileSystem

Allow XSL transforms to query and manipulate files and directories. Also handles
system path parsing and processing.

bool AppendFileWithFile (string targetPath, string sourcePath)

Appends one file to another file.

Exceptions:

bool AppendFileWithFile (string targetPath, string sourcePath) | 1167

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1168 | bool AppendFileWithFile (string targetPath, string sourcePath)

targetPath Full pathname of the target file.

sourcePath Full pathname of the source file.

Returns:

True if it succeeds, false if it fails.

Append the contents of "C:\FileSampleDoc.txt" to "C:\OutputAllContent.txt".
<xsl:variable name="VarADoc">C:\\File\Sample\Doc.txt</xsl:variable>

<xsl:variable name = "VarAllDocs" > C:\\Output\All\Content.txt</
xsl:variable>

<xsl:variable name = "ActionAppendingDocToAllContent"
 select="wwfilesystem:AppendFileWithFile($VarAllDocs, $VarADoc)" />

bool ChecksumUpToDate (string path, string checksum)

Compares the provided checksum with the current checksum.

This is a convenience method for XSL developers.

Exceptions:

bool ChecksumUpToDate (string path, string checksum) | 1169

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1170 | bool ChecksumUpToDate (string path, string checksum)

path Full pathname of the file.

checksum The checksum.

Returns:

True if the same, false if not the same.

string Combine (string path, string component1 [, string component2, string
component3, string component4, string component5, string component6, string
component7, string component8, string component9, string component10])

Combines the given component(s) to the file path.

Parameters:

string Combine (string path, string component1 [, string component2, string component3, string component4, string component5,
string component6, string component7, string component8, string component9, string component10]) | 1171

path Full pathname of the file.

component1 The first component.

component2 – component10 Additional components (optional).

Returns:

A string.

XPathNodeIterator CopyDirectoryFiles (string sourceDirectoryPath, string
destinationDirectoryPath)

Copies all files from the source directory to the destination directory. Destination files
are reported as <FILE> elements. Source files are reported as <Depends> elements
for each destination file.

Exceptions:

1172 | XPathNodeIterator CopyDirectoryFiles (string sourceDirectoryPath, string desnaonDirectoryPath)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

XPathNodeIterator CopyDirectoryFiles (string sourceDirectoryPath, string desnaonDirectoryPath) | 1173

sourceDirectoryPath Pathname of the source directory.

destinationDirectoryPath Pathname of the destination
directory.

Returns:

A <Files></Files> node set.

XPathNodeIterator CopyFile (string sourcePath, string destinationPath)

Copies the source file to the destination path. Destination files are reported as <FILE>
elements. Source files are reported as <Depends> elements for each destination file.

Exceptions:

1174 | XPathNodeIterator CopyFile (string sourcePath, string desnaonPath)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

XPathNodeIterator CopyFile (string sourcePath, string desnaonPath) | 1175

sourcePath Full pathname of the source file.

destinationPath Full pathname of the destination file.

Returns:

A <Files> node set.</Files>

bool CreateDirectory (string path)

Creates a directory with the given path. If the directory already exists, the method
will return false().

Exceptions:

1176 | bool CreateDirectory (string path)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

bool CreateDirectory (string path) | 1177

path Full pathname of the file.

Returns:

True if it succeeds, false if it fails.

Create directory C: if it does not exist.
<xsl:if test="wwfilesystem:Exists('C:\\exists')">

 <xsl:variable name = "VarCreateDirectory"
 select="wwfilesystem:CreateDirectory('C:\\exists')" />

</xsl:if>

void DeleteDirectory (string path)

Recursively deletes the directory with the given path.

Exceptions:

1178 | void DeleteDirectory (string path)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

void DeleteDirectory (string path) | 1179

path Full pathname of the directory.

Delete the directory C:.
<xsl:variable name="VarDeleteDirectory"
 select="wwfilesystem:DeleteDirectory('C:\\deleteme')" />

void DeleteFile (string path)

Deletes the file described by path.

Exceptions:

1180 | void DeleteFile (string path)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

void DeleteFile (string path) | 1181

path Full pathname of the file.

bool DirectoryExists (string path)

Determines if a directory exists at the given path. If a file exists with the given path,
this method will return false().

Exceptions:

1182 | bool DirectoryExists (string path)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

bool DirectoryExists (string path) | 1183

path Full pathname of the file.

Returns:

True if it succeeds, false if it fails.

Log existence of directory C:.
<xsl:if test="wwfilesystem:DirectoryExists('C:\\direxists')">

 <xsl:variable name = "VarLog" select="wwlog:Message('Directory \'',
 'C:\\direxists', '\' exists!')" />

</xsl:if>

bool Exists (string path)

Determine if file or directory 'path' exists.

Exceptions:

1184 | bool Exists (string path)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

bool Exists (string path) | 1185

path Full pathname of the file.

Returns:

True if it succeeds, false if it fails.

Determine if a file or directory exists at the given path.
<xsl:if test="wwfilesystem:Exists('C:\\exists')">

 <xsl:variable name = "VarCreateDirectory"
 select="wwfilesystem:CreateDirectory('C:\\exists')" />

</xsl:if>

bool FileExists (string path)

Determines if a file exists at the given path. If directory exists with the given path,
this method will return false().

Exceptions:

1186 | bool FileExists (string path)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

bool FileExists (string path) | 1187

path Full pathname of the file.

Returns:

True if it succeeds, false if it fails.

Log existence of file C:.
<xsl:if test="wwfilesystem:DirectoryExists('C:\\fileexists')">

 <xsl:variable name = "VarLog" select="wwlog:Message('Directory \'',
 'C:\\fileexists', '\' exists!')" />

</xsl:if>

bool FilesEqual (string alphaPath, string betaPath)

Compares the contents of two files to determine if they are equal.

Exceptions:

1188 | bool FilesEqual (string alphaPath, string betaPath)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

bool FilesEqual (string alphaPath, string betaPath) | 1189

alphaPath Full pathname of the first file.

betaPath Full pathname of the second file.

Returns:

True if equal, false if not.

string GetAbsoluteFrom (string relativePath, string referencePath)

Determines an absolute path given a relative path and a reference path to create the
absolute path from. Returns the relative path argument if it is absolute to begin with.

Exceptions:

1190 | string GetAbsoluteFrom (string relavePath, string referencePath)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

string GetAbsoluteFrom (string relavePath, string referencePath) | 1191

relativePath Pathname of the relative file.

referencePath Full pathname of the reference file.

Returns:

The absolute from.

string GetBaseName (string path)

Gets the base name of any path. It handles as separators: '\' and '/'. If the path ends
with a separator or it's an empty string then it returns an empty string.

Parameters:

1192 | string GetBaseName (string path)

path The relative or absolute path.

Returns:

A base name string.

string GetChecksum (string path)

Determines the checksum for the specified file.

Exceptions:

string GetChecksum (string path) | 1193

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1194 | string GetChecksum (string path)

path Full pathname of the file.

Returns:

The checksum as string.

string GetDirectoryName (string path)

Determines the directory prefix of the given path.

Exceptions:

string GetDirectoryName (string path) | 1195

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1196 | string GetDirectoryName (string path)

path Full pathname of the file.

Returns:

The directory name.

string GetExtension (string path)

Determines the file extension for the given path.

Exceptions:

string GetExtension (string path) | 1197

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1198 | string GetExtension (string path)

path Full pathname of the file.

Returns:

The filename extension.

string GetFileName (string path)

Determines the name of the file with the directory prefix removed.

Exceptions:

string GetFileName (string path) | 1199

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1200 | string GetFileName (string path)

path Full pathname of the file.

Returns:

The file basename.

string GetFileNameWithoutExtension (string path)

Determines the name of the file with the directory prefix and extension removed.

Exceptions:

string GetFileNameWithoutExtension (string path) | 1201

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1202 | string GetFileNameWithoutExtension (string path)

path Full pathname of the file.

Returns:

The file name without extension or directory prefix.

XPathNodeIterator GetFiles (string path)

Returns an XML node set containing absolute file paths to all files in the specified path.
If the path specifies a file, a single file entry will be returned. If the path specifies a
directory, all file paths in the directory and their children are returned.

Exceptions:

XPathNodeIterator GetFiles (string path) | 1203

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1204 | XPathNodeIterator GetFiles (string path)

path Full pathname of the file or directory.

Returns:

The files in a node set.

string GetLongPathName (string path)

Gets long path name of a specified short path filename.

Exceptions:

string GetLongPathName (string path) | 1205

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1206 | string GetLongPathName (string path)

path Full pathname of the file.

Returns:

The long path filename.

XPathNodeIterator GetRelativeFiles (string path)

Returns an XML node set containing RELATIVE file paths to all files in the specified
path. If the path specifies a file, a single file entry will be returned. If the path specifies
a directory, all file paths in the directory and their children are returned.

Filename path(s) created will be relative to 'relativeToPath' (if non-zero in length).

Exceptions:

XPathNodeIterator GetRelaveFiles (string path) | 1207

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1208 | XPathNodeIterator GetRelaveFiles (string path)

path Full pathname of the file.

Returns:

The relative files in a node set.

string GetRelativeTo (string path, string anchorPath)

Determines the relative path from the absolute anchor path to the absolute destination
path.May return an absolute path if no relative path exists.

Exceptions:

string GetRelaveTo (string path, string anchorPath) | 1209

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1210 | string GetRelaveTo (string path, string anchorPath)

path Full pathname of the file.

anchorPath Full pathname of the anchor file.

Returns:

The relative to path.

string GetShortPathName (string path)

Gets short path filename from a specified filename.

Exceptions:

string GetShortPathName (string path) | 1211

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1212 | string GetShortPathName (string path)

path Full pathname of the file.

Returns:

The short path name.

string GetTempFileName ()

Gets temporary unique filename path.

Returns:

The temporary filename path.

string GetTempPath ()

Gets path to the user's temporary files directory.

Returns:

The directory path ending with backslash.

string GetWithExtensionReplaced (string path, string extension)

Replaces the current file extension with the provided one.

Exceptions:

string GetWithExtensionReplaced (string path, string extension) | 1213

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1214 | string GetWithExtensionReplaced (string path, string extension)

path Full pathname of the file.

extension The extension.

Returns:

The with extension replaced.

string MakeValidFileName (string fileNameSeed)

Makes a valid filename by eliminating the invalid characters from the specified seed
filename.

Parameters:

string MakeValidFileName (string fileNameSeed) | 1215

fileNameSeed The file name seed.

Returns:

A filename string.

void TranslateFileToEncoding (string sourceFilePath, string
sourceFileEncodingName, string destinationFilePath, string
destinationFileEncodingName)

Translate file to encoding.

Exceptions:

1216 | void TranslateFileToEncoding (string sourceFilePath, string sourceFileEncodingName, string desnaonFilePath,
string desnaonFileEncodingName)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

void TranslateFileToEncoding (string sourceFilePath, string sourceFileEncodingName, string desnaonFilePath, string
desnaonFileEncodingName) | 1217

sourceFilePath Full pathname of the source file.

sourceFileEncodingName Name of the source file encoding.

destinationFilePath Full pathname of the destination file.

destinationFileEncodingName Name of the destination file
encoding.

Fonts

urn:WebWorks-XSLT-Extension-Fonts

Functions

bool UnicodeFont (string fontFamily)

Determines if the specified font family is a Unicode font family. Used to detect Symbol
font families.

Detailed Description

urn:WebWorks-XSLT-Extension-Fonts

Answer questions about fonts that might affect format output.

bool UnicodeFont (string fontFamily)

Determines if the specified font family is a Unicode font family. Used to detect Symbol
font families.

Parameters:

1218 | bool UnicodeFont (string fontFamily)

fontFamily The font family.

Returns:

True if a unicode font, false if not.

Determine if Symbol is a unicode font family.
<xsl:variable name="VarIsUnicodeFont"
 select="wwfonts:UnicodeFont('Symbol')" />

Imaging

urn:WebWorks-Imaging-Info

Functions

XPathNodeIterator GetInfo (string imageFilePath)

Gets image information of file path: 'imageFilePath'.

void MapPDFLinks (object fileTable, string fileToFix, string fileToWrite,
string originalFilePath, string outputFilePath, bool useAbsPath)

Map PDF links.

bool MergePDFs (object sourceFileList, string targetFilePath)

This merges a set of PDFs and/or PostScript files into one PDF.

bool MergePDFs (object sourceFileList, object fileTable, string
targetFilePath)

This merges a set of PDFs and/or PostScript files into one PDF.

bool PostScriptToPDF (string postScriptFilePath, string pdfJobSettings,
string pdfFilePath)

Convert the specified PostScript file to a PDF.

XPathNodeIterator RasterizePostScript (string postScriptFilePath,
int renderHorizontalDPI, int renderVerticalDPI, int renderWidth,
int renderHeight, string targetImageFormatAsString, int
targetImageColorDepth, bool targetImageGrayscale, bool

Imaging | 1219

targetImageTransparent, bool targetImageInterlaced, int
targetImageQuality, string targetFilePath)

Render a PostScript file to a known image format such as BMP, JPEG, PNG, or GIF.

XPathNodeIterator Transform (string inputImageFilePath, string
outputImageFormat, int outputImageWidth, int outputImageHeight,
string outputImageFilePath)

Create a new version of an image with a different format or with different dimensions.

XPathNodeIterator Transform (string inputImageFilePath, string
outputImageFormatAsString, int
Choice_outputImageQuality_outputImageWidth, int
Choice_outputImageWidth_outputImageHeight, string
Choice_outputImageHeight_outputImageFilePath, string
Choice_outputImageFilePath_outputResolution)

Create a new version of an image with a different format or with different dimensions.

XPathNodeIterator Transform (string inputImageFilePath,
string outputImageFormatAsString, int outputImageQuality,
int outputImageWidth, int outputImageHeight, string
outputImageFilePath, int outputResolution)

Create a new version of an image with a different format or with different dimensions.

Detailed Description

urn:WebWorks-Imaging-Info

Enable processing of images within XSL transforms.

Returns information about a particular image file, including width and height, image
format, bit-depth, path on system, etc.
<wwimageinfo:ImageInfo format="jpeg" width="200" height="300"
 bitdepth="32" grayscale="false" path="C:\\image.jpg" />

XPathNodeIterator GetInfo (string imageFilePath)

Gets image information of file path: 'imageFilePath'.

Exceptions:

1220 | XPathNodeIterator GetInfo (string imageFilePath)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

XPathNodeIterator GetInfo (string imageFilePath) | 1221

imageFilePath Full pathname of the image file.

Returns:

Image info node set.

void MapPDFLinks (object fileTable, string fileToFix, string fileToWrite, string
originalFilePath, string outputFilePath, bool useAbsPath)

Map PDF links.

Exceptions:

1222 | void MapPDFLinks (object fileTable, string fileToFix, string fileToWrite, string originalFilePath, string outputFilePath,
bool useAbsPath)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

void MapPDFLinks (object fileTable, string fileToFix, string fileToWrite, string originalFilePath, string outputFilePath, bool useAbsPath) |
1223

fileTable Node set of links to update.

fileToFix The file to fix.

fileToWrite The file to write.

originalFilePath Full pathname of the original file.

outputFilePath Full pathname of the output file.

useAbsPath True to use abs path.

bool MergePDFs (object sourceFileList, string targetFilePath)

This merges a set of PDFs and/or PostScript files into one PDF.

Exceptions:

1224 | bool MergePDFs (object sourceFileList, string targetFilePath)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

bool MergePDFs (object sourceFileList, string targetFilePath) | 1225

sourceFileList List of source files.

targetFilePath Full pathname of the target file.

Returns:

True if it succeeds, false if it fails.

bool MergePDFs (object sourceFileList, object fileTable, string targetFilePath)

This merges a set of PDFs and/or PostScript files into one PDF.

Exceptions:

1226 | bool MergePDFs (object sourceFileList, object fileTable, string targetFilePath)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

bool MergePDFs (object sourceFileList, object fileTable, string targetFilePath) | 1227

sourceFileList List of source files.

fileTable Node set of links to update.

targetFilePath Full pathname of the target file.

Returns:

True if it succeeds, false if it fails.

bool PostScriptToPDF (string postScriptFilePath, string pdfJobSettings, string
pdfFilePath)

Convert the specified PostScript file to a PDF.

Exceptions:

1228 | bool PostScriptToPDF (string postScriptFilePath, string pdfJobSengs, string pdfFilePath)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

bool PostScriptToPDF (string postScriptFilePath, string pdfJobSengs, string pdfFilePath) | 1229

postScriptFilePath Full pathname of the post script file.

pdfJobSettings The PDF job settings.

pdfFilePath Full pathname of the PDF file.

Returns:

True if it succeeds, false if it fails.

XPathNodeIterator RasterizePostScript (string postScriptFilePath, int
renderHorizontalDPI, int renderVerticalDPI, int renderWidth, int renderHeight,
string targetImageFormatAsString, int targetImageColorDepth, bool
targetImageGrayscale, bool targetImageTransparent, bool targetImageInterlaced,
int targetImageQuality, string targetFilePath)

Render a PostScript file to a known image format such as BMP, JPEG, PNG, or GIF.

Parameters:

1230 | XPathNodeIterator RasterizePostScript (string postScriptFilePath, int renderHorizontalDPI, int renderVercalDPI,
int renderWidth, int renderHeight, string targetImageFormatAsString, int targetImageColorDepth, bool
targetImageGrayscale, bool targetImageTransparent, bool targetImageInterlaced, int targetImageQuality, string
targetFilePath)

postScriptFilePath Full pathname of the post script file.

renderHorizontalDPI The render horizontal DPI.

renderVerticalDPI The render vertical DPI.

renderWidth Width of the render.

renderHeight Height of the render.

targetImageFormatAsString Target image format as string.

targetImageColorDepth Depth of the target image color.

targetImageGrayscale True to target image grayscale.

targetImageTransparent True to target image transparent.

targetImageInterlaced True if target image interlaced.

targetImageQuality Target image quality.

targetFilePath Full pathname of the target file.

Returns:

Image info node set.

XPathNodeIterator Transform (string inputImageFilePath, string
outputImageFormat, int outputImageWidth, int outputImageHeight, string
outputImageFilePath)

Create a new version of an image with a different format or with different dimensions.

Parameters:

XPathNodeIterator Transform (string inputImageFilePath, string outputImageFormat, int outputImageWidth, int outputImageHeight,
string outputImageFilePath) | 1231

inputImageFilePath Full pathname of the input image
file.

outputImageFormat The output image format.

outputImageWidth Width of the output image.

outputImageHeight Height of the output image.

outputImageFilePath Full pathname of the output image
file.

Returns:

Image info node set.

XPathNodeIterator Transform (string inputImageFilePath, string
outputImageFormatAsString, int Choice_outputImageQuality_outputImageWidth,
int Choice_outputImageWidth_outputImageHeight, string
Choice_outputImageHeight_outputImageFilePath, string
Choice_outputImageFilePath_outputResolution)

Create a new version of an image with a different format or with different dimensions.

Parameters:

1232 | XPathNodeIterator Transform (string inputImageFilePath, string outputImageFormatAsString, int
Choice_outputImageQuality_outputImageWidth, int Choice_outputImageWidth_outputImageHeight, string
Choice_outputImageHeight_outputImageFilePath, string Choice_outputImageFilePath_outputResoluon)

inputImageFilePath Full pathname of the input image
file.

outputImageFormatAsString The output image format as string.

Choice_outputImageQuality_outputImageWidthWidth of the choice output image
quality output image.

Choice_outputImageWidth_outputImageHeightHeight of the choice output image
width output image.

Choice_outputImageHeight_outputImageFilePathFull pathname of the choice output
image height output image file.

Choice_outputImageFilePath_outputResolutionThe choice output image file path
output resolution.

Returns:

Image info node set.

XPathNodeIterator Transform (string inputImageFilePath, string
outputImageFormatAsString, int outputImageQuality, int outputImageWidth, int
outputImageHeight, string outputImageFilePath, int outputResolution)

Create a new version of an image with a different format or with different dimensions.

Exceptions:

XPathNodeIterator Transform (string inputImageFilePath, string outputImageFormatAsString, int outputImageQuality, int
outputImageWidth, int outputImageHeight, string outputImageFilePath, int outputResoluon) | 1233

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1234 | XPathNodeIterator Transform (string inputImageFilePath, string outputImageFormatAsString, int
outputImageQuality, int outputImageWidth, int outputImageHeight, string outputImageFilePath, int outputResoluon)

inputImageFilePath Full pathname of the input image
file.

outputImageFormatAsString The output image format as string.

outputImageQuality The output image quality.

outputImageWidth Width of the output image.

outputImageHeight Height of the output image.

outputImageFilePath Full pathname of the output image
file.

outputResolution The output resolution.

Returns:

Image info node set.

Log

urn:WebWorks-XSLT-Extension-Log

Functions

void Error (string message1 [, string message2, string message3, string
message4, string message5, string message6, string message7, string
message8, string message9, string message10])

Records error(s) to the generation log.

void Message (string message1 [, string message2, string message3,
string message4, string message5, string message6, string message7,
string message8, string message9, string message10])

Records message(s) to the generation log.

void Warning (string message1 [, string message2, string message3, string
message4, string message5, string message6, string message7, string
message8, string message9, string message10])

Records warning(s) to the generation log.

Log | 1235

Detailed Description

urn:WebWorks-XSLT-Extension-Log

Enables XSL transforms to report messages, warnings, and errors to the generation
log.

void Error (string message1 [, string message2, string message3, string
message4, string message5, string message6, string message7, string message8,
string message9, string message10])

Records error(s) to the generation log.

Parameters:

1236 | void Error (string message1 [, string message2, string message3, string message4, string message5, string
message6, string message7, string message8, string message9, string message10])

message1 The first message.

message2 – message10 Additional messages (optional).

Express and Designer display a dialog informing the user errors were encountered
during processing. AutoMap returns a non-zero return code.
<xsl:variable name="VarMessage" select="wwlog:Error('Put this in your
 log.')" />

void Message (string message1 [, string message2, string message3, string
message4, string message5, string message6, string message7, string message8,
string message9, string message10])

Records message(s) to the generation log.

Parameters:

void Message (string message1 [, string message2, string message3, string message4, string message5, string message6, string
message7, string message8, string message9, string message10]) | 1237

message1 The first message.

message2 – message10 Additional messages (optional).

void Warning (string message1 [, string message2, string message3, string
message4, string message5, string message6, string message7, string message8,
string message9, string message10])

Records warning(s) to the generation log.

Parameters:

1238 | void Warning (string message1 [, string message2, string message3, string message4, string message5, string
message6, string message7, string message8, string message9, string message10])

message1 The first message.

message2 – message10 Additional messages (optional).

MultiSearchReplaceExtension

urn:WebWorks-XSLT-Extension-MultiSearchReplace

Functions

void ReplaceAllInFile (string inputEncodingAsString, string inputFilePath,
string outputFilePath, object replacements)

Replaces strings in a text file with the specified input encoding and writes the result
to the output path with the same encoding.

void ReplaceAllInFile (string inputEncodingAsString, string inputFilePath,
string outputEncodingAsString, string outputFilePath, object
replacements)

Replaces strings in a text file with the specified input encoding and writes the result
to the output path with the specified output encoding.

string ReplaceAllInString (string input, object replacements)

Replaces strings in the given string and returns the result. Using this method is much
faster than performing multiple search/replace calls in XSL substring methods.

Detailed Description

urn:WebWorks-XSLT-Extension-MultiSearchReplace

Replaces multiple strings in a single operation.

void ReplaceAllInFile (string inputEncodingAsString, string inputFilePath, string
outputFilePath, object replacements)

Replaces strings in a text file with the specified input encoding and writes the result
to the output path with the same encoding.

Note: Not a replacement for using page templates when possible.

void ReplaceAllInFile (string inputEncodingAsString, string inputFilePath, string outputFilePath, object replacements) | 1239

Parameters:

1240 | void ReplaceAllInFile (string inputEncodingAsString, string inputFilePath, string outputFilePath, object
replacements)

inputEncodingAsString The input encoding as string.

inputFilePath Full pathname of the input file.

outputFilePath Full pathname of the output file.

replacements The replacements in a node set.

void ReplaceAllInFile (string inputEncodingAsString, string inputFilePath, string
outputEncodingAsString, string outputFilePath, object replacements)

Replaces strings in a text file with the specified input encoding and writes the result
to the output path with the specified output encoding.

Note: Not a replacement for using page templates when possible.

Parameters:

void ReplaceAllInFile (string inputEncodingAsString, string inputFilePath, string outputEncodingAsString, string outputFilePath, object
replacements) | 1241

inputEncodingAsString The input encoding as string.

inputFilePath Full pathname of the input file.

outputEncodingAsString The output encoding as string.

outputFilePath Full pathname of the output file.

replacements The replacements in a node set.

string ReplaceAllInString (string input, object replacements)

Replaces strings in the given string and returns the result. Using this method is much
faster than performing multiple search/replace calls in XSL substring methods.

Parameters:

1242 | string ReplaceAllInString (string input, object replacements)

input The input.

replacements The replacements in a node-set.

Returns:

A string.

NodeSet

urn:WebWorks-XSLT-Extension-NodeSet

Functions

XPathNodeIterator FirstUnique (object input, string attributeLocalName)

First unique element with matching local name.

XPathNodeIterator FirstUniqueWithNamespace (object input, string
attributeLocalName, string attributeNamespaceURI)

First unique element with matching namespace and matching local name.

XPathNodeIterator LastUnique (object input, string attributeLocalName)

Last unique element with matching local name.

XPathNodeIterator LastUniqueWithNamespace (object input, string
attributeLocalName, string attributeNamespaceURI)

Last unique element with matching namespace and matching local name.

Detailed Description

urn:WebWorks-XSLT-Extension-NodeSet

Miscellaneous node set functions.

XPathNodeIterator FirstUnique (object input, string attributeLocalName)

First unique element with matching local name.

XPathNodeIterator FirstUnique (object input, string aributeLocalName) | 1243

Exceptions:

1244 | XPathNodeIterator FirstUnique (object input, string aributeLocalName)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

XPathNodeIterator FirstUnique (object input, string aributeLocalName) | 1245

input The input node set.

attributeLocalName Local name of the element.

Returns:

A node set.

XPathNodeIterator FirstUniqueWithNamespace (object input, string
attributeLocalName, string attributeNamespaceURI)

First unique element with matching namespace and matching local name.

Exceptions:

1246 | XPathNodeIterator FirstUniqueWithNamespace (object input, string aributeLocalName, string
aributeNamespaceURI)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

XPathNodeIterator FirstUniqueWithNamespace (object input, string aributeLocalName, string aributeNamespaceURI) | 1247

input The input node set.

attributeLocalName Local name of the element.

attributeNamespaceURI Namespace URI.

Returns:

A node set.

XPathNodeIterator LastUnique (object input, string attributeLocalName)

Last unique element with matching local name.

Exceptions:

1248 | XPathNodeIterator LastUnique (object input, string aributeLocalName)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

XPathNodeIterator LastUnique (object input, string aributeLocalName) | 1249

input The input node set.

attributeLocalName Local name of the element.

Returns:

A node set.

XPathNodeIterator LastUniqueWithNamespace (object input, string
attributeLocalName, string attributeNamespaceURI)

Last unique element with matching namespace and matching local name.

Exceptions:

1250 | XPathNodeIterator LastUniqueWithNamespace (object input, string aributeLocalName, string
aributeNamespaceURI)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

XPathNodeIterator LastUniqueWithNamespace (object input, string aributeLocalName, string aributeNamespaceURI) | 1251

input The input node set.

attributeLocalName Local name of the element.

attributeNamespaceURI Namespace URI.

Returns:

A node set.

Progress

urn:WebWorks-XSLT-Extension-Progress

Functions

bool Abort ()

Checks to see if the user has requested to abort the current operation.

void Cancel ()

Forces an abort to ocurr with Cancel as reason.

void End ()

End the current progress step.

void QueueAlert (string message)

Queue an alert to display.

void Retry ()

Forces an abort to ocurr with Retry as reason.

void SetStatus (string message)

Set the status bar for the current progress step.

void Start (int totalSubSteps)

Create a new progress step with the given number of sub-steps.

Detailed Description

1252 | Progress

urn:WebWorks-XSLT-Extension-Progress

Reports progress during long lived XSL transforms.

bool Abort ()

Checks to see if the user has requested to abort the current operation.

Returns:

True if abort requested, false otherwise.

void Cancel ()

Forces an abort to ocurr with Cancel as reason.

void End ()

End the current progress step.

void QueueAlert (string message)

Queue an alert to display.

Parameters:

void QueueAlert (string message) | 1253

message Message to display.

void Retry ()

Forces an abort to ocurr with Retry as reason.

void SetStatus (string message)

Set the status bar for the current progress step.

Parameters:

1254 | void SetStatus (string message)

message Message to display.

<xsl:variable name="VarParagraphCount"
 select="count($VarParagraphs)" />

<xsl:variable name = "VarProgressParagraphsStart"
 select="wwprogress:Start($VarParagraphCount)" />

<xsl:variable name = "VarProgressParagraphsStatus"
 select="wwprogress:SetStatus(concat('Processing ',
 $VarParagraphCount))" />

<xsl:for-each select = "$VarParagraphs" >

 < xsl:variable name = "VarParagraph" select="." />

 <xsl:variable name = "VarProgressParagraphStart"
 select="wwprogress:Start(1)" />

 <xsl:variable name = "VarProgressParagraphStatus"
 select="wwprogress:SetStatus('Processing paragraph ', position(), '
 of ', $VarParagraphCount, '.'))" />

 <xsl:variable name = "VarProgressParagraphEnd"
 select="wwprogress:End()" />

</xsl:for-each>

<xsl:variable name = "VarProgressParagraphsEnd"
 select="wwprogress:End()" />

void Start (int totalSubSteps)

Create a new progress step with the given number of sub-steps.

Parameters:

void Start (int totalSubSteps) | 1255

totalSubSteps The total sub steps.

<xsl:variable name="VarProgressTotalStart"
 select="wwprogress:Start(2)" />

<xsl:variable name = "VarProgressStep1Start"
 select="wwprogress:Start(1)" />

<xsl:variable name = "VarProgressStep1End" select="wwprogress:End()" /
>

<xsl:variable name = "VarProgressStep2Start"
 select="wwprogress:Start(1)" />

<xsl:variable name = "VarProgressStep2End" select="wwprogress:End()" /
>

<xsl:variable name = "VarProgressTotalEnd" select="wwprogress:End()" /
>

Project

urn:WebWorks-XSLT-Extension-Project

Functions

bool DocumentExtension (string extension)

Determine if filename 'extension' has a configured input adapter.

bool GetConditionIsPassThrough (string conditionName)

Determines if condition called: 'conditionName' is pass through.

string GetConfigurationChangeID ()

Gets configuration change identifier.

XPathNodeIterator GetContextRule (string ruleTypeAsString, string
ruleName, string documentID, string uniqueID)

1256 | Project

Gets context rule.

string GetDocumentDataDirectoryPath (string documentID)

Gets document data directory path using 'documentID'.

string GetDocumentGroupPath (string documentID)

Gets document group path using 'documentID'.

string GetDocumentID (string documentPath [, string groupID])

Gets document identifier using 'documentPath' and optionally 'groupID'.

string GetDocumentPath (string documentID)

Gets document path using 'documentID'.

string GetDocumentsToGenerateChecksum ()

Get string representing all documents in project so checksum can be generated.

string GetFormatID ()

Gets format identifier.

string GetFormatName ()

Gets format name.

string GetFormatSetting (string name)

Gets 'name' format setting.

string GetFormatSetting (string name, string defaultValue)

Gets 'name' format setting but returns 'defaultValue' if no setting configured.

string GetGroupDataDirectoryPath (string groupID)

Gets group data directory path using 'groupID'.

string GetGroupName (string groupID)

Gets group name using 'groupID'.

XPathNodeIterator GetOverrideRule (string ruleTypeAsString, string
ruleName, string documentID, string uniqueID)

Gets override rule.

Project | 1257

string GetProjectDataDirectoryPath ()

Gets project data directory path.

string GetProjectDirectoryPath ()

Gets project directory path.

long GetProjectDocumentsCount ()

Gets project documents count.

string GetProjectFilesDirectoryPath ()

Gets project files directory path.

string GetProjectFormatDirectoryPath ()

Gets project format directory path.

string GetProjectName ()

Gets project name.

string GetProjectReportsDirectoryPath ()

Gets project reports directory path.

string GetProjectTargetName ()

Gets project target name currently being processed.

string GetProjectTargetOverrideDirectoryPath ()

Gets project target override directory path.

XPathNodeIterator GetRule (string ruleTypeAsString, string ruleName)

Gets a rule.

string GetTargetDataDirectoryPath ()

Gets target data directory path.

string GetTargetFilesInfoPath (string targetIDAsString)

Gets target files information path.

string GetTargetOutputDirectoryPath ()

1258 | Project

Gets target output directory path.

string GetTargetReportsDirectoryPath ()

Gets target reports directory path.

Detailed Description

urn:WebWorks-XSLT-Extension-Project

Query for information about the currently running project.

bool DocumentExtension (string extension)

Determine if filename 'extension' has a configured input adapter.

Parameters:

bool DocumentExtension (string extension) | 1259

extension The extension.

Returns:

True if extension has a configured adapter, false otherwise.

bool GetConditionIsPassThrough (string conditionName)

Determines if condition called: 'conditionName' is pass through.

Parameters:

1260 | bool GetCondionIsPassThrough (string condionName)

conditionName Name of the condition.

Returns:

True if pass through, false otherwise.

string GetConfigurationChangeID ()

Gets configuration change identifier.

Returns:

The configuration change identifier.

XPathNodeIterator GetContextRule (string ruleTypeAsString, string ruleName,
string documentID, string uniqueID)

Gets context rule.

Parameters:

XPathNodeIterator GetContextRule (string ruleTypeAsString, string ruleName, string documentID, string uniqueID) | 1261

ruleTypeAsString The rule type as string.

ruleName Name of the rule.

documentID Identifier for the document.

uniqueID Unique identifier.

Returns:

The context rule as a node set.

string GetDocumentDataDirectoryPath (string documentID)

Gets document data directory path using 'documentID'.

Parameters:

1262 | string GetDocumentDataDirectoryPath (string documentID)

documentID Identifier for the document.

Returns:

The document data directory path.

string GetDocumentGroupPath (string documentID)

Gets document group path using 'documentID'.

Parameters:

string GetDocumentGroupPath (string documentID) | 1263

documentID Identifier for the document.

Returns:

The document group path.

string GetDocumentID (string documentPath [, string groupID])

Gets document identifier using 'documentPath' and optionally 'groupID'.

Parameters:

1264 | string GetDocumentID (string documentPath [, string groupID])

documentPath Full pathname of the document file.

groupID Identifier for the group (optional).

Returns:

The document identifier as string.

string GetDocumentPath (string documentID)

Gets document path using 'documentID'.

Parameters:

string GetDocumentPath (string documentID) | 1265

documentID Identifier for the document.

Returns:

The document path.

string GetDocumentsToGenerateChecksum ()

Get string representing all documents in project so checksum can be generated.

Returns:

A string representing documents for generating checksum.

string GetFormatID ()

Gets format identifier.

Returns:

The format identifier as string.

string GetFormatName ()

Gets format name.

Returns:

The format name as string.

string GetFormatSetting (string name)

Gets 'name' format setting.

Parameters:

1266 | string GetFormatSeng (string name)

name The name.

Returns:

The format setting as string.

string GetFormatSetting (string name, string defaultValue)

Gets 'name' format setting but returns 'defaultValue' if no setting configured.

Parameters:

string GetFormatSeng (string name, string defaultValue) | 1267

name The name.

defaultValue The default value.

Returns:

The format setting as string.

string GetGroupDataDirectoryPath (string groupID)

Gets group data directory path using 'groupID'.

Parameters:

1268 | string GetGroupDataDirectoryPath (string groupID)

groupID Identifier for the group.

Returns:

The group data directory path.

string GetGroupName (string groupID)

Gets group name using 'groupID'.

Parameters:

string GetGroupName (string groupID) | 1269

groupID Identifier for the group.

Returns:

The group name as string.

XPathNodeIterator GetOverrideRule (string ruleTypeAsString, string ruleName,
string documentID, string uniqueID)

Gets override rule.

Parameters:

1270 | XPathNodeIterator GetOverrideRule (string ruleTypeAsString, string ruleName, string documentID, string uniqueID)

ruleTypeAsString The rule type as string.

ruleName Name of the rule.

documentID Identifier for the document.

uniqueID Unique identifier.

Returns:

The override rule node set.

string GetProjectDataDirectoryPath ()

Gets project data directory path.

Returns:

The project data directory path.

string GetProjectDirectoryPath ()

Gets project directory path.

Returns:

The project directory path.

long GetProjectDocumentsCount ()

Gets project documents count.

Returns:

The project documents count.

string GetProjectFilesDirectoryPath ()

string GetProjectFilesDirectoryPath () | 1271

Gets project files directory path.

Returns:

The project files directory path.

string GetProjectFormatDirectoryPath ()

Gets project format directory path.

Returns:

The project format directory path.

string GetProjectName ()

Gets project name.

Returns:

The project name.

string GetProjectReportsDirectoryPath ()

Gets project reports directory path.

Returns:

The project reports directory path.

string GetProjectTargetName ()

Gets project target name currently being processed.

Returns:

The project target name.

string GetProjectTargetOverrideDirectoryPath ()

1272 | string GetProjectTargetOverrideDirectoryPath ()

Gets project target override directory path.

Returns:

The project target override directory path.

XPathNodeIterator GetRule (string ruleTypeAsString, string ruleName)

Gets a rule.

Parameters:

XPathNodeIterator GetRule (string ruleTypeAsString, string ruleName) | 1273

ruleTypeAsString The rule type as string.

ruleName Name of the rule.

Returns:

The rule as a node set.

string GetTargetDataDirectoryPath ()

Gets target data directory path.

Returns:

The target data directory path.

string GetTargetFilesInfoPath (string targetIDAsString)

Gets target files information path.

Parameters:

1274 | string GetTargetFilesInfoPath (string targetIDAsString)

targetIDAsString Target identifier as string.

Returns:

The target files information path.

string GetTargetOutputDirectoryPath ()

Gets target output directory path.

Returns:

The target output directory path.

string GetTargetReportsDirectoryPath ()

Gets target reports directory path.

Returns:

The target reports directory path.

StageInfo

urn:WebWorks-XSLT-Extension-StageInfo

Functions

string Get (string param_key)

Gets the value of a given key for this stage.

void Set (string param_key, string param_value)

Set key/value pair for this stage.

Detailed Description

urn:WebWorks-XSLT-Extension-StageInfo

StageInfo | 1275

Allows XLST processing to store and retrieve key/value pairs as needed to track
state.

string Get (string param_key)

Gets the value of a given key for this stage.

Parameters:

1276 | string Get (string param_key)

param_key The key to lookup.

Returns:

The value as string.

void Set (string param_key, string param_value)

Set key/value pair for this stage.

Parameters:

void Set (string param_key, string param_value) | 1277

param_key The key to set.

param_value The value to set.

StringUtilities

urn:WebWorks-XSLT-Extension-StringUtilities

Functions

string CSSClassName (string styleName)

Convert the given string into a valid CSS class name.

string DecodeURI (string value)

Decode an escaped URI 'value' back to an unescaped URI.

string DecodeURIComponent (string value)

Decode an escaped partial URI component, 'value', back to an unescaped URI
component.

string EclipseId (string identifier)

Create a valid Eclipse ID from 'identifier'.

string EncodeURI (string value)

Encode 'value' string as an escaped URI.

string EncodeURIComponent (string value)

Encode 'value' string, a partial URI component, as an escaped URI.

string EscapeForXMLAttribute (string value)

Escape 'value' string so that it can be written as an XML attribute.

string Format (string format, string argument1 [, string argument2, string
argument3, string argument4, string argument5, string argument6,
string argument7, string argument8, string argument9, string
argument10])

Format a message using the C# string formatter.

1278 | StringUlies

string FromFile (string sourceFilePath, string sourceFileEncodingName)

Import file contents using 'sourceFileEncodingName' as the file's assumed encoding.

string JavaScriptEncoding (string value)

Convert all non-ASCII characters to Unicode escape sequences. Also convert all ASCII
characters less than 32 along with problematic escape characters, i.e. \, to Unicode
escape sequences.

bool MatchExpression (string input, string matchExpressionAsString)

Return success of match for 'matchExpressionAsString' in 'input'.

string MatchExpressionValue (string input, string
matchExpressionAsString)

Return value of match for 'matchExpressionAsString' in 'input'.

string MD5Checksum (string value)

Compute the MD5 checksum on the given 'value' string.

string NCNAME (string identifier)

Convert 'identifier' to a valid NCNAME as defined by:

string NormalizeQuotes (string value)

Convert the given string to a string where all left/right single/double quotes are
normalized. Left single quotation mark = single quotation mark Right single quotation
mark = single quotation mark Left double quotation mark = double quotation mark
Right double quotation mark = double quotation mark

string OEBClassName (string styleName)

Create a valid Open eBook class name from 'styleName'.

string Replace (string input, string search, string replacement)

Replace all occurrences of 'search' in 'input' with 'replacement'.

string ReplaceWithExpression (string input, string
searchExpressionAsString, string replacement)

Replace all occurrences of 'searchExpressionAsString' in 'input' with 'replacement'.

string ReplaceWithExpressionForCount (string input, string
searchExpressionAsString, string replacement, int count)

StringUlies | 1279

Replace 'count' occurrences of 'searchExpressionAsString' in 'input' with
'replacement'.

string SHA1Checksum (string value)

Compute the SHA-1 (Secure Hash Algorithm 1) checksum on the given 'value' string.

string ToLower (string value)

Convert the given string to lowercase.

string ToUpper (string value)

Convert the given string to uppercase.

string ToCamel (string value)

Convert the given string to camel case.

string ToPascal (string value)

Convert the given string to pascal case.

bool EndsWith (string input, string suffix)

Return success of suffix being the suffix of input.

string WebWorksHelpContextOrTopic (string key)

Converts the given 'key' into a valid WebWorks Help/Reverb context or topic string.

Detailed Description

urn:WebWorks-XSLT-Extension-StringUtilities

Extend the available string processing methods to XSL to include message
formatting, specialized text escaping, regular expression operations, etc.

string CSSClassName (string styleName)

Convert the given string into a valid CSS class name.

Parameters:

1280 | string CSSClassName (string styleName)

styleName Name of the style.

Returns:

A string.

Convert Blue_Moon.Detective;Agency into a valid CSS style name.
<xsl:value-of
 select="wwstring:CSSClassName('Blue_Moon.Detective;Agency')" />

string DecodeURI (string value)

Decode an escaped URI 'value' back to an unescaped URI.

Parameters:

string DecodeURI (string value) | 1281

value The value.

Returns:

A string.

string DecodeURIComponent (string value)

Decode an escaped partial URI component, 'value', back to an unescaped URI
component.

Parameters:

1282 | string DecodeURIComponent (string value)

value The value.

Returns:

A string.

string EclipseId (string identifier)

Create a valid Eclipse ID from 'identifier'.

Parameters:

string EclipseId (string idenfier) | 1283

identifier The identifier.

Returns:

A string.

string EncodeURI (string value)

Encode 'value' string as an escaped URI.

Parameters:

1284 | string EncodeURI (string value)

value The value.

Returns:

A string.

string EncodeURIComponent (string value)

Encode 'value' string, a partial URI component, as an escaped URI.

Parameters:

string EncodeURIComponent (string value) | 1285

value The value.

Returns:

A string.

string EscapeForXMLAttribute (string value)

Escape 'value' string so that it can be written as an XML attribute.

Parameters:

1286 | string EscapeForXMLAribute (string value)

value The value.

Returns:

A string.

Write onClick handler for <div> tag.
<html:div onClick="{wwstring:EscapeForXMLAttribute('alert(\'Boo!
\');')}">

 Click me!

</html:div>

string Format (string format, string argument1 [, string argument2, string
argument3, string argument4, string argument5, string argument6, string
argument7, string argument8, string argument9, string argument10])

Format a message using the C# string formatter.

Parameters:

string Format (string format, string argument1 [, string argument2, string argument3, string argument4, string argument5, string
argument6, string argument7, string argument8, string argument9, string argument10]) | 1287

format Describes the format to use.

argument1 The first argument.

argument2 – argument10 Additional arguments (optional).

Returns:

The formatted value.

Create the message: '17 total'.
<xsl:value-of select="wwstring:Format('{0} total', 17)" />

Create the message: '17 total, 15 of 17'.
<xsl:value-of select="wwstring:Format('{0} total, {1} of {0}.', 17,
 15)" />

string FromFile (string sourceFilePath, string sourceFileEncodingName)

Import file contents using 'sourceFileEncodingName' as the file's assumed encoding.

Parameters:

1288 | string FromFile (string sourceFilePath, string sourceFileEncodingName)

sourceFilePath Full pathname of the source file.

sourceFileEncodingName Name of the source file encoding.

Returns:

A string.

Import the contents of file: 'C:.txt' which was encoded using UTF-8.
<xsl:value-of select="wwstring:FromFile('C:\myfile.txt', 'UTF-8')" />

string JavaScriptEncoding (string value)

Convert all non-ASCII characters to Unicode escape sequences. Also convert all ASCII
characters less than 32 along with problematic escape characters, i.e. \, to Unicode
escape sequences.

Parameters:

string JavaScriptEncoding (string value) | 1289

value The value.

Returns:

A string.

Convert Hello!

to JavaScript encoded text.
<xsl:value-of select="wwstring:JavaScriptEncoding('Hello\nworld!
\n')" />

bool MatchExpression (string input, string matchExpressionAsString)

Return success of match for 'matchExpressionAsString' in 'input'.

Exceptions:

1290 | bool MatchExpression (string input, string matchExpressionAsString)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

bool MatchExpression (string input, string matchExpressionAsString) | 1291

input The input.

matchExpressionAsString The match expression as string.

Returns:

True if match found, false otherwise.

Contains 3-4 "a"s?
<xsl:value-of select="wwstring:Replace('<letter>scar's <letter>nly
 <letter>strich <letter>iled an <letter>range <letter>wl
 t<letter>day.', '<letter>', 'o')" />

string MatchExpressionValue (string input, string matchExpressionAsString)

Return value of match for 'matchExpressionAsString' in 'input'.

Exceptions:

1292 | string MatchExpressionValue (string input, string matchExpressionAsString)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

string MatchExpressionValue (string input, string matchExpressionAsString) | 1293

input The input.

matchExpressionAsString The match expression as string.

Returns:

String.

Value of 3-4 "a"s.
<xsl:value-of select="wwstring:MatchExpressionValue('The end of aa
 sentenceaaaaalways leaves me sad.', 'a{3-4}')" />

string MD5Checksum (string value)

Compute the MD5 checksum on the given 'value' string.

Parameters:

1294 | string MD5Checksum (string value)

value The value.

Returns:

A string.

Determine the MD5 signature for A long time ago, way back in history, when all
there was to drink, was nothing but cups 'o tea..
<xsl:value-of select="wwstring:MD5Checksum('A long time ago, way back
 in history, when all there was to drink, was nothing but cups \'o
 tea.')" />

string NCNAME (string identifier)

Convert 'identifier' to a valid NCNAME as defined by:

http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCNameChar.

Parameters:

string NCNAME (string idenfier) | 1295

http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCNameChar

identifier The identifier.

Returns:

A string.

Create an NCName from 'id' attribute.
<xsl:value-of select="wwstring:NCNAME($VarTable/@id)" />

string NormalizeQuotes (string value)

Convert the given string to a string where all left/right single/double quotes are
normalized. Left single quotation mark = single quotation mark Right single quotation
mark = single quotation mark Left double quotation mark = double quotation mark
Right double quotation mark = double quotation mark

Parameters:

1296 | string NormalizeQuotes (string value)

value The value.

Returns:

String.
<xsl:value-of select="wwstring:NormalizeQuotes('string-with-left-
right-quote-marks...')" />

string OEBClassName (string styleName)

Create a valid Open eBook class name from 'styleName'.

Parameters:

string OEBClassName (string styleName) | 1297

styleName Name of the style.

Returns:

A string.

string Replace (string input, string search, string replacement)

Replace all occurrences of 'search' in 'input' with 'replacement'.

Parameters:

1298 | string Replace (string input, string search, string replacement)

input The input.

search The search.

replacement The replacement.

Returns:

Result String.

Replace all instances of <letter> with O.
<xsl:value-of select="wwstring:Replace('<letter>scar's <letter>nly
 <letter>strich <letter>iled an <letter>range <letter>wl
 t<letter>day.', '<letter>', 'o')" />

string ReplaceWithExpression (string input, string searchExpressionAsString,
string replacement)

Replace all occurrences of 'searchExpressionAsString' in 'input' with 'replacement'.

Parameters:

string ReplaceWithExpression (string input, string searchExpressionAsString, string replacement) | 1299

input The input.

searchExpressionAsString The search expression as string.

replacement The replacement.

Returns:

String.

Replace runs of 3-4 "a"s with ". ".
<xsl:value-of select="wwstring:ReplaceWithExpression('The end of aa
 sentenceaaaaalways leaves me sad.', 'a{3-4}', '. ')" />

string ReplaceWithExpressionForCount (string input, string
searchExpressionAsString, string replacement, int count)

Replace 'count' occurrences of 'searchExpressionAsString' in 'input' with
'replacement'.

Parameters:

1300 | string ReplaceWithExpressionForCount (string input, string searchExpressionAsString, string replacement, int
count)

input The input.

searchExpressionAsString The search expression as string.

replacement The replacement.

count Number of.

Returns:

A string.

Replace first run of 3-4 "a"s with ". ".
<xsl:value-of select="wwstring:ReplaceWithExpression('The end of aa
 sentenceaaaaalways leaves me sad.', 'a{3-4}', '. ', 1)" />

string SHA1Checksum (string value)

Compute the SHA-1 (Secure Hash Algorithm 1) checksum on the given 'value' string.

Parameters:

string SHA1Checksum (string value) | 1301

value The value.

Returns:

A string.

Determine the SHA1 signature for A long time ago, way back in history, when all
there was to drink, was nothing but cups 'o tea..
<xsl:value-of select="wwstring:SHA1Checksum('A long time ago, way back
 in history, when all there was to drink, was nothing but cups \'o
 tea.')" />

string ToLower (string value)

Convert the given string to lowercase.

Parameters:

1302 | string ToLower (string value)

value The value.

Returns:

String.
<xsl:value-of select="wwstring:ToLower('UppERcAse')" />

string ToUpper (string value)

Convert the given string to uppercase.

Parameters:

string ToUpper (string value) | 1303

value The value.

Returns:

String.
<xsl:value-of select="wwstring:ToUpper('lOwErcAsE')" />

string ToCamel (string value)

Convert the given string to camel case.

Parameters:

1304 | string ToCamel (string value)

value The value.

Returns:

String.
<xsl:value-of select="wwstring:ToCamel('camel case')" />

string ToPascal (string value)

Convert the given string to pascal case.

Parameters:

string ToPascal (string value) | 1305

value The value.

Returns:

String.
<xsl:value-of select="wwstring:ToPascal('pascal case')" />

bool EndsWith (string input, string suffix)

Return success of suffix being the suffix of input.

Parameters:

1306 | bool EndsWith (string input, string suffix)

input The input.

suffix The suffix.

Returns:

Bool.

Check if ".scss" is suffix of "webworks.scss". This returns True.
<xsl:value-of select="wwstring:EndsWith('webworks.scss', '.scss')" />

string WebWorksHelpContextOrTopic (string key)

Converts the given 'key' into a valid WebWorks Help/Reverb context or topic string.

Note: WebWorks Help/Reverb context and topic strings may only contain the
characters A-Z, a-z, 0-9, and _.

Parameters:

string WebWorksHelpContextOrTopic (string key) | 1307

key The key.

Returns:

A string.

Convert A long time... into a valid WebWorks Help context or topic name.
<xsl:value-of select="wwstring:WebWorksHelpContextOrTopic('A long
 time...')" />

Units

urn:WebWorks-XSLT-Extension-Units

Functions

double Convert (double sourceValue, string sourceUnits, string
targetUnits)

Convert a measurement from one set of units to another.

string CSSRGBColor (string htmlColor)

Convert the given HTML/CSS color to a hex encoded CSS color. Useful for converting
named colors such as green to their hex equivalents.

string EncodingFromCodePage (int codePage)

Determine the HTML encoding for a page given a Windows code page value.

string NumericPrefix (string value)

Extract the numeric prefix of 'value'.

string RTFColor (string htmlColor)

Convert a standard HTML/CSS color to an RTF color.

string UnitsSuffix (string value)

Extract the units suffix of 'value'. Only returns a non-zero length string of there is
also a numeric prefix.

Detailed Description

1308 | Units

urn:WebWorks-XSLT-Extension-Units

Utility methods for extracting units and value from raw strings along with unit-to-
unit conversion routines.

double Convert (double sourceValue, string sourceUnits, string targetUnits)

Convert a measurement from one set of units to another.

Parameters:

double Convert (double sourceValue, string sourceUnits, string targetUnits) | 1309

sourceValue Source value.

sourceUnits Source units.

targetUnits Target units.

Returns:

A number.

Convert 2in to centimeters (cm).
<xsl:variable name="VarCentimeters"
 select="wwunits:Convert(wwunits:NumericPrefix('2in'),
 wwunits:UnitsSuffix('2in'), 'cm')" />

string CSSRGBColor (string htmlColor)

Convert the given HTML/CSS color to a hex encoded CSS color. Useful for converting
named colors such as green to their hex equivalents.

Exceptions:

1310 | string CSSRGBColor (string htmlColor)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

string CSSRGBColor (string htmlColor) | 1311

htmlColor The HTML color.

Returns:

Hex encoded CSS color as string.

Convert green to the hex equivalent.
<xsl:variable name="VarGreenAsRGB"
 select="wwunits:CSSRGBColor('green')" />

string EncodingFromCodePage (int codePage)

Determine the HTML encoding for a page given a Windows code page value.

Exceptions:

1312 | string EncodingFromCodePage (int codePage)

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

string EncodingFromCodePage (int codePage) | 1313

codePage The code page.

Returns:

A string.

Determine the HTML encoding for code page 23.
<xsl:variable name="VarEncoding"
 select="wwunits:EncodingFromCodePage(23)" />

string NumericPrefix (string value)

Extract the numeric prefix of 'value'.

Parameters:

1314 | string NumericPrefix (string value)

value The value.

Returns:

A string.

Determine numeric prefix of 24px.
<xsl:variable name="VarNumber"
 select="wwunits:NumericPrefix('24px')" />

string RTFColor (string htmlColor)

Convert a standard HTML/CSS color to an RTF color.

Exceptions:

string RTFColor (string htmlColor) | 1315

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1316 | string RTFColor (string htmlColor)

htmlColor The HTML color.

Returns:

RTF color as string.

Convert #FF3399 to an RTF color.
<xsl:varaible name="VarRTFColor"
 select="wwunits:RTFColor('#FF3399')" />

string UnitsSuffix (string value)

Extract the units suffix of 'value'. Only returns a non-zero length string of there is
also a numeric prefix.

Parameters:

string UnitsSuffix (string value) | 1317

value The value.

Returns:

A string.

Determine units of 24px.
<xsl:variable name="VarNumber" select="wwunits:UnitsSuffix('24px')" />

URI

urn:WebWorks-XSLT-Extension-URI

Functions

string AsFilePath (string uriAsString)

Converts an uriAsString to a file path.

string AsURI (string filePathAsString)

Converts a file path to an uriAsString.

string EscapeData (string unescapedString)

Convert unescaped string into an escaped URI data.

string EscapeUri (string unescapedUri)

Convert unescaped URI into an escaped URI path.

string GetRelativeTo (string uriAsString, string anchorUriAsString)

Convert an absolute URI into a relative URI.

bool IsFile (string uriAsString)

Determine if the supplied URI refers to the file system.

string MakeAbsolute (string absoluteUriAsString, string uriAsString)

Convert a relative URI into an absolute URI. If the second parameter is already an
absolute URI, it will be returned unchanged.

1318 | URI

XPathNodeIterator PossibleResolvedUris (string uriAsString)

Convert file paths to URIs.

string Unescape (string escapedString)

Convert URI escaped string into unescaped string (%20 to space, etc.).

Detailed Description

urn:WebWorks-XSLT-Extension-URI

Utility methods which convert to and from file paths and create absolute or relative
URIs.

string AsFilePath (string uriAsString)

Converts an uriAsString to a file path.

Exceptions:

string AsFilePath (string uriAsString) | 1319

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1320 | string AsFilePath (string uriAsString)

uriAsString The URI as string.

Returns:

File path as string.

Convert URIs (i.e. file:///network/filesystem/file) to file paths.
<xsl:variable name="VarFilePath1" select="wwuri:AsFilePath('\\\
\network\\filesystem\\file')">

<xsl:variable name = "VarFilePath2" select="wwuri:AsFilePath('file:///
network/filesystem/file')">

string AsURI (string filePathAsString)

Converts a filePathAsString to a URI.

Exceptions:

string AsURI (string filePathAsString) | 1321

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1322 | string AsURI (string filePathAsString)

filePathAsString The file path as string.

Returns:

URI as string.

Convert file paths (i.e. C:\file) to URI strings (i.e. file:///C:/file).
<xsl:variable name="VarURI" select="wwuri:AsURI('C:\\file')">

string EscapeData (string unescapedString)

Convert unescaped string into an escaped URI data.

Parameters:

string EscapeData (string unescapedString) | 1323

unescapedString The unescaped string.

Returns:

Escaped string.

Convert http://www.webworks.com/name with spaces.html to http%3a%2f
%2fwww.webworks.com%2fname%20with%20spaces.html.
<xsl:variable name="VarEscapedData" select="wwuri:EscapeData('http://
www.webworks.com/name with spaces.html')" />

string EscapeUri (string unescapedUri)

Convert unescaped URI into an escaped URI path.

Parameters:

1324 | string EscapeUri (string unescapedUri)

unescapedUri URI of the unescaped.

Returns:

Escaped URI as a string.

Convert http://www.webworks.com/name with spaces.html to http://
www.webworks.com/name%20with%20spaces.html.
<xsl:variable name="VarEscapedURI" select="wwuri:EscapeUri('http://
www.webworks.com/name with spaces.html')" />

string GetRelativeTo (string uriAsString, string anchorUriAsString)

Convert an absolute URI into a relative URI.

Exceptions:

string GetRelaveTo (string uriAsString, string anchorUriAsString) | 1325

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1326 | string GetRelaveTo (string uriAsString, string anchorUriAsString)

uriAsString The URI as string.

anchorUriAsString The anchor URI as string.

Returns:

The relative to.

Determine the relative path to http://www.webworks.com/css/webworks.css from
http://www.webworks.com/information/index.html.
<xsl:variable name="VarRelativeURI"
 select="wwuri:GetRelativeTo('http://www.webworks.com/css/
webworks.css', 'http://www.webworks.com/information/index.html')" />

bool IsFile (string uriAsString)

Determine if the supplied URI refers to the file system.

Exceptions:

bool IsFile (string uriAsString) | 1327

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1328 | bool IsFile (string uriAsString)

uriAsString The URI as string.

Returns:

True if file, false if not.

Determine if \network and file:///network/filesystem/file are file URIs.
<xsl:if test="wwuri:IsFile('\\\\network\\filesystem\\file')">

 <xsl:variable name = "VarLog" select="wwlog:Message('File!')" />

</xsl:if>

<xsl:if test="wwuri:IsFile('file:///network/filesystem/file')">

 <xsl:variable name = "VarLog" select="wwlog:Message('File!')" />

</xsl:if>

string MakeAbsolute (string absoluteUriAsString, string uriAsString)

Convert a relative URI into an absolute URI. If the second parameter is already an
absolute URI, it will be returned unchanged.

Exceptions:

string MakeAbsolute (string absoluteUriAsString, string uriAsString) | 1329

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1330 | string MakeAbsolute (string absoluteUriAsString, string uriAsString)

absoluteUriAsString The absolute URI as string.

uriAsString The URI as string.

Returns:

URI as string.

Fully qualify the relative URI ../css/webworks.css against the absolute URI http://
www.webworks.com/information/index.html.
<xsl:variable name="VarCSSURI" select="wwuri:MakeAbsolute('http://
www.webworks.com/information/index.html', '../css/webworks.css')" />

XPathNodeIterator PossibleResolvedUris (string uriAsString)

Convert file paths to URIs.

Exceptions:

XPathNodeIterator PossibleResolvedUris (string uriAsString) | 1331

OutOfMemoryException Thrown when a low memory
situation occurs.

Parameters:

1332 | XPathNodeIterator PossibleResolvedUris (string uriAsString)

uriAsString The URI as string.

Returns:

A node set of possible resolved URIs for the given virtual URI.
<wwuri:Uris>

 <wwuri:Uri value = "file:///C:/Users/user/Projects/Targets/Reverb/
Transforms/pages.xsl" />

 < wwuri:Uri value = "file:///C:/Users/user/Projects/Formats/WebWorks
 Reverb/Transforms/pages.xsl" />

 < wwuri:Uri value = "file:///C:/Program Files (x86)/WebWorks/
ePublisher/2012.4/Formats/WebWorks Reverb/Transforms/pages.xsl" />

</ wwuri:Uris>

Resolve virtual URI wwformat:Transforms/pages.xsl.
<xsl:variable name="VarPossibleURIs"
 select="wwuri:PossibleResolvedUris('wwformat:Transforms/
pages.xsl')" />

<xsl:for-each select = "$VarPossibleURIs/wwuri:Uris/wwuri:Uri" >

 <xsl:variable name = "VarPossibleURI" select="." />

 <xsl:if test="wwuri:IsFile($VarPossibleURI)">

 <xsl:variable name = "VarPossibleFilePath"
 select="wwuri:AsFilePath($VarPossibleURI)" />

 <xsl:if test="wwfilesystem:FileExists($VarPossibleFilePath)">

 ...

 </xsl:if>

 </xsl:if>

</xsl:for-each>

string Unescape (string escapedString)

string Unescape (string escapedString) | 1333

Convert URI escaped string into unescaped string (%20 to space, etc.).

Parameters:

1334 | string Unescape (string escapedString)

escapedString The escaped string.

Returns:

Unescaped string.

Convert name%20with%20spaces.html to name with spaces.html.
<xsl:variable name="VarUnescape" select="wwuri:Unescape('name%20with
%20spaces.html')" />

ZipExtension

urn:WebWorks-XSLT-Extension-Zip

Functions

void Zip (string zipFilePath, object nodes)

Create a zip archive containing a list of files.

void ZipAdd (string zipFilePath, object nodes)

Add a list of files to a zip archive.

void ZipAddWithoutCompression (string zipFilePath, object nodes)

Add a list of files to a zip archive without compressing any files.

void ZipDirectory (string zipFilePath, string directoryPath)

Zip a directory and recursively include sub-directories without compressing any files.

void ZipDirectoryWithoutCompression (string zipFilePath, string
directoryPath)

Zip a directory and recursively include sub-directories without compressing any files.

void ZipExtract (string zipFilePath, string targetDirectory)

Extract contents of a zip archive to a specified directory location.

void ZipWithoutCompression (string zipFilePath, object nodes)

Create a zip archive containing a list of files without compressing any files.

ZipExtension | 1335

Detailed Description

urn:WebWorks-XSLT-Extension-Zip

Allow XSL transforms to handle zip archives.

void Zip (string zipFilePath, object nodes)

Create a zip archive containing a list of files.

Parameters:

1336 | void Zip (string zipFilePath, object nodes)

zipFilePath Full pathname of the zip file.

nodes The node set.

Creates a zip archive C:.zip with the contents defined in the node set.
<xsl:variable name="VarZipListAsXML">

 <wwzip:File source = "C:\some\directory\alpha.txt" zip-
directory="directory" />

 <wwzip:File source = "C:\some\directory\beta.txt" zip-
directory="directory" />

 <wwzip:File source = "C:\some\directory\gamma.txt" zip-
directory="directory" />

 <wwzip:File source = "C:\some\directory\last\gamma.txt" zip-
directory="directory\last" />

</xsl:variable>

<xsl:variable name = "VarZipList" select="wwzip:Zip('C:\some
\archive.zip', msxsl:node-set($VarZipListAsXML)/*" />

void ZipAdd (string zipFilePath, object nodes)

Add a list of files to a zip archive.

Parameters:

void ZipAdd (string zipFilePath, object nodes) | 1337

zipFilePath Full pathname of the zip file.

nodes The node set.

Append to zip archive C:.zip with the contents defined in the node set.
<xsl:variable name="VarZipListAsXML">

 <wwzip:File source = "C:\some\directory\alpha.txt" zip-
directory="directory" />

 <wwzip:File source = "C:\some\directory\beta.txt" zip-
directory="directory" />

 <wwzip:File source = "C:\some\directory\gamma.txt" zip-
directory="directory" />

 <wwzip:File source = "C:\some\directory\last\gamma.txt" zip-
directory="directory\last" />

</xsl:variable>

<xsl:variable name = "VarZipList" select="wwzip:ZipAdd('C:\some
\archive.zip', msxsl:node-set($VarZipListAsXML)/*" />

void ZipAddWithoutCompression (string zipFilePath, object nodes)

Add a list of files to a zip archive without compressing any files.

Parameters:

1338 | void ZipAddWithoutCompression (string zipFilePath, object nodes)

zipFilePath Full pathname of the zip file.

nodes The node set.

Append to zip archive C:.zip with the contents defined in the node set.
<xsl:variable name="VarZipListAsXML">

 <wwzip:File source = "C:\some\directory\alpha.txt" zip-
directory="directory" />

 <wwzip:File source = "C:\some\directory\beta.txt" zip-
directory="directory" />

 <wwzip:File source = "C:\some\directory\gamma.txt" zip-
directory="directory" />

 <wwzip:File source = "C:\some\directory\last\gamma.txt" zip-
directory="directory\last" />

 </xsl:variable>

<xsl:variable name = "VarZipList"
 select="wwzip:ZipAddWithoutCompression('C:\some\archive.zip',
 msxsl:node-set($VarZipListAsXML)/*" />

void ZipDirectory (string zipFilePath, string directoryPath)

Zip a directory and recursively include sub-directories without compressing any files.

Parameters:

void ZipDirectory (string zipFilePath, string directoryPath) | 1339

zipFilePath Full pathname of the zip file.

directoryPath Full pathname of the directory.

Creates zip archive C:.zip with the directory and and subdirectories of 'C:\ projects'.
<xsl:variable name="VarZipDirectory" select="wwzip:ZipDirectory('C:
\some\archive.zip', 'C:\projects\myproject'" />

void ZipDirectoryWithoutCompression (string zipFilePath, string directoryPath)

Zip a directory and recursively include sub-directories without compressing any files.

Parameters:

1340 | void ZipDirectoryWithoutCompression (string zipFilePath, string directoryPath)

zipFilePath Full pathname of the zip file.

directoryPath Full pathname of the directory file.

Creates zip archive C:.zip with the directory and and subdirectories of C:\ projects.
<xsl:variable name="VarZipDirectory"
 select="wwzip:ZipDirectoryWithoutCompression('C:\some\archive.zip',
 'C:\projects\myproject'" />

void ZipExtract (string zipFilePath, string targetDirectory)

Extract contents of a zip archive to a specified directory location.

Parameters:

void ZipExtract (string zipFilePath, string targetDirectory) | 1341

zipFilePath Full pathname of the zip file.

targetDirectory Pathname of the target directory.

Extracts the contents of zip archive C:.zip to C:.
<xsl:variable name="VarZipExtract" select="wwzip:ZipExtract('C:\some
\archive.zip', 'C:\projects\myproject'" />

void ZipWithoutCompression (string zipFilePath, object nodes)

Create a zip archive containing a list of files without compressing any files.

Parameters:

1342 | void ZipWithoutCompression (string zipFilePath, object nodes)

zipFilePath Full pathname of the zip file.

nodes The nodes.

Creates a zip archive C:.zip with the contents defined in the node set.
<xsl:variable name="VarZipListAsXML">

 <wwzip:File source = "C:\some\directory\alpha.txt" zip-
directory="directory" />

 <wwzip:File source = "C:\some\directory\beta.txt" zip-
directory="directory" />

 <wwzip:File source = "C:\some\directory\gamma.txt" zip-
directory="directory" />

 <wwzip:File source = "C:\some\directory\last\gamma.txt" zip-
directory="directory\last" />

</xsl:variable>

<xsl:variable name = "VarZipList"
 select="wwzip:ZipWithoutCompression('C:\some\archive.zip',
 msxsl:node-set($VarZipListAsXML)/*" />

void ZipWithoutCompression (string zipFilePath, object nodes) | 1343

Frequently Asked Questions
What changed in Font Awesome version 5.15.4 from 4.7.x that impacts Reverb 2.0?
How do I disable automatic Preview generation in Designer?
How do I capture source file meta data in the published HTML output?
How do I use a Project Variable's value in the published output?
How do I upgrade an existing WebWorks Reverb 2.0 project to a newer version?
How to add an image icon and stylize your DITA Hazard statement elements?
How to supplement or replace Reverb Toolbar Group Tabs
Invalid File Path Characters Filtered from Generated File Names
How to enable 'WebWorks Menu' (Transit) Add-in for Microsoft Word
How do I set image horizontal alignment in ePublisher?
Why is the PDF format skipping Markdown files?
How can a markdown file include another?
How can you insert an Index Marker into a Markdown file?
How to use alternate DITA-OT installation with ePublisher
How do I embed HTML within DITA source content?
How to use Context Links in Reverb 2.0
What happens if a Reverb link is no longer valid?
How do I know what baggage files are in my Reverb 2.0 output?
What user interactions can Reverb track in Google Analytics?
How can I modify the Reverb search result summary?
How to add Keywords meta data to generated HTML pages
Why does HTML content within my source file not publish to PDF?

What changed in Font Awesome
version 5.15.4 from 4.7.x that impacts
Reverb 2.0?
The Font Awesome library included with ePublisher and used in the WebWorks
Reverb 2.0 format was upgraded the 2021.1 version of ePublisher.

Most of the icons and glyphs used by WebWorks Reverb 2.0 look and function
the same, however there are some differences to be aware of that may impact your
own advanced customizations.

Three new classes were introduced: fas
 far fab

• fas , which replaces fa is typically used to get the solid version of an icon.
fa is backward compatible with fas and may not need to be changed in pre-
existing implementations.

• far is typically used to get the regular version of an icon, and is thinner and
lighter than the fas version.

• fab is used for icons that represent a brand, for example the Twitter icon.

1344 | What changed in Font Awesome version 5.15.4 from 4.7.x that impacts Reverb 2.0?

Font Awesome Cheatsheet
Free to use icons can be found at: https://fontawesome.com/v5/cheatsheet/free

How do I disable automatic Preview
generation in Designer?
In ePublisher Designer's Document Manager, to disable the automatic generation
of Preview tabs each time a document is added, do the following:

1. Open the Preferences dialog using menu: Edit > Preferences.

2. Uncheck Automatically display preview for newly imported
documents.

3. Select OK

In addition, you can disable generation of Preview tabs when double-clicking
documents in the Document Manager by also unchecking:

Display preview on document double-click

How do I disable automac Preview generaon in Designer? | 1345

https://fontawesome.com/v5/cheatsheet/free

How do I capture source file meta data
in the published HTML output?
You can capture location specific meta data within your source content and then use
it in your generated HTML pages.

The most common way to use this kind of data is through the Page.asp template
file.

For example, a marker called ReviewDate in your source content could contain the
date this section of the file was reviewed. Then using an advanced customization of
Page.asp , the following would conditionally emit its value on the generated HTML
page.

1346 | How do I capture source file meta data in the published HTML output?

<div wwpage:content="wwmarker:ReviewDate"
 wwpage:condition="wwmarker:ReviewDate">

 October 20, 2021

</div>

How do I use a Project Variable's value
in the published output?
If your ePublisher project configures a specific variable to a non-empty value, then
that value can be captured in your generated output even if the variable is not used
in the source content.

Project variables can be captured using attributes in the Page.asp template file.

For example, if a project variable called ProductVersion has been configured in
ePublisher to a non-empty value such as: 1.0 , then it can be published in your
generated output as follows:

How do I use a Project Variable's value in the published output? | 1347

<div

 wwpage:content="projvars:ProductVersion"

 wwpage:condition="projvars:ProductVersion">

 x.x

</div>

How do I upgrade an existing
WebWorks Reverb 2.0 project to a
newer version?
The following video walks through all of the steps that may be required to upgrade
an existing WebWorks Reverb 2.0 project.

Watch on youtube to access the video's quick links.

See video on Reverb 2.0 Typical Customization Tasks.

How to add an image icon and stylize
your DITA Hazard statement elements?
Specify an image file to use for your Hazard Caution Label paragraph style in the
Style Designer.
It will show up to the left of your content's Hazard statement.
For example:

ePublisher Designer Display Preview

1348 | How to add an image icon and stylize your DITA Hazard statement elements?

https://www.youtube.com/watch?v=PeIV2XgNs2o

For each type of Hazard statement, there are a set of Designer styles as follows:

• Paragraph

◦ Hazard <Type>
◦ Hazard <Type> Consequence
◦ Hazard <Type> HowToAvoid
◦ Hazard <Type> HowToAvoid End
◦ Hazard <Type> Label
◦ Hazard <Type> Type

• Table

◦ Hazard <Type>

Note:
There is a placeholder style used that is shared by all Hazard statements for the
empty regions of the table. It does not need to be styled.

• Paragraph

◦ Hazard Empty

How to supplement or replace Reverb
Toolbar Group Tabs
Create an Advanced Customization of the file Connect.asp to add to or replace
the Reverb Toolbar group tabs.

For example:

Reverb 2.0 Toolbar with Additional Tab

How to supplement or replace Reverb Toolbar Group Tabs | 1349

Steps

1. Create Advanced Target Customization for Connect.asp .

2. Locate HTML code for tabs by searching for toolbar-tabs in Connect.asp .

3. Copy existing <li wwpage:replace="toolbar-tabs">.. element with
sub-content to use as starting point for each new tab to create.

4. Remove attribute wwpage:replace="toolbar-tabs" from your newly pasted
elements. This attribute is only used to inject a list of the ePublisher project's
group tabs into the output.

◦ Note: If you want to remove the group tabs from the toolbar, remove
the wwpage:replace="toolbar-tabs" from all tab elements.

5. Specify desired href destination, usually a context specifier with Topic Alias
ID, such as: #context/<TOPIC ALIAS ID> .

6. Specify desired title attribute to produce fly over text for your tab.

7. Specify the text to appear on the tab itself.

8. Optionally, add a target attribute to open page in a new window, which is
required for destinations outside of the help set.

◦ For example: <a target="_blank" href="#context/LandingPage2"
 title="Landing Page 2">

Example Reverb Toolbar Tab Code

1350 | How to supplement or replace Reverb Toolbar Group Tabs

<ul class="ww_skin_toolbar_tab_group">

 <li wwpage:replace="toolbar-tabs">

 <div class="ww_skin_toolbar_tab">

 Home

 </div>

 <div class="ww_skin_toolbar_tab">

 Another Tab

 </div>

Invalid File Path Characters Filtered
from Generated File Names
When working with file systems and browsers, certain file path characters are
either forbidden or problematic. With ePublisher, you can use target settings and/or
Filename markers to influence the file names generated in your published output.
However, there are some characters that are considered invalid and ePublisher will
not use them when creating output file names.

You don't need to worry or track the invalid characters, because ePublisher will
automatically eliminate them from the output. In addition, any time an invalid

Invalid File Path Characters Filtered from Generated File Names | 1351

character is attempted to be used to generate a file name, ePublisher will replace
that character with a single '_' (underscore) character as a placeholder.

For example, if you had a heading paragraph that is attempting to generate a file
name such as: Document (%25).html . The actual generated file name will be:
Document (_25).html because the % character is a problematic character.

Aside: In URLs the % is a special character that is used to encode other characters,
making it problematic to use this character as itself in URL paths.

Invalid File Path Characters
"#$%&*+,/:;<=>?[\]|

Each occurrence of one of these characters will be replaced by a single _
(underscore) character.

How to enable 'WebWorks
Menu' (Transit) Add-in for Microsoft
Word
If you have WebWorks ePublisher component installed on your system and when
running Microsoft Word you do not see a WebWorks menu, then this article will
explain how to enable the Add-in called Transit.dotm .

WebWorks Menu Add-in for Microsoft Word

1352 | How to enable 'WebWorks Menu' (Transit) Add-in for Microso Word

Steps to Enable

Note: There are several ways to make the transit.dotm add-in available in the
Word toolbar (ribbon). The ePublisher Express installer will normally install the
add-in file to the prescribed location for your version of Microsoft Word. However,
sometimes the computer system will block the installer from copying the add-in
to this location. Find the location below for your version of Word and make sure
the file has been copied there. If it is not there, you can manually copy it from the
ePublisher installation folder, usually at the following.

C:\Program Files (x86)\WebWorks\ePublisher\2022.1\Transit

1. Location of transit.dotm based on the version of Microsoft Word.

◦ Word 2016 (64-bit) or later versions, possible locations:

C:\Program Files\Microsoft Office\office16\Startup\

C:\Program Files\Microsoft Office\root\office16\Startup\

◦ Word 2013 (64-bit), possible locations:

How to enable 'WebWorks Menu' (Transit) Add-in for Microso Word | 1353

C:\Program Files\Microsoft Office\office15\Startup\

C:\Program Files\Microsoft Office\root\office15\Startup\

◦ Word 2016 (32-bit) or later versions, possible locations:

C:\Program Files (x86)\Microsoft Office\office16\Startup\

C:\Program Files (x86)\Microsoft Office\root
\office16\Startup\

◦ Word 2013 (32-bit), possible locations:

C:\Program Files\Microsoft Office\office15\Startup\

C:\Program Files\Microsoft Office\root\office15\Startup\

2. On Microsoft Word Ribbon, click File > Options > Trust Center > Trusted
Locations.

◦ Click the Add New Location button
◦ Add the directory path noted above for transit.dotm .

How do I set image horizontal
alignment in ePublisher?
In ePublisher version 2022.1 and above, you can control the image alignment of
a Graphic Style using the Style Designer to modify that style's property: HTML >
Text > (Alignment) Horizontal.

Possible Horizontal Property Values

• Left
• Center
• Right

Note: If your authoring environment supports assigning horizontal alignment,
then that property will be inherited by the Graphic Style, which means the same
alignment will be used in the generated output without having to explicitly set it in
ePublisher's Style Designer.

Floating Image to Left or Right of Paragraph

To float an image style to the left or right of the paragraph that contains it, use the
Style Designer to modify the graphic style properties as follows.

1354 | How do I set image horizontal alignment in ePublisher?

Graphic Style Property Value

HTML > Display Block

HTML > Float Left or Right

Why is the PDF format skipping
Markdown files?
When generating the Output Format PDF using Markdown source documents, this
message will appear in the generation log:

[Warning] Skipping file ... PDF Format is only available for Word and
 FrameMaker documents. Use PDF - XSL-FO Format instead.

To publish PDF output using Markdown files, use the format PDF - XSL-FO, which is
available for all source document types.

The legacy format called: PDF was created only for publishing Adobe FrameMaker
and Microsoft Word source documents, and thus is not available for publishing
Markdown source content. If you do attempt to publish a markdown file using the
PDF format, you will get a warning message in your ePublisher generation log.

How can a markdown file include
another?
Using Markdown++ you can include the contents of one markdown file in another,
similar to the following:

<!--include:../Topics/MyTopic.md-->

In the above statement, a filename from the parent folder's Topics folder is being
included in markdown file.

How can a markdown file include another? | 1355

To include markdown files in other folders, be sure to use a path that is relative to
the file that contains the include statement. Absolute paths will work as well, but
might not be as portable if you move your content from one location to another.

How can you insert an Index Marker
into a Markdown file?
In your markdown file, you can insert an IndexMarker using the following syntax:

<!--markers:{"IndexMarker": "term1 term2"}-->

Paragraph to be used for the index terms: term1 and term2.

How to use alternate DITA-OT
installation with ePublisher
Set the DITA_HOME environment variable and ePublisher will use that installation
of the DITA Open Toolkit instead of the toolkits that it maintains in its installed
location.

ePublisher doesn't require anything unique for its use of the DITA-OT, however, you
may have your own custom plugins, in which case, this may be an easier way to
maintain and use the DITA-OT with ePublisher.

Steps

1. Set the environment variable DITA_HOME to the installation location of the
DITA-OT that you are using. For example: C:\dita-ot-4.0 .

2. Make sure that your ePublisher project is configured to use the same version
number (or closest) using the menu: Project > Project Settings.... Locate
the the setting: Input Configurations > DITA Open Toolkit version.

How do I embed HTML within DITA
source content?
It is often necessary to embed HTML within your DITA source content for supporting
the display of media such as youtube videos.

1356 | How do I embed HTML within DITA source content?

The two most common ways to embed HTML are through the use of a <foreign>
element or a paragraph with a custom outputclass assigned to it.

An example for each is as follows.

Using the <foreign> element

Note: Embedding a link to a local file, still requires that file to exist at the specified
link location. In other words, ePublisher will not handle it as a Baggage File.

<foreign audience="web">

 <![CDATA[

 <iframe width="800" height="500" src="_animation/
AC_41_Rackwinkel_1.html" frameborder="0" allowfullscreen="true">

 </iframe>

]]>

</foreign>

Using @outputclass to enable Pass Through behavior

How do I embed HTML within DITA source content? | 1357

<p outputclass="PassThrough" audience="web">

 <![CDATA[

 <iframe

 width="660"

 height="375"

 src="https://www.youtube.com/embed/D4QoQWboM-U?rel=0"

 frameborder="0"

 allow="accelerometer; autoplay; encrypted-media; gyroscope;
 picture-in-picture"

 allowfullscreen>

 </iframe>

]]>

</p>

Steps in ePublisher Designer
By default ePublisher disables HTML code within the source content, so you will
need to enable the appropriate paragraph style's Pass Through option in the Style
Designer.

1. In ePublisher Designer, open the Style Designer and select the name of the
paragraph style assigned with the @outputclass attribute or if you used
<foreign> , then the style name will be foreign .

2. Select the Options tab and then set the option: Pass Through to Enabled.

3. The ePublisher project will now generate the embedded HTML correctly and
you can deploy an updated Stationery for use in other Express projects.

How to use Context Links in Reverb 2.0

1358 | How to use Context Links in Reverb 2.0

If you are generating online help it may be more robust to use a context link to a
topic alias identifier instead of a traditional hyperlink to a filename and anchor.

Link Structure

#context/<TopicAlias Identifier>

#context/<Context>/<TopicAlias Identifier>

With a Reverb context link you are creating a link to a location. This is different
from a traditional hyperlink which points to a specific filename.

What happens if a Reverb link is no
longer valid?
When end-users access an invalid link in your published Reverb 2.0 online help
a standard page will be displayed in the same locale as the online help files. The
default text for this page is as follows:

404
File Not Found

How do I know what baggage files are
in my Reverb 2.0 output?
If you are linking to non-source files from within your source content, ePublisher
will treat them as Baggage Files and make them available as part of your
generated help set.

In Reverb 2.0, the generated file url_maps.xml (default filename) contains a
complete list of all the baggage files in your help set. The baggage file entries will
look similar to the following:

How do I know what baggage files are in my Reverb 2.0 output? | 1359

<BaggageMap>

 <Baggage

 basename="download_kit.zip"

 path="UserGuide\baggage\download_kit.zip"

 groupID="0jQCq1sTUkc"

 />

 .

 .

 .

</BaggageMap>

What user interactions can Reverb
track in Google Analytics?
When using the WebWorks Reverb 2.0 output format, you can enable the target
setting for Google Analytics and capture end-user interactions with the online help
content.

The users interactions that are tracked are as follows:

• Content page view
• Content page click
• Content page scroll
• Content page PDF button click
• Content page Print button click
• Content page "Back to top" button click
• Content page "Was this helpful - Yes" button click
• Content page "Was this helpful - No" button click
• Search query
• Search result page view
• Search result page "Was this helpful - Yes" button click
• Search result page "Was this helpful - No" button click
• Toolbar menu button click

1360 | What user interacons can Reverb track in Google Analycs?

• Toolbar search button click
• Toolbar previous button click
• Toolbar next button click
• Toolbar home button click
• Toolbar translate button click
• Menu TOC button click
• Menu Index button click
• "Context Sensitive Help" access

How can I modify the Reverb search
result summary?
The search result summaries use Description marker values when available in the
source content.

The marker must occur somewhere within the content that makes up the generated
output HTML page. Markers in other locations will not affect the search result
summary.

If a Description marker is not found, then the summary will be calculated from the
first paragraph(s) within the generated HTML page.

How to add Keywords meta data to
generated HTML pages
When generating HTML-based output such as the WebWorks Reverb 2.0 or
Dynamic HTML formats, you can use a Keywords marker to set the Keywords
meta data for the generated HTML page.

In some search engines, setting the Keywords meta data can make sure that your
audience knows that those keywords are important in the HTML file, even if those
keywords are not actually present in the file.

In the WebWorks Reverb 2.0" format, the Keywords marker can make those
words show up higher in priority in the search results when they are queried.

For example, in the following markdown source content, the keyword "WidgetXYZ"
will cause generated HTML page to show up with high priority in the search results.

How to add Keywords meta data to generated HTML pages | 1361

<!--markers:{"Keywords": "WidgetXYZ"}-->

The Widget Company

We make all kinds of widgets.

Why does HTML content within my
source file not publish to PDF?
PDF output does not support pass-through HTML. This includes even HTML content
within Markdown source files.

When ePublisher generates PDF output from content that contains HTML, the HTML
content is ignored since PDF viewers do not understand HTML.

[]: # "See how to disable the automatic preview"

1362 | Why does HTML content within my source file not publish to PDF?

	Table of Contents
	ePublisher Platform Documentation
	What's New in ePublisher 2024.1
	Adapters
	Formats
	Reverb 2.0
	PDF - XSL-FO
	User Interface
	Evaluation Materials
	Build Improvements
	Stationery
	General Improvements

	ePublisher 2024.1 Release Notes
	Improvements
	Fixed Issues
	Summary

	Contacting Quadralay
	Conventions
	Introduction to the WebWorks ePublisher Platform
	What Is ePublisher?
	Workflow
	WebWorks ePublisher Platform Components
	Supported Input Formats
	Supported Output Formats

	How ePublisher Helps You
	Streamline and Automate the Content Publishing Process
	Produce High Quality Deliverables with Fewer Individual Dependencies
	Reduce Support Costs and Increase Customer Satisfaction
	Quickly Update and Deliver Content More Often
	Reduce Content Management Life Cycle Costs

	How Organizations Use ePublisher
	Automatically Update Content on Web Sites
	Deliver Full-Featured, Context-Sensitive Help Systems
	Produce Single-Sourced Print and Online Optimized Content

	Planning and Installing ePublisher
	Licensing Considerations
	Components and Supported Configurations
	Requirements
	ePublisher Express, ePublisher Designer, and ePublisher AutoMap Requirements
	Additional Source Document Requirements
	Additional Output Format Requirements
	WebWorks Reverb 2.0
	Configuring web server for Reverb
	Reverb browser requirements

	WebWorks Reverb 1.0 Limitation
	Dynamic HTML
	PDF -XSL-FO
	eBook - ePUB 2.0
	Eclipse Help
	Microsoft HTML Help 1.x
	Oracle Help
	PDF
	Sun JavaHelp 2.0
	WebWorks Help 5.0

	Downloading ePublisher Installers
	Microsoft Windows Requirements
	Downloading and Installing the Microsoft .NET 4.7.2 Framework
	Installing ePublisher
	Installation Order for ePublisher Components
	Installing ePublisher Components
	Installing Ghostscript
	Ghostscript not Installed Warnings

	Configuring AutoMap for Microsoft Source Document Inputs
	Understanding Installed Sample Projects and Stationery

	Working with Contract IDs
	Viewing Licensing and Contract ID Information
	Obtaining Contract IDs
	Entering Contract IDs
	Managing Licensing in Environments without Internet Connectivity
	Updating Licensing
	Deactivating Licensing

	Upgrading from Previous Versions
	Updating ePublisher installation
	Preparing existing projects for ePublisher Upgrade
	Upgrading Typical ePublisher Implementations
	Upgrading Implementations with Advanced Customizations
	Upgrading Advanced Customizations of WebWorks Reverb 2.0

	Uninstalling ePublisher
	Troubleshooting Installation, License Keys, and Uninstallation
	Problems Installing ePublisher
	Error: Please Close all Running Sessions of Microsoft Word

	Problems with FrameMaker or Microsoft Word
	Error: Error Communicating with Adobe FrameMaker
	Error: Cannot Duplicate Document

	Problems with Contract IDs and Licensing
	No Contract ID Received
	Error: No Valid License Key Found
	Other Contract ID and Licensing Problems

	Exploring ePublisher
	Understanding the ePublisher Workflow
	Stationery Designers and ePublisher Designer
	Writers and ePublisher Express
	Automating Output Generation with ePublisher AutoMap

	Exploring the ePublisher User Interfaces
	Exploring the ePublisher Express User Interface
	Exploring the ePublisher Designer User Interface
	Understanding the Start Page
	Understanding Document Manager
	Including or Excluding Files

	Understanding Output Explorer
	Understanding the Log Window
	Understanding Style Designer
	Understanding the Preview Window
	Exploring the ePublisher AutoMap User Interface

	Customizing Your ePublisher Workspace
	Specifying General ePublisher Preferences

	Miscellaneous ePublisher Windows
	Add New Target Window
	Conditions Window
	Classic Tab
	Expressions Tab (FrameMaker Only)

	Cross Reference Rules Window
	Deployment Configuration (Name) Window
	Deployment Editor Window
	Documents Window
	Edit Target Window
	File Mapping Editor Window
	Folder Deployment Editor Window
	Target Settings Window
	Generated output location
	Deploy to
	List of Target Settings

	Job Info Window
	License Information Window
	Main ePublisher AutoMap Window
	Main ePublisher Window
	Document Manager
	Output Explorer
	Reports
	Reports - printable

	Start Page
	Log Window
	Preview Window
	Document Designer
	Style Designer
	Font Family Picker Window

	Manage Targets Window
	Merge Settings Window
	New ePublisher AutoMap Job Window
	New Project Wizard
	New Project Window (New Project Wizard)
	Browse For Folder Window (New Project Wizard)
	Source Documents Window (New Project Wizard)

	Preferences Window
	General Tab (Preferences Window)
	File Mappings Tab (Preferences Window)
	Notification Tab (Preferences Window)

	Project Settings Window
	File Mappings Tab (Project Settings Window)
	General Tab (Project Settings Window)
	Input Configurations Tab (Project Settings Window)

	Save As Stationery Window
	Script Editor Window
	Target Configuration Window
	Info Tab (Target Configuration Window)
	Conditions Tab (Target Configuration Window)
	Variables Tab (Target Configuration Window)
	Target Settings Tab (Target Configuration Window)
	Merge Settings Tab (Target Configuration Window)

	Target Selection Window
	User Information Window
	Variables Window
	WebWorks ePublisher Preferences Window
	General Tab (WebWorks ePublisher Preferences Window)
	File Mappings Tab (WebWorks ePublisher Preferences Window)
	Editor Preferences Tab (WebWorks ePublisher Preferences Window)
	Diff Preferences Tab (WebWorks ePublisher Preferences Window)
	Log Window Tab (WebWorks ePublisher Preferences Window)

	WebWorks Licensing Info Window

	Producing Output from Stationery
	What Makes an ePublisher Project
	ePublisher Projects
	Project Folder Structure

	Source Documents
	Targets
	Stationery
	Creating Projects Based on Stationery
	Working with Source Documents
	Adding Source Documents to Projects
	Opening Source Documents from Document Manager
	Scanning Source Documents
	Scanning and Scanning Options
	Setting Scanning Options
	Scanning Selected Documents
	Scanning All Documents

	Relinking Source Documents
	Removing Source Documents from Projects
	Source Documents Groups
	Organizing Source Documents Using Groups
	Creating Top-Level Groups
	Creating Subgroups
	Renaming Groups
	Rearranging Source Documents in Groups
	Removing Groups

	Working with Targets
	Specifying Active Targets
	Adding Targets to Projects Based on Stationery
	Renaming Targets
	Deleting Targets

	Working with Projects
	Saving Projects
	Opening Existing Projects
	Closing Projects
	Synchronizing Projects with Stationery
	Manifest Files
	Stationery Files
	When to Synchronize
	Automatically Synchronizing ePublisher Express Projects with Stationery
	Manually Synchronizing ePublisher Express Projects with Stationery
	Project Information that is not Synchronized

	Deleting Projects

	Generating and Regenerating Output
	Output Generation and Regeneration
	Generating Output
	Regenerating Output
	Generating Output from FrameMaker or Microsoft Word
	Modifying Help System Title Bars

	Viewing Output
	Viewing Output by Automatically Opening Generated Output
	Viewing Output in Output Explorer
	Viewing Output in the Output Folder
	Changing the Location of the Output Folder
	Working with Output Log Files

	Validating Output Using Reports
	Accessibility Reports
	Baggage Files Reports
	Conditions Reports
	Filenames Reports
	Links Reports
	Styles Reports
	Topics Reports
	Images Reports
	Printable Reports
	Configuring Reports
	Generating Reports
	Report Messages
	Accessibility Report Messages
	Baggage Files Report Messages
	Filename Report Messages
	Links Report Messages
	Topics Report Messages
	Images Report Messages

	Merging Top-level Groups (Multivolume Help)
	Deploying Output
	Output Deployment
	Creating Output Destinations
	Specifying Output Destinations for Targets
	Deploying Output to Output Destinations

	Working with Target Settings
	Specifying Accessibility Settings
	Specifying Baggage Files Settings
	Baggage files info list
	Copy baggage file dependents
	Index baggage files
	Index external links

	Specifying Company Information
	Specifying File Processing Behavior for Front Matter, Index, and Table of Contents Files
	Specifying Page Breaks Settings
	Specifying Page, Image, and Table File Naming Patterns
	Specifying Index Settings
	Specifying How Links to Files or External URLs Display in Browser Windows
	Specifying Unknown File Links Behavior in Reverb
	Specifying Character Encoding for Targets
	Specifying the Language Used by Targets
	Specifying PDF Generation Settings
	Specifying Table of Contents Settings
	Specifying Report Settings
	Specifying Output Format-Specific Settings

	Setting Variables in Projects
	Setting Conditions in Projects
	Setting Cross-References in Projects
	Modifying Cross-Reference Formats in Projects
	Adding Cross-Reference Formats to Projects
	Deleting Cross-Reference Formats from Projects

	File Mappings for Source Documents
	File Mappings
	Modifying File Mappings
	Creating New File Mappings
	Deleting File Mappings

	Scheduling and Integrating Processes with AutoMap
	How ePublisher Supports Automation
	What Is ePublisher AutoMap?
	Benefits of Using ePublisher AutoMap
	Version Control System (VCS) Integration
	Content Management System (CMS) Integration

	Preparing Projects, Stationery, and Source Files
	Starting ePublisher AutoMap
	Setting ePublisher AutoMap Preferences
	Specifying the Job, Staging, and User Formats Folder Locations
	Job Folder
	Staging Folder
	User Formats Folder

	Automatic Scanning for Conditions and Variables
	Keeping or Deleting Temporary Files
	Defining File Mappings
	Defining Output Destinations
	Defining Email Notifications
	Selecting Console Language (English, German, French, and Japanese)

	Working with Jobs
	Creating a Project-Based Job
	Creating a Stationery-Based Job
	Duplicating an Existing Job
	Editing an Existing Job
	Scheduling Jobs with Windows Scheduler
	Deleting an Existing Schedule for a Job
	Running an Existing Job
	Viewing a Job Log File
	Canceling a Job
	Deleting an Existing Job

	Using Scripts for Additional Custom Processing
	Writing Scripts
	Working Folder
	Opening and Using the Script Editor
	Scripting Variables
	Scripting Examples
	Show Time and Date Example
	Using Scripting Variables Example
	CVS Version Control Checkout Example

	Using the Command-Line Interface
	Running ePublisher AutoMap from the Command Line
	CLI Syntax and Reference
	CLI Examples
	Running a Project and Updating the Express project file
	Running a Project and Generating Only One Target
	Running a Project from Scratch and Deploying to a Clean Location
	Running a Project and Deploying to an Alternate Location
	Running a Job Without Sending Notification When Done
	Running a Job and Deploying to a Clean Location
	Running a Job Without Deploying the Content

	Markdown++ Source Documents
	Introduction
	Getting Started with Markdown
	Learning Markdown
	Paragraphs
	Titles
	Headings
	Lists
	Tables
	Blockquotes
	Code Fences
	Code Blocks
	Horizontal Rules
	Block HTML
	Bold, Italic, Strikethrough, Code
	Links
	Images
	Link References
	Inline HTML

	Learning Markdown++
	Markdown++ Basics
	Multiline Tables in Markdown++
	Custom Styles
	Custom Aliases
	Markers in Markdown++
	Conditions
	File Includes
	Variables

	Adobe FrameMaker
	Adobe FrameMaker Formats and Standards
	Standards for Single-Sourcing
	Planning for Importing Elements Across Files
	Paragraph Formats in FrameMaker
	Character Formats in FrameMaker
	Bulleted and Numbered Lists in FrameMaker
	Image Formats and Considerations in FrameMaker
	Table Formats in FrameMaker
	Cross Reference Formats in FrameMaker
	Markers in FrameMaker
	Variables and Conditions in FrameMaker
	Page Layouts in FrameMaker
	Reference Pages, Table of Contents, and Indexes in FrameMaker

	Implementing Online Features in FrameMaker
	Custom Marker Types in FrameMaker
	Paragraph and Character Formats in FrameMaker
	Obtaining and Applying the Latest Adobe FrameMaker Template
	Importing Custom Marker Types in FrameMaker
	Creating Custom Marker Types in FrameMaker
	Creating a Passthrough Marker in FrameMaker
	Creating Cross-References and Links in FrameMaker

	Working with Tables in FrameMaker
	Applying Table Formats in FrameMaker
	Creating Table Header Rows in FrameMaker
	Creating Table Footer Rows in FrameMaker

	Working with Images in FrameMaker
	Inserting Images in FrameMaker
	Creating Image Links in FrameMaker
	Creating Clickable Regions for Image Maps in FrameMaker
	Creating Image Maps for Single Images in FrameMaker
	Creating Image Maps for Composite Images in FrameMaker

	Assigning Image Scales in FrameMaker
	Assigning Image Styles in FrameMaker

	Working with Videos in FrameMaker
	Creating Index Entries in FrameMaker
	Using Variables in FrameMaker
	Importing or Creating Variables in FrameMaker
	Inserting Variables into FrameMaker
	Changing Variable Values in FrameMaker
	Deleting Variables in FrameMaker

	Using Conditions in FrameMaker
	Creating Conditions in FrameMaker
	Applying Conditions in FrameMaker
	Removing Conditions in FrameMaker
	Modifying Conditions in FrameMaker
	Showing and Hiding Conditions in FrameMaker
	Using Passthrough Conditions in FrameMaker
	Deleting Conditions in FrameMaker
	Conditional Output Using Expressions in FrameMaker

	Specifying Output File Names in FrameMaker
	Creating Context-Sensitive Help in FrameMaker
	Context-Sensitive Help in FrameMaker
	Planning for Context-Sensitive Help in FrameMaker

	Specifying Context-Sensitive Help Links in FrameMaker

	Creating Popup Windows in FrameMaker
	Creating Popup Window Links in FrameMaker
	Using Markers to Create Popup Windows in FrameMaker
	Using Paragraph Formats to Create Popup Windows in FrameMaker

	Creating Expand/Collapse Sections (Drop-Down Hotspots) in FrameMaker
	Creating Related Topics in FrameMaker
	Creating See Also Links in FrameMaker
	Creating Meta Tag Keywords in FrameMaker
	Assigning Custom Page Styles in FrameMaker
	Opening Topics in Custom Windows in FrameMaker
	Customizing TOC Entry in FrameMaker
	Customizing Table of Contents Icons in FrameMaker
	Specifying Context Plug-ins in FrameMaker
	Creating Accessible Online Content in FrameMaker
	Accessible Content in FrameMaker
	Accessible Content Navigation in FrameMaker
	Validating Accessible Content in FrameMaker
	Assigning Alternate Text to Images and Image Maps in FrameMaker
	Image and Image Map Alternate Text in FrameMaker
	Assigning Alternate Text to Images in FrameMaker
	Assigning Alternate Text to Image Maps in FrameMaker

	Assigning Long Descriptions to Images in FrameMaker
	Image Long Descriptions in FrameMaker
	Specifying Long Descriptions for Images in FrameMaker
	Using Text in External Files to Assign Long Descriptions to Images in FrameMaker
	Excluding Images from Accessibility Report Checks in FrameMaker

	Assigning Alternate Text (Summaries) to Tables in FrameMaker
	Excluding Tables from Accessibility Report Checks in FrameMaker
	Assigning Alternate Text to Abbreviations in FrameMaker
	Assigning Alternate Text to Acronyms in FrameMaker
	Providing Citations for Quotes in FrameMaker

	Troubleshooting FrameMaker issues

	Microsoft Word
	Microsoft Word Templates and Standards
	Word Standards to Support Single-Sourcing
	Microsoft Word Template File
	Creating a Clean Base Template File
	Paragraph Styles in Word
	Character Styles in Word
	Bulleted and Numbered Lists in Word
	Bulleted Lists in Word
	Numbered Lists in Word

	Image Styles and Considerations in Word
	Table Styles in Word
	Field Codes
	AutoText, AutoCorrect, and User-Defined Hotkeys
	Toolbars and Menus in Word
	Variables and Conditions in Word
	Page Layouts and Sections in Word
	Table of Contents and Index in Word
	Automation with Macros in Word

	Implementing Online Features in Word
	Custom Marker Types in Word
	Paragraph and Character Formats in Word
	Obtaining and Applying the Latest Microsoft Word Template

	Working with the WebWorks Transit Menu for Word
	WebWorks Transit Menu for Word
	Installing the WebWorks Transit Menu for Word
	Running Transit Menu in Secure Environments
	Initializing the WebWorks Transit Menu for Microsoft Word
	Displaying and Hiding the WebWorks Transit Menu in Word
	Creating Custom Marker Types Using the WebWorks Transit Menu in Word
	Creating a Passthrough Marker in Word

	Working with Tables in Word
	Applying Table Styles in Word
	Creating Table Header Rows in Word

	Working with Images in Word
	Inserting Images in Word
	Validating Images in Word
	Creating Image Links in Word
	Creating Clickable Regions for Image Maps in Word
	Creating Image Maps for Single Images in Word
	Creating Image Maps for Composite Images in Word

	Assigning Image Scales in Word
	Assigning Image Styles in Word

	Creating Index Entries in Word
	Using Variables in Word
	Creating Variables in Word
	Inserting Variables into Word
	Changing Variable Values in Word
	Deleting Variables in Word

	Using Conditions in Word
	Creating Conditions in Word
	Applying Conditions in Word
	Validating Conditions in Word
	Removing Conditions in Word
	Modifying Conditions in Word
	Highlighting All Conditions in Word
	Displaying Conditionalized Content with Conflicting Settings in Word
	Using Passthrough Conditions in Word
	Deleting Conditions in Word

	Specifying Output File Names in Word
	Specifying Page Output File Names in Word
	Specifying Image Output File Names in Word

	Creating Context-Sensitive Help in Word
	Context-Sensitive Help in Word
	Planning for Context-Sensitive Help in Word

	Specifying Context-Sensitive Help Links in Word

	Creating Popup Windows in Word
	Creating Popup Window Links in Word
	Using Markers to Create Popup Windows in Word
	Using Paragraph Styles to Create Popup Windows in Word

	Creating Expand/Collapse Sections (Drop-Down Hotspots) in Word
	Creating Related Topics in Word
	Creating Links to PDF in Word
	Creating See Also Links in Word
	Creating Meta Tag Keywords in Word
	Assigning Custom Page Styles in Word
	Creating What’s This (Field-Level) Help in Word
	Opening Topics in Custom Windows in Word
	Customizing TOC Entry in Word
	Customizing Table of Contents Icons in Word
	Specifying Context Plug-ins in Word
	Creating Accessible Online Content in Word
	Accessible Content in Word
	Accessible Content Navigation in Word
	Validating Accessible Content in Word
	Assigning Alternate Text to Images and Image Maps in Word
	Image and Image Map Alternate Text in Word
	Assigning Alternate Text to Images in Word
	Assigning Alternate Text to Image Maps in Word

	Assigning Long Descriptions to Images in Word
	Image Long Descriptions
	Specifying Long Descriptions for Images in Word
	Using Text in External Files to Assign Long Descriptions to Images in Word
	Excluding Images from Accessibility Report Checks in Word

	Assigning Alternate Text (Summaries) to Tables in Word
	Excluding Tables from Accessibility Report Checks in Word
	Assigning Alternate Text to Abbreviations in Word
	Assigning Alternate Text to Acronyms in Word
	Providing Citations for Quotes in Word

	Troubleshooting Word issues
	Word warning dialogs that interrupt conversions

	DITA - XML
	DITA Usage Standards
	DITA Standards for Single-Sourcing
	Mapping DITA Classes to ePublisher Styles
	Defining Online Features with DITA
	Configuring DITA Open Toolkit Version
	Customizing the DITA DTD
	DITA Specialization

	DITA Support
	Keyref elements
	Conref extensions

	Using Ditaval files in DITA
	Using Passthrough outputclass in DITA
	Embedding a Video in DITA Source Documents
	Embedding a Video file
	Linking to a Youtube Video

	Creating Context-Sensitive Help in DITA Source Documents
	Context-Sensitive Help
	Map Files
	Planning for Context-Sensitive Help
	Topic ID and File Name Requirements

	Output Formats that support Creating Context-Sensitive Help Links In DITA Source Documents
	Specifying Context-Sensitive Help Links in DITA Source Documents

	Creating Hyperlinks in DITA Source Documents
	Creating Popups in DITA Source Documents
	Popups
	Requirements for Creating Popups in DITA Source Documents
	Creating Popup Links in DITA Source Documents
	Using Paragraph Styles to Create Popups in DITA Source Documents

	Creating Related Topics in DITA Source Documents
	Related Topics
	Requirements for Creating Related Topics Links in DITA Source Documents
	Specifying Related Topics Links in DITA Source Documents

	Creating See Also Links in DITA Source Documents
	See Also Links
	Requirements for Creating See Also Links in DITA Source Documents
	Specifying See Also Links in DITA Source Documents

	Using the data element
	Assigning Custom Page Styles to Pages in DITA Source Documents
	Page Styles
	Requirements for Specifying Custom Page Styles for Pages in DITA Source Documents
	Specifying Custom Page Styles for Pages in DITA Source Documents

	Using Custom Graphic Styles for Images in DITA Source Documents
	Assigning Graphic Styles
	Default Graphic Styles for DITA

	Customizing TOC Entry in DITA
	Customizing Table of Contents Icons for Topics in DITA Source Documents Using Legacy Outputs
	Requirements for Specifying Custom Table of Contents Icons in DITA Source Documents
	Specifying Custom Table of Contents Icons in DITA Source Documents

	Using markopen and markclose
	Configuring markopen and markclose entries for dropdowns in ePublisher

	Troubleshooting DITA issues

	Markdown++ Output Format
	Introduction
	Setting up a Markdown++ Target in ePublisher
	Basic Workflow for Adding and Converting Documents
	Configuration Tasks for Markdown++
	Markdown++ Tables and Layout

	WebWorks Reverb 2.0
	Choosing a Skin
	Using SASS To Customize Reverb Interface
	Using Custom SASS files in Reverb Projects

	Previewing Reverb Output
	Delivering Reverb Output
	Top-Level Groups in Reverb
	Searching Output
	Using Baggage Files
	Indexing Baggage Files and External URLs
	Using Tidy for Indexing HTML Pages
	Assigning Relevance Weight to Your Source Documents Styles
	Assigning Relevance Weight to Your HTML and PDF Baggage Files
	Search Highlighting in Baggage Files

	Searching with URL Method
	TOC or Index with URL Method
	Launching Context Sensitive Help for WebWorks Reverb 2.0
	End-user requirements in WebWorks Reverb 2.0
	Analytics Event Tracking in Reverb 2.0
	‘Was This Helpful?’ Buttons
	‘Was This Search Helpful?’ Buttons
	Document Last Modified Date in Reverb
	Drop-down Expand/Collapse All Toggle Button
	Google Translate Button
	Customizable Header and Footer
	Custom TOC Menu Items
	Customizing a Bullet Icon using Font Awesome
	Using the url_maps.xml reference file

	PDF - XSL-FO
	Why use PDF - XSL-FO output format?
	PDF-XSL-FO Page Regions
	PDF XSL-FO Font Inclusions

	Dynamic HTML
	Dynamic HTML Output Viewer
	Delivering Dynamic HTML

	ePUB
	ePUB Platforms
	ePUB Considerations
	Meta Data
	Book Title and ID
	Long Content
	Page Styles
	Tables
	Cover
	Syncing with Apple iPad

	Eclipse Help
	Eclipse Help Viewer
	Delivering Eclipse Help

	HTML Help
	Benefits of Microsoft HTML Help
	Restrictions and Requirements for Microsoft HTML Help
	HTML Help Viewer
	Toolbar Pane in HTML Help
	Navigation Pane in HTML Help
	Topic Pane in HTML Help

	Topic Only View in HTML Help
	HTML Help Workshop
	HTML Help Project File (.hhp)
	HTML Help Contents File (.hhc)
	HTML Help Index File (.hhk)
	HTML Help Mapping File (.h)

	Delivering HTML Help

	Oracle Help
	Oracle Help Viewer
	Oracle Help Files
	Helpset .hs File in Oracle Help
	Control .xml Files
	Full Text Search .idx Index File
	Manifest .mft File

	Delivering Oracle Help

	Sun JavaHelp
	Sun JavaHelp Files
	Helpset .hs File in Sun JavaHelp
	Contents toc.xml File in Sun JavaHelp
	Index ix.xml File in Sun JavaHelp
	Map .jhm File in Sun JavaHelp

	Delivering Sun JavaHelp

	WebWorks Help
	The Frameset View in WebWorks Help
	Navigation Pane in WebWorks Help
	Toolbar Pane in WebWorks Help
	Topic Pane in WebWorks Help

	Topic Only View in WebWorks Help
	WebWorks Help Output Files
	Delivering WebWorks Help
	Searching WebWorks Help

	Designing, Deploying, and Managing Stationery
	Understanding Stationery
	Stationery Components
	Understanding Stationery Synchronization

	Designing Stationery
	Creating a Stationery Design Project
	Adding Output Formats to Your Stationery Design Project
	Adding a Target to Your Stationery Design Project
	Selecting an Active Target in Your Stationery Design Project

	Updating a Project to Include All Styles
	Understanding Style Designer
	Modifying Output with CSS Properties and Attributes
	Understanding the CSS Box Model
	Inheriting Style Properties and Options
	Understanding Options in Style Designer

	Organizing and Managing Styles
	Previewing the Output from a Source File
	Defining New Pages (Page Breaks)
	Defining TOCs and Mini-TOCs
	Defining the Table of Contents Structure (Levels)
	Generating and Naming the Table of Contents File
	Defining the Table of Contents from an Irregular Heading Hierarchy
	Understanding the Table of Contents and Merge Settings
	Defining the Icon for a Table of Contents Entry
	Creating a Miniature Table of Contents
	Modifying the Appearance of Mini-TOC Entries

	Modifying the Appearance of Paragraphs
	The Prototype Style for Paragraphs
	Setting the Background Color of a Paragraph
	Setting the Border Style and Color of a Paragraph
	Setting the Font for a Paragraph
	Setting the Width, Height, and Positioning of a Paragraph
	Adjusting the Space Around a Paragraph
	Setting the Text Color and Other Characteristics of a Paragraph
	Modifying Paragraphs for Bidirectional Languages
	Disabling Autonumbering in Output
	Defining the Appearance of Notes, Tips, Cautions, and Warnings
	Defining the Appearance of Bulleted Lists
	Defining the Appearance of Numbered Lists
	Fixing Paragraph Indentation Including Hanging Indent

	Modifying the Appearance of Characters
	The Prototype Style for Characters
	Setting the Background Color of a Character
	Setting the Border Style and Color of Characters
	Setting the Font for a Character
	Adjusting the Space Around Characters
	Setting the Color and Other Characteristics of Characters
	Modifying Characters for Bidirectional Languages

	Defining the Appearance of Tables
	The Prototype Style for Tables
	Setting the Background Color or Image of a Table
	Setting the Border Style and Color of a Table
	Setting the Width and Height of a Table
	Setting the Vertical and Horizontal Alignment within a Table
	Adjusting the Space Within and Around a Table
	Modifying Header, Footer, and Body Rows of a Table
	Modifying Cells of a Table

	Defining the Appearance of Images
	Supported Image Formats
	Image Quality and Processing
	The Prototype Style for Images
	Defining Graphic Styles
	Setting the Border Style and Color of an Image
	Modifying the Width, Height, and Positioning of an Image
	Adjusting the Space Around Images
	Using Thumbnails for Images
	Setting the Maximum Width and Height for Images
	Modifying Image Size by Scale
	Modifying Image Resolution
	Setting Color Bit Depth
	Choosing an Image File Format and Quality Level
	Creating Grayscale Images
	Setting Transparency for .gif and .png Images

	Defining the Appearance of Pages
	The Prototype Style for Pages
	Displaying Company Logo and Information on a Page
	Modifying the Appearance of the Company Information
	Setting the Background Color or Image of a Page
	Setting the Border Style and Color of a Page
	Adjusting the Space Around a Page
	Using a Custom CSS to Modify the Appearance of Content
	Modifying the Location and Separators of Breadcrumbs
	Modifying the Appearance of Breadcrumbs
	Choosing the Location of Navigation Browse Buttons
	Modifying the Navigation Browse Buttons
	Associating a Page with a Page Style

	Defining the Appearance of Links
	Saving a Snapshot (Backup Copy) of Your Project
	Defining Marker Types
	Defining File Names
	Specifying File Names for Pages Using Page Naming Patterns
	Specifying File Names for Images Using Graphic Naming Patterns
	Using Markers to Define File Names

	Defining Context-Sensitive Help Links
	Defining Filename Markers for Context-Sensitive Help Links
	Defining TopicAlias Markers for Context-Sensitive Help Links

	Defining Expand/Collapse Sections (Drop-Down Hotspots)
	Using Styles and Markers for Expand/Collapse Sections
	Modifying Images for Expand/Collapse Sections

	Defining Popup Windows
	Using Marker Styles to Create Popup Windows
	Using Paragraph Styles To Create Popup Windows
	Assigning a Page Style to Popup Windows

	Defining Related Topics
	Using a Paragraph Style for Related Topics Lists

	Defining See Also Links
	Enabling See Also Functionality
	Modifying the Appearance of the See Also Button

	Define the Default Settings for Each Target
	Defining the Default Index Settings
	Defining the Default Processing of Variables
	Defining the Default Processing of Conditions
	Defining the Default Processing of Cross References
	Defining Default PDF Generation Settings
	Defining the Accessibility Report to Validate Content
	Defining Other Reporting Options

	Saving and Testing Stationery
	Backing Up Your Stationery Design Project, Stationery, and Projects

	Deploying Stationery
	Managing and Updating Stationery

	Target Settings Reference
	Accessibility Settings
	Accessibility Report Settings
	Analytics Settings
	Baggage Files Settings
	Baggage Files Report Settings
	Company Information Settings
	Conditions Report Settings
	Cover Settings (eBook - ePUB 2.0)
	Eclipse Settings
	ePUB Settings (eBook - ePUB 2.0)
	File Processing Settings
	Filenames Report Settings
	Files Settings
	Footer Settings
	Header Settings
	HTML Help Settings
	Images Report Settings
	Index Settings
	JavaHelp Settings
	Links Settings
	Links Report Settings
	Locale Settings
	Menu Settings
	Oracle Help Settings
	Page Settings
	PDF Settings
	Result Options Settings (PDF - XSL-FO)
	Search Settings
	Social Settings
	Styles Settings (PDF - XSL-FO)
	Styles Report Settings
	Table of Contents Settings
	Title Page Settings (PDF - XSL-FO)
	Toolbar Settings
	Topics Report Settings
	WebWorks Help Settings
	WebWorks Reverb Settings
	WebWorks Reverb 2.0 Settings

	Style Designer Reference
	Advanced Properties
	Aural Properties
	Background Properties
	Body Properties
	Body Background Properties (Tables)
	Border Properties
	Bullet Properties
	Font Properties
	Footer Properties (Tables)
	Footer Background Properties (Tables)
	Header Properties (Tables)
	Header Background Properties (Tables)
	HTML (Layout) Properties
	Margin Properties
	Markdown++ Properties
	Master Page Properties (Pages)
	Navigation Properties (Pages)
	Padding Properties
	Pagination Properties
	Table Properties (Tables)
	Text Properties
	Markdown++ Options
	Paragraph Styles Options
	Character Styles Options
	Table Styles Options
	Page Styles Options
	Page Styles Options (PDF - XSL-FO)
	Graphic Styles Options
	Marker Styles Options

	Customizing WebWorks Reverb 2.0
	Changing the Appearance of WebWorks Reverb 2.0
	Using SASS To Customize WebWorks Reverb 2.0
	SASS Variables In WebWorks Reverb 2.0
	Migrating SASS Overrides To Newer Format Versions
	Layout Colors In WebWorks Reverb 2.0 Skins

	Target Settings for WebWorks Reverb 2.0
	WebWorks Reverb 2.0 Target Settings
	WebWorks Reverb 2.0 Toolbar Target Settings
	WebWorks Reverb 2.0 Analytics Target Settings
	WebWorks Reverb 2.0 Menu Target Settings
	WebWorks Reverb 2.0 Page Target Settings
	WebWorks Reverb 2.0 Footer Target Settings
	Social Target Settings
	Selecting an Alternate Skin for WebWorks Reverb 2.0

	Customizing the Top-Level Entry File
	Specifying the Entry Page Name
	Specifying the Entry Page Style

	Customizing TOC Menu Item Display
	Specifying TOC Item CSS Class

	Customizing the Splash Page in WebWorks Reverb 2.0
	Specifying the Splash Page Style
	Replacing the Splash Image
	Modifying the Splash Page
	Removing the Splash Page

	Using Context-Sensitive Help in WebWorks Reverb 2.0
	Mapping Files in WebWorks Reverb 2.0
	Opening Context-Sensitive Help in WebWorks Reverb 2.0 using Standard URLs
	URL Commands Support by WebWorks Reverb 2.0
	Opening Context-Sensitive Help in WebWorks Reverb 2.0 using JavaScript
	Opening Context-Sensitive Help in WebWorks Reverb 2.0 using the WebWorks Help API

	Configuring Client-Side Search for Reverb 2.0
	Configuring Synonyms

	Searching WebWorks Reverb 2.0 - URL Method
	Incorporating Google Analytics for Your Reverb 2.0 Files
	Configuring Commenting and End-User Feedback for Reverb 2.0
	Customizing Icons in Your Reverb 2.0 Output Using Font Awesome
	Incorporating Web Fonts in Your Reverb 2.0 Output
	Steps to Create Your First Disqus Site

	‘Was This Helpful?’ Buttons
	Dropdown Collapse/Expand All Toggle Button
	Document Last Modified Date/Publish Date
	Customizing Related Topics
	Customizing Related Topic Styling/Appearance
	Enabling/Disabling Related Topic Dropdown Behavior

	Customizing PDF - XSL-FO
	Custom Header and Footers
	Document Last Modified Date/Publish Date
	Page Template Customizations

	Customizing Dynamic HTML
	Using SASS to change the Appearance of Dynamic HTML
	Modifying the Appearance of the Table of Contents in Dynamic HTML
	Modifying the Appearance of the Index in Dynamic HTML
	Other Changes to Text in the TOC and Index in Dynamic HTML
	Document Last Modified Date/Publish Date

	Customizing Eclipse Help
	Using Markers to Specify Context Plug-ins in Eclipse Help
	Using Markers to Specify Topic Descriptions for Context-Sensitive Help Topics in Eclipse Help

	Customizing Oracle Help and Sun JavaHelp
	Defining the Navigation Pane in Oracle Help
	Using Custom Windows in Oracle Help
	Defining the Navigation Pane in Sun JavaHelp
	Using Context-Sensitive Help in Oracle Help and Sun JavaHelp
	Mapping Files in Oracle Help and Sun JavaHelp
	Testing Context-Sensitive Oracle Help and Sun JavaHelp

	Customizing WebWorks Help
	Renaming the Top-Level Entry File
	Selecting a Theme
	Customizing the Splash Page in WebWorks Help
	Replacing the Splash Image
	Removing the Splash Page

	Customizing the Toolbar in WebWorks Help
	Adding and Removing Toolbar Buttons in WebWorks Help
	Replacing the Toolbar Buttons in WebWorks Help
	Changing the Background Color of the Toolbar

	Customizing the Navigation Pane in WebWorks Help
	Setting the Initial Width of the WebWorks Help Navigation Pane
	Controlling the Navigation Pane Hover Text Appearance
	Changing the Font Color on the Navigation Pane Tabs in WebWorks Help
	Using Custom Icons on the Contents Tab in WebWorks Help
	Modifying the Appearance of the Search Message in WebWorks Help
	Modifying the Search Ranking
	Modifying the Search Highlighting
	Synonyms
	Minimum word length & common words

	Using Context-Sensitive Help in WebWorks Help
	Mapping Files in WebWorks Help
	Opening Context-Sensitive Help in WebWorks Help using Standard URLs
	Opening Context-Sensitive Help with the WebWorks Help API
	Opening Context-Sensitive Help with the Javascript API

	Advanced Format and Target Customizations
	Understanding Customized Processing
	Format and Target Overrides
	Creating Format Overrides
	Creating Target Overrides
	Managing Overrides

	Customizing Page Templates (*.asp)
	Page Templates Reference
	Namespace and Attributes

	Using ePublisher Style Variables in Page Templates
	Using Markers in Page Templates

	ePublisher Pipeline and Transforms
	Terminology
	Processing Workflow
	Transformation Process
	Adapters Transform Source Documents to WIF
	WebWorks Intermediate Format (WIF)
	Processing Files by Type
	Identifying Files to Process
	TOC Processing Example

	Stationery, Projects, and Overrides
	File Locations
	File Processing
	ePublisher File Types
	Format Trait Info (*.fti) Files
	format.wwfmt Files
	files.info Files
	Stationery Design Project .wep File
	Project .wrp File
	Stationery .wxsp File

	XSL Match Templates
	Root Match Templates
	Root Match Templates in ePublisher

	Extension Objects

	Introduction
	Audience
	Help
	Conventions
	Formatting
	Terminology

	Organization
	About XML and XSL

	Architectural Overview
	Real World Example

	File Reference
	File Locations
	File Processing
	What This Means For The User

	File Types
	Format Trait Info (*.fti)
	Explanation
	Components
	Relationships

	format.wwfmt
	Explanation
	Components
	Relationships

	files.info
	Explanation
	Components
	Relationships

	Designer Project File (.wep)
	Stationery File (.wsxp)
	Express Project File (.wrp)

	XSL Match Templates
	Root Match Templates
	Root Match Templates in ePublisher Designer
	Real Life Example

	Extension Objects
	Output Customizations
	Transform Overrides
	Creating Transform Overrides
	Information about Overriding files

	XSLT Reference
	XSLT Documentation
	Good to Know
	Using Extension Objects
	General XSL Extensions
	Microsoft Extensions
	Using ePublisher XSLT Extensions

	ePublisher Platform XSLT Extensions
	Class Documentation
	Adapter
	void AddToPDFPageNumberOffset (int addToPageNumberOffset)
	bool GeneratePDF (string originalDocumentPath, string conversionPDFDocumentPath, bool singleFile, XPathNodeIterator tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string pdfJobSettings, string pdfFilePath)
	bool GeneratePDFWithSaveAs (string originalDocumentPath, string conversionPDFDocumentPath, bool singleFile, XPathNodeIterator tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string pdfJobSettings, string pdfFilePath)
	bool GeneratePostScriptForImage (object input, string postScriptPath)
	long GeneratePostScriptForPDF (string originalDocumentPath, string conversionPDFDocumentPath, bool singleFile, XPathNodeIterator tocStyleNodesIterator, XPathNodeIterator groupFileNodesIterator, string postScriptFilePath)
	void SetPDFPageNumberOffset (int pageNumberOffset)
	bool TemporaryLicense (string toolAdapterName)

	AdapterConfiguration
	string GetValue (string name)
	string GetValue (string name, string defaultValue)

	DateTimeUtilities
	string GetNow (string format)
	string GetGenerateStart (string format)
	string GetFileCreated (string filepath, string format)
	string GetFileLastModified (string filepath, string format)
	string GetFromDateTimeString (string dateTime, string inputFormat, string outputFormat)

	Environment
	string ApplicationBaseHelpURI ()
	string CurrentUILocale ()
	long GetTotalMemory ()
	long GetTotalMemory (bool forceFullCollection)
	string HTMLHelpWorkshopPath ()
	string JavaBits ()
	string JavaHome ()
	string JavaVersion ()
	string JDKBits ()
	string JDKHome ()
	string JDKVersion ()
	string JREBits ()
	string JREHome ()
	string JREVersion ()
	bool RequestedPipeline (string pipelineName)

	Exec
	XPathNodeIterator Execute (string commandLine)
	XPathNodeIterator ExecuteCommand (string command [, string argument1, string argument2, string argument3, string argument4, string argument5, string argument6, string argument7, string argument8, string argument9, string argument10, string argument11, string argument12, string argument13, string argument14, string argument15, string argument16, string argument17, string argument18, string argument19, string argument20])
	XPathNodeIterator ExecuteCommandNoReturn (string command)
	XPathNodeIterator ExecuteCommandInDirectory (string directoryPath, string command [, string argument1, string argument2, string argument3, string argument4, string argument5, string argument6, string argument7, string argument8, string argument9, string argument10, string argument11, string argument12, string argument13, string argument14, string argument15, string argument16, string argument17, string argument18, string argument19, string argument20])
	XPathNodeIterator ExecuteCommandInDirectoryWithTimeout (long timeoutInSeconds, string directoryPath, string command [, string argument1, string argument2, string argument3, string argument4, string argument5, string argument6, string argument7, string argument8, string argument9, string argument10, string argument11, string argument12, string argument13, string argument14, string argument15, string argument16, string argument17, string argument18, string argument19, string argument20])
	XPathNodeIterator ExecuteCommandWithTimeout (long timeoutInSeconds, string command [, string argument1, string argument2, string argument3, string argument4, string argument5, string argument6, string argument7, string argument8, string argument9, string argument10, string argument11, string argument12, string argument13, string argument14, string argument15, string argument16, string argument17, string argument18, string argument19, string argument20])
	XPathNodeIterator ExecuteInDirectory (string directoryPath, string commandLine)
	XPathNodeIterator ExecuteInDirectoryWithTimeout (long timeoutInSeconds, string directoryPath, string commandLine)
	XPathNodeIterator ExecuteProgramWithArguments (string program, string arguments)
	XPathNodeIterator ExecuteProgramWithArgumentsInDirectory (string directoryPath, string program, string arguments)
	XPathNodeIterator ExecuteProgramWithArgumentsInDirectoryWithTimeout (long timeoutInSeconds, string directoryPath, string program, string arguments)
	XPathNodeIterator ExecuteProgramWithArgumentsWithTimeout (long timeoutInSeconds, string program, string arguments)
	XPathNodeIterator ExecuteWithTimeout (long timeoutInSeconds, string commandLine)

	ExecPython
	XPathNodeIterator ExecutePyScriptInCommandLine (string commandLine)
	XPathNodeIterator ExecPyScript (string pyScriptPath [, string argument1, string argument2, string argument3, string argument4, string argument5, string argument6, string argument7, string argument8, string argument9, string argument10, string argument11, string argument12, string argument13, string argument14, string argument15, string argument16, string argument17, string argument18, string argument19])
	XPathNodeIterator ExecutePyScriptInDirectoryInCommandLine (string directoryPath, string commandLine)
	XPathNodeIterator ExecPyScriptInDirectory (string directoryPath, string pyScriptPath [, string argument1, string argument2, string argument3, string argument4, string argument5, string argument6, string argument7, string argument8, string argument9, string argument10, string argument11, string argument12, string argument13, string argument14, string argument15, string argument16, string argument17, string argument18, string argument19])

	Sass
	XPathNodeIterator SassToCss (string inputSassFilePath, string outputCssFilePath)
	void ReplaceAllVariablesInFile (string inputSassFilePath, object replacements)

	ExslDocument
	void Document (object input, string path [, string encoding, string method, string version, string indent, string omit_xml_declaration, string standalone, string doctype_public, string doctype_system, string cdata_section_elements, string media_type])
	XPathNodeIterator LoadXMLWithoutResolver (string uriAsString [, bool preserveSpace])
	XPathNodeIterator LoadXMLWithResolver (string uriAsString [, bool preserveSpace])
	XPathNodeIterator MakeEmptyElement (object input)

	Files
	bool UpToDate (string path, string projectChecksum, string groupID, string documentID, string actionChecksum)

	FileSystem
	bool AppendFileWithFile (string targetPath, string sourcePath)
	bool ChecksumUpToDate (string path, string checksum)
	string Combine (string path, string component1 [, string component2, string component3, string component4, string component5, string component6, string component7, string component8, string component9, string component10])
	XPathNodeIterator CopyDirectoryFiles (string sourceDirectoryPath, string destinationDirectoryPath)
	XPathNodeIterator CopyFile (string sourcePath, string destinationPath)
	bool CreateDirectory (string path)
	void DeleteDirectory (string path)
	void DeleteFile (string path)
	bool DirectoryExists (string path)
	bool Exists (string path)
	bool FileExists (string path)
	bool FilesEqual (string alphaPath, string betaPath)
	string GetAbsoluteFrom (string relativePath, string referencePath)
	string GetBaseName (string path)
	string GetChecksum (string path)
	string GetDirectoryName (string path)
	string GetExtension (string path)
	string GetFileName (string path)
	string GetFileNameWithoutExtension (string path)
	XPathNodeIterator GetFiles (string path)
	string GetLongPathName (string path)
	XPathNodeIterator GetRelativeFiles (string path)
	string GetRelativeTo (string path, string anchorPath)
	string GetShortPathName (string path)
	string GetTempFileName ()
	string GetTempPath ()
	string GetWithExtensionReplaced (string path, string extension)
	string MakeValidFileName (string fileNameSeed)
	void TranslateFileToEncoding (string sourceFilePath, string sourceFileEncodingName, string destinationFilePath, string destinationFileEncodingName)

	Fonts
	bool UnicodeFont (string fontFamily)

	Imaging
	XPathNodeIterator GetInfo (string imageFilePath)
	void MapPDFLinks (object fileTable, string fileToFix, string fileToWrite, string originalFilePath, string outputFilePath, bool useAbsPath)
	bool MergePDFs (object sourceFileList, string targetFilePath)
	bool MergePDFs (object sourceFileList, object fileTable, string targetFilePath)
	bool PostScriptToPDF (string postScriptFilePath, string pdfJobSettings, string pdfFilePath)
	XPathNodeIterator RasterizePostScript (string postScriptFilePath, int renderHorizontalDPI, int renderVerticalDPI, int renderWidth, int renderHeight, string targetImageFormatAsString, int targetImageColorDepth, bool targetImageGrayscale, bool targetImageTransparent, bool targetImageInterlaced, int targetImageQuality, string targetFilePath)
	XPathNodeIterator Transform (string inputImageFilePath, string outputImageFormat, int outputImageWidth, int outputImageHeight, string outputImageFilePath)
	XPathNodeIterator Transform (string inputImageFilePath, string outputImageFormatAsString, int Choice_outputImageQuality_outputImageWidth, int Choice_outputImageWidth_outputImageHeight, string Choice_outputImageHeight_outputImageFilePath, string Choice_outputImageFilePath_outputResolution)
	XPathNodeIterator Transform (string inputImageFilePath, string outputImageFormatAsString, int outputImageQuality, int outputImageWidth, int outputImageHeight, string outputImageFilePath, int outputResolution)

	Log
	void Error (string message1 [, string message2, string message3, string message4, string message5, string message6, string message7, string message8, string message9, string message10])
	void Message (string message1 [, string message2, string message3, string message4, string message5, string message6, string message7, string message8, string message9, string message10])
	void Warning (string message1 [, string message2, string message3, string message4, string message5, string message6, string message7, string message8, string message9, string message10])

	MultiSearchReplaceExtension
	void ReplaceAllInFile (string inputEncodingAsString, string inputFilePath, string outputFilePath, object replacements)
	void ReplaceAllInFile (string inputEncodingAsString, string inputFilePath, string outputEncodingAsString, string outputFilePath, object replacements)
	string ReplaceAllInString (string input, object replacements)

	NodeSet
	XPathNodeIterator FirstUnique (object input, string attributeLocalName)
	XPathNodeIterator FirstUniqueWithNamespace (object input, string attributeLocalName, string attributeNamespaceURI)
	XPathNodeIterator LastUnique (object input, string attributeLocalName)
	XPathNodeIterator LastUniqueWithNamespace (object input, string attributeLocalName, string attributeNamespaceURI)

	Progress
	bool Abort ()
	void Cancel ()
	void End ()
	void QueueAlert (string message)
	void Retry ()
	void SetStatus (string message)
	void Start (int totalSubSteps)

	Project
	bool DocumentExtension (string extension)
	bool GetConditionIsPassThrough (string conditionName)
	string GetConfigurationChangeID ()
	XPathNodeIterator GetContextRule (string ruleTypeAsString, string ruleName, string documentID, string uniqueID)
	string GetDocumentDataDirectoryPath (string documentID)
	string GetDocumentGroupPath (string documentID)
	string GetDocumentID (string documentPath [, string groupID])
	string GetDocumentPath (string documentID)
	string GetDocumentsToGenerateChecksum ()
	string GetFormatID ()
	string GetFormatName ()
	string GetFormatSetting (string name)
	string GetFormatSetting (string name, string defaultValue)
	string GetGroupDataDirectoryPath (string groupID)
	string GetGroupName (string groupID)
	XPathNodeIterator GetOverrideRule (string ruleTypeAsString, string ruleName, string documentID, string uniqueID)
	string GetProjectDataDirectoryPath ()
	string GetProjectDirectoryPath ()
	long GetProjectDocumentsCount ()
	string GetProjectFilesDirectoryPath ()
	string GetProjectFormatDirectoryPath ()
	string GetProjectName ()
	string GetProjectReportsDirectoryPath ()
	string GetProjectTargetName ()
	string GetProjectTargetOverrideDirectoryPath ()
	XPathNodeIterator GetRule (string ruleTypeAsString, string ruleName)
	string GetTargetDataDirectoryPath ()
	string GetTargetFilesInfoPath (string targetIDAsString)
	string GetTargetOutputDirectoryPath ()
	string GetTargetReportsDirectoryPath ()

	StageInfo
	string Get (string param_key)
	void Set (string param_key, string param_value)

	StringUtilities
	string CSSClassName (string styleName)
	string DecodeURI (string value)
	string DecodeURIComponent (string value)
	string EclipseId (string identifier)
	string EncodeURI (string value)
	string EncodeURIComponent (string value)
	string EscapeForXMLAttribute (string value)
	string Format (string format, string argument1 [, string argument2, string argument3, string argument4, string argument5, string argument6, string argument7, string argument8, string argument9, string argument10])
	string FromFile (string sourceFilePath, string sourceFileEncodingName)
	string JavaScriptEncoding (string value)
	bool MatchExpression (string input, string matchExpressionAsString)
	string MatchExpressionValue (string input, string matchExpressionAsString)
	string MD5Checksum (string value)
	string NCNAME (string identifier)
	string NormalizeQuotes (string value)
	string OEBClassName (string styleName)
	string Replace (string input, string search, string replacement)
	string ReplaceWithExpression (string input, string searchExpressionAsString, string replacement)
	string ReplaceWithExpressionForCount (string input, string searchExpressionAsString, string replacement, int count)
	string SHA1Checksum (string value)
	string ToLower (string value)
	string ToUpper (string value)
	string ToCamel (string value)
	string ToPascal (string value)
	bool EndsWith (string input, string suffix)
	string WebWorksHelpContextOrTopic (string key)

	Units
	double Convert (double sourceValue, string sourceUnits, string targetUnits)
	string CSSRGBColor (string htmlColor)
	string EncodingFromCodePage (int codePage)
	string NumericPrefix (string value)
	string RTFColor (string htmlColor)
	string UnitsSuffix (string value)

	URI
	string AsFilePath (string uriAsString)
	string AsURI (string filePathAsString)
	string EscapeData (string unescapedString)
	string EscapeUri (string unescapedUri)
	string GetRelativeTo (string uriAsString, string anchorUriAsString)
	bool IsFile (string uriAsString)
	string MakeAbsolute (string absoluteUriAsString, string uriAsString)
	XPathNodeIterator PossibleResolvedUris (string uriAsString)
	string Unescape (string escapedString)

	ZipExtension
	void Zip (string zipFilePath, object nodes)
	void ZipAdd (string zipFilePath, object nodes)
	void ZipAddWithoutCompression (string zipFilePath, object nodes)
	void ZipDirectory (string zipFilePath, string directoryPath)
	void ZipDirectoryWithoutCompression (string zipFilePath, string directoryPath)
	void ZipExtract (string zipFilePath, string targetDirectory)
	void ZipWithoutCompression (string zipFilePath, object nodes)

	Frequently Asked Questions
	What changed in Font Awesome version 5.15.4 from 4.7.x that impacts Reverb 2.0?
	How do I disable automatic Preview generation in Designer?
	How do I capture source file meta data in the published HTML output?
	How do I use a Project Variable's value in the published output?
	How do I upgrade an existing WebWorks Reverb 2.0 project to a newer version?
	How to add an image icon and stylize your DITA Hazard statement elements?
	How to supplement or replace Reverb Toolbar Group Tabs
	Invalid File Path Characters Filtered from Generated File Names
	How to enable 'WebWorks Menu' (Transit) Add-in for Microsoft Word
	How do I set image horizontal alignment in ePublisher?
	Why is the PDF format skipping Markdown files?
	How can a markdown file include another?
	How can you insert an Index Marker into a Markdown file?
	How to use alternate DITA-OT installation with ePublisher
	How do I embed HTML within DITA source content?
	How to use Context Links in Reverb 2.0
	What happens if a Reverb link is no longer valid?
	How do I know what baggage files are in my Reverb 2.0 output?
	What user interactions can Reverb track in Google Analytics?
	How can I modify the Reverb search result summary?
	How to add Keywords meta data to generated HTML pages
	Why does HTML content within my source file not publish to PDF?

